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The kidneys have a close functional relationship with other organs especially the lungs. This connection
makes the kidney and the lungs as the most organs involved in the multi-organ failure syndrome. The
combination of acute lung injury (ALI) and renal failure results a great clinical significance of 80%
mortality rate. Acute kidney injury (AKI) leads to an increase in circulating cytokines, chemokines,
activated innate immune cells and diffuse of these agents to other organs such as the lungs. These
factors initiate pathological cascade that ultimately leads to ALI and acute respiratory distress syndrome
(ARDS). We comprehensively searched the English medical literature focusing on AKI, ALI, organs cross
talk, renal failure, multi organ failure and ARDS using the databases of PubMed, Embase, Scopus and
directory of open access journals. In this narrative review, we summarized the pathophysiology and
treatment of respiratory distress syndrome following AKI. This review promotes knowledge of the link
between kidney and lung with mechanisms, diagnostic biomarkers, and treatment involved ARDS
induced by AKI.
© 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University.
Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The kidneys receive more cardiac output on a per-gram basis
than some other organs such as the liver (approximately 25% of
cardiac output). Therefore, kidneys are constantly exposed to
small peptides and immune regulatory molecules, which can
reabsorb these substances from circulation and excrete them. It is
clear that in kidney injury situations, accumulation of these
molecules and peptides leads to increased concentration of sub-
stances in blood and initiates immune responses with deleterious
effects in distant organs. In addition, epithelial tubular cells are
active to producing a variety of inflammatory mediators with
presenting circulatory antigens and promoting the activation of
leukocytes that passing through the kidney via this rich circula-
tion.1 Now it is known that renal epithelial cells up regulate and
secrete some chemokines and cytokines such as nuclear factor-kB
(NF-kB) in injured situations, which can initiate the inflammatory
cascade in other organs.2,3
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Acute kidney injury (AKI), also known as acute renal failure, is a
common clinical disorder resulting from some conditions such as
renal ischemia reperfusion injury with an abrupt loss of kidney
function and decline in renal filtration fraction.4e6 The incidence of
AKI varies about 5%e7% in hospitalized patients and it seems that
this ratio is rising every year.7 Despite recent advances in the
treatment of AKI, this disorder still has a high mortality and
morbidity rates in approximately 50% hospitalized patients,
presumably due to the unchanged dysfunction of other organs.8

Recent studies have found an association between kidney and
remote organs dysfunction.9,10 Inmost cases kidney disease directly
or indirectly affects pulmonary functions and causes the lungs to be
recognized as one of the most affected distant organs of kidney
injury.11 Respiratory complications are mostly associated with renal
failure, and conversely AKI is a common incidence in mechanically
ventilated patients.12

This crosstalk involves a complex interaction between many of
biochemical, cellular and tissue specific factors that excite remote
pro-inflammatory and pro-apoptotic signaling.13,14 The innate
immune pathways were mostly mediated through production of
oxygen free radicals, secretion of inflammatory cytokines and
recruitment of polymorphonuclear cells.13,15 Impaired renal filtra-
tion leads to elevated trans-capillary filtration pressure gradient
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and promotes tissue edema.16 Edema especially has serious con-
sequences in the lungs because pulmonary edema impairs gas ex-
change and can lead to potentially life-threatening condition.17

Pulmonary failure can develop to acute lung injury (ALI) and
eventually respiratory distress syndrome with a high mortality
rate. Themortality rate of ALI alone is 30%e40%, but the rate rises to
80% in combinationwith AKI.11,18,19 Therefore, at least partial causes
of the high morbidity and mortality rate of AKI derive from extra-
renal complications, usually related to pulmonary dysfunction,20

which shows particular importance of extrarenal organs compli-
cations and requires knowledge of link between lung and kidney in
determining therapeutic strategies to decrease the mortality rate in
critically ill patients. Unfortunately, little is known about the po-
tential interactions between these tissues in critically ill patients. In
this review we summarize some potential mechanisms, diagnostic
biomarkers and treatments involved in the acute respiratory
distress syndrome (ARDS) after renal failure.

