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Abstract
In stratified epithelia such as the epidermis, homeostasis is maintained by the proliferation of cells in the lower
epithelial layers and the concomitant loss of differentiated cells from the epithelial surface. These differentiating
keratinocytes progressively stratify and form a self-regenerating multi-layered barrier that protects the underlying
dermis. In such tissue, the continual loss and replacement of differentiated cells also limits the accumulation of
oncogenic mutations within the tissue. Inactivating mutations in key driver genes, such as TP53 and NOTCH1,
reduce the proportion of differentiating cells allowing for the long-term persistence of expanding mutant clones
in the tissue. Here we show that through the expression of E6, HPV-16 prevents the early fate commitment of
human keratinocytes towards differentiation and confers a strong growth advantage to human keratinocytes. When
E6 is expressed either alone or with E7, it promotes keratinocyte proliferation at high cell densities, through the
combined inactivation of p53 and Notch1. In organotypic raft culture, the activity of E6 is restricted to the basal
layer of the epithelium and is enhanced during the progression from productive to abortive or transforming HPV-16
infection. Consistent with this, the expression of p53 and cleaved Notch1 becomes progressively more disrupted,
and is associated with increased basal cell density and reduced commitment to differentiation. The expression
of cleaved Notch1 is similarly disrupted also in HPV-16-positive cervical lesions, depending on neoplastic grade.
When taken together, these data depict an important role of high-risk E6 in promoting the persistence of infected
keratinocytes in the basal and parabasal layers through the inactivation of gene products that are commonly
mutated in non-HPV-associated neoplastic squamous epithelia.
© 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Papillomaviruses are a large and heterogeneous group
of small non-enveloped DNA viruses that infect a wide
range of vertebrates [1,2]. Human papillomaviruses
(HPVs) infect cutaneous and mucosal epithelial sites
and according to their tumourigenic potential, are com-
monly referred to as low- or high-risk HPVs. Cervical
cancer is the most prevalent human cancer associated
with high-risk HPV infections [3].

Papillomaviruses show an extreme level of adaptation
to the regulatory mechanisms governing keratinocyte
differentiation, with viral genes being sequentially
activated during this process [4]. Among the first
viral genes to be expressed are E6 and E7, with these
proteins also facilitating viral genome amplification by

driving cell cycle re-entry in the differentiating cells
of the upper epithelial layers [4,5]. These effects are a
consequence of E6 and E7’s interaction with a plethora
of host-encoded proteins, of which p53 and members
of the pocket protein family are perhaps the most thor-
oughly characterized [6,7]. The majority of infections
are successfully controlled by the host immune system,
with clearance or regression to latency occurring in
most individuals. In such instances, viral genomes can
persist in the epithelial basal layer with very limited
viral gene expression. In a small but important number
of individuals, however, the failure of the HPV life cycle
triggers the progression from productive to a transform-
ing infection, and the possible progression to cancer. In
the cervical epithelium, this condition is characterized
by the clonal expansion and persistence of dysplastic
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epithelial cells [8,9]. According to the Darwinian model
of neoplastic evolution, mutant cell clones that acquire
a competitive advantage are positively selected to per-
sist [10]; and in stratified epithelia, clonal expansion
is frequently associated with mutations in TP53 and
NOTCH1 genes [11–13].

Notch proteins (Notch 1–4 in mammals) are
single-pass type 1 transmembrane proteins and are crit-
ical mediators of keratinocyte differentiation [14–16].
Notch is activated upon cell–cell contact by interaction
between the Notch receptor and its ligands (delta and
jagged in mammals) expressed on the membrane of
signalling cells [17,18]. Receptor activation involves
the sequential proteolytic processing of Notch proteins,
resulting in cytoplasmic release and nuclear transloca-
tion of the Notch intracellular domain (NICD) to initiate
Notch target gene transcription [17]. In keratinocytes,
Notch1 plays a crucial role in restraining proliferative
phenotypes: its loss of function leads to the aberrant
expression of basal cell markers in the differentiat-
ing epithelial layers [16,19,20] and its inactivation is
an important step in the development of squamous
neoplasms [13,21,22].

In the present study, we examined the contribution of
HPV-16 E6 in the progression from productive to trans-
forming (i.e. abortive) infection through the modulation
of p53 and Notch activity in squamous epithelia. Using
a combination of 2D monolayer techniques, organotypic
raft culture, and the analysis of clinical material, we
describe a mechanism by which the restricted expres-
sion of HPV-16 E6 in the basal layer of the epithelium
finely tunes differentiation in productive infections, and
drives neoplasia when its expression becomes deregu-
lated though the alteration of keratinocyte cell fate.