Pathophysiological interactions of kidney injury and ARDS

Edema

One of the most effects of AKI on pulmonary system is through
the water imbalance. Pulmonary fluid and electrolyte transporters
change after AKI. Sodium ATPase pump and epithelial sodium
channel (ENaC) promote sodium absorption from the alveolar
cavity into the alveolar epithelium cells. Then, water passively fol-
lows sodium out of the alveoli. Studies have shown that renal failure
can down regulate the epithelial salt-water transporters such as
ENaC, sodium-potassium ATPase and aquaporin-5 in the lung,
which all contribute to high pulmonary vascular permeability and
low alveolar fluid clearance.21e24 This type of edema is a conse-
quences of following disorders: water-sodium retention induced by
renal injury; increased hydrostatic pulmonary capillary pressures
and changed Starling's forces; loss of membrane integrity in capil-
lary endothelial and alveoli epithelial; leakage of plasma protein
and alveolar fluid accumulation.25 Because the lung contains many
blood vessels, it is themost vulnerable organ to injury.26 Pulmonary
edema patients have prolonged hospital stays, mechanical venti-
lation, and higher rates of pneumonia. Renal injury-induced water
retention results in decreased pulmonary compliance and increased
respiratory work in patients.27 These conditions lead to impaired
gas exchange, which can be severe refractory arterial hypoxemia
and life-threatening.28 Any intervention to reduce pulmonary
edema can have a significant effect in improving patients' health.

Pulmonary edema has many plasma proteins including proteo-
lytic enzymes, proteins, fibrinogen and fibrin in its contents, which
can lead to destruction of the surfactant proteins. The damage of
alveolar epithelial cells caused by inflammatorymediators can have
additional effects in the destruction and decrease of surfactant.
Although over-load volume of renal failure has an important role in
the onset of ALI but evidence indicates that lung damage may occur
even in absence of positive fluid balance.24 On the other hand, it
seems that the uremia is responsible for effects of renal injury on
the lung's salt and water transporters.29,30

Cytokines

The harmful effects of AKI on the lung function could relate to
the loss of normal balance of immune, inflammatory and soluble
mediator metabolism.31 The kidney plays a key role in cytokines
metabolism and clearance. Impaired kidney function is associated
with cytokine imbalance (both production and elimination) in the
circulation. It revealed that an important pathway of lung injury
subsequent kidney injury could arise from cytokine dysregulation
in the kidney, with further activation of the lung's indigenous
immune cells and respiratory complications.12 Additionally there is
a massive system of vessels in the lungs that accelerate lung
deposition of multiple inflammatory mediators. The up-regulation
of pro-inflammatory genes and inflammatory cytokines after AKI
have important effects on the onset and progression of ALI.32 Ani-
mal experiments have shown that AKI causes the activation of
proinflammatory and anti-inflammatory mediator's gene in the
lung.29 The products of these proinflammatory genes such as Cd14,
lipocalin-2, chemokine ligand-2 (CXCL2), and IL-6 can be released
into circulation and initiate inflammation cascade in pulmonary.33

In addition, inflammatory cytokines especially interleukins
(IL-6, IL-8, IL-1b), tumor necrosis factor a (TNF-a), macrophage
inflammatory protein 2, amyloid protein A are the main mediators
involved in the progress of distant organs injury including lung
failure after AKI.12,29,33 NF-kB is a pro-inflammatory transcription
factor that leads to gene expression of inflammatory proteins,
including cytokines, chemokines and adhesion molecules.34

The systematic inflammatory reactions, accumulated toxic me-
tabolites after AKI, and the decrease of omission and inactivation of
the inflammatory mediators through kidneys, cause increase of
mediators in the plasma.26 These mediators can change pulmonary
vascular permeability which exacerbates edema, leukocyte infiltra-
tion and respiratory disorders.35e40 IL-6 seems to be a patient mor-
tality factor in AKI due to its particular role in the initiation and
extension of the inflammatory process.12,39 Recently, Klein et al12

demonstrated that IL-6 knockout mice models have less neutrophil
infiltration, myeloperoxidase activity and capillary permeation
resulting in lower pulmonary edema. TNF-a also is a vital cytokine in
mediating ALI. It persuades the pulmonary endothelial cells activa-
tion, white blood cells migration, granulocyte degranulation, reactive
oxygen species stimulation and capillary leakage.41 Furthermore,
TNF-a interacts with multiple cytokines which can induce extensive
effects. For example TNF-a increases the genesis of IL-6.42 We can
classify the release of different cytokines in AKI-induced ARDS as
diagnostic biomarkers in time variant occurrence phases (Fig. 1).

Neutrophil trafficking

Neutrophils are the first immune cells to arrive at the site of
injury or inflammation. After activation, neutrophils inflow from
the vascular endothelial cells to the interstitium and into the
alveolar space. Recruitment of neutrophils into the lung is one of
the key events in the development of ARDS.43 Alveolar capillaries
are themain site of sequestration andmargination of neutrophils.44

Lung capillary network consist of large number of segments with
about 40% equal to, or smaller diameter than the neutrophils.45

Almost 50% of the circulating leukocyte population can be segre-
gated within the pulmonary vasculature.46e48 Pulmonary neutro-
phil sequestration is an early event that occurs in pathologic lung
inflammation.49 Apoptotic events and inflammatory mediators
especially the cytokines IL-6 and IL-8 are responsible of the
leukocyte recruitment during the inflammatory response of AKI.50

Moreover, cytokines and chemokines cause integrins activation
leading to adhesion of neutrophils on the endothelium.51 It appears
that b2-integrins have particular role in neutrophil recruitment.52

Neutrophils margination to vascular endothelium participates in
microvascular plug, vascular congestion and damaging by releasing
reactive oxygen species and potent proteolytic enzymes.51 Neu-
trophils can also release a variety of cytokines including interferon
(IFN)-g,53 IL-4,54 IL-6,55 IL-10,56 and TNF-a.57

It appears that neutrophils and neutrophil elastase, a serine
protease which is available in the granules of the neutrophil, have
important roles in endothelial injury and increased vascular
permeability in ARDS.58



Fig. 1. The effects of AKI on lung dysfunction. AKI caused lung inflammatory responses and apoptosis through releasing many inflammatory mediators and cytokines. These
mediators can be used as diagnostic markers in three time phases: very early (within 0e6 h), early (24 h) and late (7 d). Neutrophil accumulation and trafficking occurs following
inflammation, cytokines and integrins activation such as IL-6 and ICAM-1. On the other hand, renal dysfunction after AKI leading to decreased GFR and ADMA clearance with NO
metabolism disorder and reactive oxygen production. Pulmonary edema is often caused by down-regulation of ENaC, Na/K/ATPase and AQP5. As a result, all events lead to increased
permeability and edema, oxidative stress and apoptosis in the lung that finally caused ARDS.
Abbreviations: GFR, glomerular filtration rate; AKI, acute kidney injury; ICAM-1, intercellular adhesion molecule 1; ADMA, asymmetric dimethyl arginine; ENaC, epithelial sodium
channel; AQP5, aquaporin 5; HMGB1, high-mobility group protein B1; MIP-2, macrophage inflammatory protein 2; NFkB, nuclear factor kB; TNF, tumor necrosis factor.
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Oxidative stress

Oxidative stress and its systemic consequences likely play a
significant role in AKI-induced lung injury. The increased
lung tissue levels of malondialdehyde (MDA) (a marker of lipid
peroxidation) have been observed in rats with AKI.26,59

There are three main sources of oxidative stress: 1) Activation of
neutrophils in the pulmonary circulation causes the release of large
amounts free radicals and reactive oxygen species60; 2) Accumu-
lation of activated macrophages to injured tissue can induce cell
death by releasing reactive oxygen species; 3) Last source of
oxidative stress in ARDS patients is availability of high levels of
oxygen employed during ventilator therapy. It seems that antioxi-
dant activity and potency also decreased in these patients.61

Glutathione is an important antioxidant in the lung that decreases
in patients with ARDS.62 Metnitz and colleagues63 showed that
plasma levels of alpha-tocopherol, vitamin C, beta-carotene, and
selenium were reduced in ARDS patients. These events lead to the
increased production of oxidants, creating an imbalance between
antioxidants and oxidants which will lead to the pathways of cell
death. Inflammation condition in lung injury is a suitable oppor-
tunity for free radicals to overwhelm the endogenous antioxidants.
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Inflammatory factors following AKI activate oxidative stress and
reactive oxygen species production that can lead to ALI by several
mechanisms including: lipid peroxidation, direct oxidative damage
and mutations in DNA, changes in cellular protein activity by pro-
teins and enzymes oxidation, alteration in genomic transcription
and direct surfactant damage.64 Cellular DNA damage inhibits
protein syntheses that are involved in cell growth, genes encoding
antioxidant enzymes and cell repair.65

Apoptosis

AKI activates variants lung apoptosis-related genes including
tumor necrosis factor receptor 1 (TNFR1) and programmed cell
death.