Materials and methods

Clinical samples
The mode of collection, processing, and patient
data-handling of the clinical samples used in this
study have been described previously [9], along with a
detailed description of the HPV typing methodologies
and the diagnosis and grading regimes used by the
panel of pathologists [9]. All clinical material used in
this study was subject to Institutional Review Board
approval at the Jagiellonian University Medical College,
Krakow, Poland [9].

Growth assays
NIKS and all NIKS-derived cells were seeded at a
cell density of 1× 105 cells per well, in F medium
(Sigma, Haverhill, UK) without EGF (236EG-01 M;
Bio-Techne, Abingdon, UK), on 1× 105 γ-irradiated
J2-3 T3 in six-well plates. One day later (day 1), the
plating efficiency was estimated and cells were fed
with fresh F medium supplemented with 10 ng/ml EGF
(Bio-Techne). To harvest the cells, feeder cells were
first dislodged by a short trypsinization step and NIKS
keratinocytes were then collected after a second

trypsinization and counted using a Z1 Coulter particle
counter (Beckman, Takeley, UK). Unless otherwise
specified, total cell numbers/ml for each triplicate were
assessed on days 1, 3, 4, 5, 7, and 9.

Fluorescence-activated cell sorting (FACS)
of differentiating NIKS keratinocytes
A modified protocol was used based on previous stud-
ies [23]. In brief, NIKS cells were first collected by
trypsinization and after centrifugation and washing,
cells were resuspended to∼1× 106 cells/ml in F medium
and fixed in 1.5% PFA (J61899; Alfa Aesar, Lancaster,
UK) for 10 min at room temperature. Cells were then
recovered by centrifugation (3000 rpm) and permeabi-
lized in ice-cold methanol (1× 106 cells/500 μl) (Sigma,
Haverhill, UK) at 4 ∘C for 10 min. Cells were sub-
sequently washed in PBS–1% bovine serum albumin
(BSA) and passed gently through a 25G needle (Terumo,
Leuven, Belgium) for to five times to avoid the forma-
tion of cell clumps. Cells were then incubated (1× 106

cells/100 μl) with a mouse primary antibody to keratin
10 (Krt10) (PA5-32459; Thermo Scientific, East Grin-
stead, UK) for 1 h on ice with occasional agitation. The
optimal concentration of Krt10 antibody for use in these
assays was determined experimentally to be 1 μg/μl.
Cells were subsequently washed in PBS–1% BSA and
incubated with Alexa Fluor 488 donkey anti-mouse sec-
ondary antibody (A21202; Life Technologies, Paisley,
UK) diluted to 1 μg/ml for 30 min at room temperature.
After extensive washing (at least three times in PBS),
cells were subjected to FACS sorting using either a DxP8
(Cytek, Ely, UK) or a MoFlo MLS cell sorter (DakoCy-
tomation, London, UK).

Statistical analysis
Quantitative data were expressed as mean±SD (shown
as error bar) from at least three independent exper-
iments. Differences between groups were examined
statistically as indicated (*p< 0.05, **p< 0.01, and
***p< 0.001; all P values were two-sided). All statis-
tics were performed using GraphPad Prism7 software.
The statistical test used in each case is stated in the main
text or in the figure legends.

The Supplementary materials and methods provides
details of the plasmids, cell culture, and transfection;
the antibodies used; immunofluorescence and immuno-
histochemistry; reverse transcription–quantitative PCR
(RT-qPCR); and western blot analyses.