Tumor necrosis factor receptor 1 (TNFR1)-mediated programmed
cell death66 and lung microvascular barrier dysfunction67 have been
identified prominent factors in mediating lung dysfunction through
endothelial cell apoptosis. Endothelial cell apoptosis has deleterious
effects on solute transport across the vascular membrane. Impaired
endothelial barrier function has a key role in increased vascular
permeability and inflammation.68 Therewas increased lung vascular
permeability at 24 and 48 h post ischemia in a rat model of bilateral
renal ischemia reperfusion injury, quantified by leakage of labeled
albumin outside the vascular space.23,69 Pulmonary cellular
apoptosis may also contribute to ARDS.

AKI also leads to an increase in lung caspases. Administration of
caspase inhibitors reduces lung injury following acute renal failure.15

Asymmetric dimethyl arginine

NO metabolism disorder due to renal failure makes the lungs
more sensitive to injury. The mechanism underlying NO dysregu-
lation is not completely clear, but it appears that asymmetric
dimethyl arginine (ADMA), an inhibitor of endothelial NO synthase
(eNOS), plays a significant role. ADMA shifts NOmetabolism toward
the production of free radicals and lung damage.70 ADMA is in part
excreted by renal excretion.71 Reduced glomerular filtration frac-
tion of ADMA in renal failure is associated with slight increases of
ADMA plasma levels and impaired pulmonary vascular vasodila-
tion.72 The high-level clearance process of ADMA is carried out by
dimethylarginine dimethylaminohydrolase (DDAH), enzyme
involved in the degradation of the ADMA. It seems that DDAH is
suppressed in acute renal injury, leading to accumulation of ADMA
in plasma and tissues.73

Diagnostic biomarkers

Some mediators and indicators indicate that lung injury after
AKI can be classified into 3 phases according to the time of occur-
rence, as follows:

1) Very early phase (0e6 h): Pulmonary edema and lung neutrophil
accumulation occur very early with increased serum proin-
flammatory cytokines. Increased serum IL-6 (not in local lung),
within 2 h inpatientswith AKI leads to increased lung chemokine
(C-X-C motif) ligand 1 (CXCL1) such as IL-8 production and
neutrophil infiltration.36,74 Therefore, increased serum and lung
IL-8 at 2 h after AKI can predict lung injury.36 Tumor necrosis
factor (TNF) is another marker that induces TNFR1-mediated
pulmonary apoptosis within 2 h after ischemic AKI.66 Increased
serum high-mobility group protein B1 (HMGB1), an agonist
of TLR-4, within 6 h after AKI75 and lung markers such as
nuclear factor kB (NFkB),76 macrophage inflammatory protein
2 (MIP-2),29 intercellular adhesion molecule 1 (ICAM-1)77 and
IL-1b75 are associated with lung injury after AKI.
2) Early phase (24 h): lung T-cell accumulation via increased lung
endothelial apoptosis with caspase 3 activity and lung TUNEL
staining is responsible of continuing pulmonary edema and lung
neutrophil accumulation within 24 h after AKI onset.14,67

3) Late phase (7 days): increased lung IL-8 and lung neutrophil
accumulation indicate lung injury occurrence in AKI patients.78

Treatment strategies

Mechanical ventilation management

Protective ventilation term means sufficient oxygenation of
the blood and carbon dioxide elimination to avoid from over
distension, barotrauma, atelectasis, hemodynamic impairment, and
patient-ventilator asynchrony. The choice of proper ventilation
strategy is capable of preventing the progression of the lung disease
and its outcomes. Incorrect mechanical ventilation methods can be
associated with more damaging effects and increased mortality
that named ventilator-associated lung injury. The use of adequate
levels of tidal volume 6 ml/kg predicted body weight (PBW),
plateau pressure kept below 30 cm H2O, inspiratory oxygen con-
centration (FiO2) as low as possible, and a permissive hypercapnia
to a pH level of 7.2 are more successful strategies in protective
ventilation to ARDS therapy.79,80

This protective ventilation has important consequences in AKI
and ARDS patients. It can prevent the development of AKI by
creating mild hypercapnic that is well tolerated. Mild hypercapnic
acidosis has shown anti-inflammatory and cytoprotective
effects.81,82 Inactivation of calcium channels and vasodilation of
vessels, decrease in NF-kappaB production and cytokines releasing
are involved in protective effects of hypercapnic acidosis.83e85

Fluid management

Fluid accumulation has an adverse effect on recognition of AKI
due to dilution of creatinine in body compartments. Therefore, an
increase of 0.3 mg/dl or change more than 50% within 48 h in
creatinine concentration must be considered as a diagnostic crite-
rion of AKI.86 Fluid management in ARDS with AKI is complicated
because of two aspects: first, liberal fluid therapy is required for
kidney perfusion and second, restriction of fluids with a diuretic
drug can limit the amount of lung edema, reduce pulmonary
capillary pressure, central venous pressure and eventually decrease
mortality.87,88 But according to a study that compared two fluid
protocol therapies (liberal and conservative) with 1000 patients in
2006, showed the conservative fluid therapy using diuretics has
better outcomes, including shorter duration of mechanical venti-
lation and ICU stays.89

Neutrophils elastase inhibitors

Neutrophil elastase is a serine protease secreted from neutrophils
in inflammation and has a significant role in pathogenesis of AKI-
induced ALI.90 It seems that neutrophils elastase inhibitors such as
Sivelestat are able to inhibit the progression of ARDS and AKI.91,92

Sivelestat decreases neutrophil infiltration and cytokines expression
in the lung92 and has improve outcome in multiple organ failure.93

Antioxidants therapy

Administration of antioxidants has beneficial effects in ARDS
patients with AKI. Antioxidant vitamins and trace elements such as
vitamins A, C, and E, selenium and zinc have radical scavengers
and antioxidant activities.94 However, the use of high doses of
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antioxidant vitamins and trace elements is not recommended in
patients with nephrogenic ARDS due to renal impairment.

Vitamin C reacts directly with free radicals and can restore
antioxidant property of oxidized vitamin E.95 Zinc does not interact
directly with free radicals but it can increase the activity of
antioxidant enzymes such as superoxide dismutase (SOD).96 In
addition, zinc inhibits pro-oxidant enzymes such as the nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase, inducible
NOS (iNOS).97

Selenium is a potent antioxidant because it can bind to hydro-
peroxides (H2O2) with more affinity than catalase.98 SOD or syn-
zyme mimics are catalytic drugs with potent anti-inflammatory
and ROS detoxification properties.99 It seems that SOD mimics
inhibit neutrophil-mediated injuries.99

Diseases affecting both lungs and kidneys

There are several “pulmonary renal syndromes” that affect both
the kidneys and the lungs.100,101 These disorders are often associ-
ated with hemoptysis from diffuse alveolar hemorrhage along with
renal insufficiency from either acute glomerulonephritis or other
vasculitis.57,58 Three of these most familiar diseases are Wegener's
granulomatosis, systemic lupus erythematosus, and Goodpasture's
syndrome.102 Some of the known diseases with both pulmonary
and renal manifestations were listed as follows:

Wegener's granulomatosis;
Microscopic polyangiitis;
Mixed cryoglobulinemia;
Henoch-Schonlein purpura;
Immune complex glomerulonephritis;
Pauci-immune glomerulonephritis;
Systemic lupus erythematosus;
Goodpasture syndrome;
Thrombotic thrombocytopenic purpura;
Allergic granulomatous angiitis (ChurgeStrauss syndrome).
Conclusion

Pulmonary dysfunction is a common complication in patients
with AKI that contributes to increasing the mortality rate. The
kidney-lung crosstalk in AKI and ARDS is a consequence of complex
biological process which leads to dysregulation of cytokines/me-
diators and apoptotic signaling pathways. This review summarized
the most important various aspects of pathophysiology, diagnostic
and treatment involved in lung injury associated with AKI. Better
understanding this relation can be a gateway to novel therapeutic
strategies against AKI and decrease high mortality rate during
AKI-related pulmonary failure.
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