Results

Progression from low- to high-grade neoplasia
reflects a reduced ability of ‘HPV-16-infected’
keratinocytes to differentiate and to respond
to contact inhibition signals
In this study, we used NIKS [24]: a near-diploid,
spontaneously immortalized and non-tumourigenic
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keratinocyte cell line able to recapitulate the nor-
mal keratinocyte differentiation process and the
HPV-16-mediated [25] life cycle and neoplastic
progression in organotypic raft culture [26–28]. To
characterize the specific viral functions that may under-
lie the LSIL (low-grade squamous intraepithelial lesion)
and HSIL (high-grade squamous intraepithelial lesion)
phenotypes observed with full-length HPV-16 genomes
[27], we generated NIKS cells expressing HPV-16 E6
and E7, either singularly or in combination (Figure 1).
The growth of these cells was subsequently evaluated
in monolayer culture over 9 days, during the transi-
tion from sub-confluent (days 1–3) to post-confluent
growth conditions (days 7–9), conditions in which the
presence of the full-length HPV-16 genome is known
to affect normal keratinocyte growth characteristics
[27] (Figure 1A). In particular, we were interested to
establish whether E6 or E7 was the primary driver of
continued cell growth in a confluent basal-layer-like
environment. When growth factors were present in the
medium, 16E7 did not alter the monolayer cell growth
rate (Figure 1A; p= 0.6245, Student’s t-test), with con-
trol and E7-expressing cells reaching confluence around
day 5 (∼1× 106 cells), slowing thereafter as the cell den-
sity increased. Under similar conditions, 16E6 conferred
a noticeable growth advantage, both when expressed
alone (p= 0.0149, Student’s t-test) and in conjunction
with E7 (p= 0.0194, Student’s t-test; Figure 1A and
supplementary material, Figure S1A). Although E7
function appears dispensable in a growth factor-rich
environment, a more obvious role was seen following
growth factor depletion (Figure 1B). Here, E7 enhanced
the growth rate (p= 0.0039, Wilcoxon test) and potenti-
ated the growth-promoting activity of E6 when the two
proteins were expressed together (p= 0.0054, Wilcoxon
test) (Figure 1B and supplementary material, Figure
S1A). Throughout our experiments, E6 stimulated cell
growth post-confluence (Figure 1A, B and supplemen-
tary material, Figure S1B), a pattern reminiscent of
HSIL-like NIKS cells harbouring HPV-16 episomes
(NIKS 4H) [27] (supplementary material, Figure S2A,
B). Interestingly, when E6 (and E7) levels in the NIKS
4H episomal HPV-16 cell line were reduced by RNA
interference, the cell growth rate fell significantly and
approximated that of control NIKS (Figure 1C, E).
Conversely, the overexpression of HPV-16 E6 in the
LSIL-like NIKS line (NIKS 2 L [27]) significantly
enhanced their growth rate, particularly at high cell
density (p= 0.03, Student’s t-test; Figure 1D, E and
supplementary material, Figure S1).

Our results point to a prominent role for 16E6 in over-
coming normal keratinocyte contact inhibition in the
presence of growth factors, a situation that is found in
the epithelial basal layer [7]. To investigate this further,
organotypic rafts were prepared from the 2 L and 4H
episomal cell lines, and E6 activity was assessed using
p53 loss as a surrogate marker [6]. In NIKS rafts and
in normal ectocervical epithelium, p53 expression was
prominent in basal and parabasal layers, but declined
markedly upon differentiation (Figure 1F). By contrast,

NIKS 2 L and 4H were characterized by a progressive
increase in basal cell density, in line with their elevated
patterns of viral gene expression [27], and a progres-
sively reduced p53 signal in the basal layer of the 4H
HSIL raft (Figure 1F). These observations are compati-
ble with the EGF-mediated regulation of E6 pre-mRNA
splicing [29], which was also apparent in the episo-
mal NIKS lines (supplementary material, Figure S3) and
which suggests a specific role for full-length E6 in mod-
ulating basal cell behaviour.

HPV-16 E6 abolishes the ability of NIKS
to differentiate through Notch inhibition
Inhibition of keratinocyte growth at high cell density
occurs as terminal differentiation is triggered [30–33].
In order to examine this in the NIKS cell model,
immunostaining was carried out for keratin 10 (Krt10),
an established maker of early keratinocyte differentia-
tion [34,35]. In organotypic rafts of the NIKS parental
cell line, differentiation occurs in the parabasal cell
layers (Figure 2A). In rafts prepared from the NIKS 2 L
LSIL-like rafts, however, Krt10 induction was slightly
delayed, with this delay being much more marked
in the NIKS 4H HSIL-like rafts (p< 0.0001, one-way
ANOVA). A similar result was obtained with filaggrin, a
marker of late squamous differentiation (supplementary
material, Figure S2C).

Next, we investigated the implications of
16E6-mediated abrogation of keratinocyte differen-
tiation in our 2D monolayer model. Keratinocyte
differentiation occurred at high cell densities (day 7)
in control cells (LXSN-NIKS) (Figure 2B). Consistent
with previous studies [36], the expression of HPV-16
E7 reduced the levels of Krt10 induction (p= 0.0155;
Student’s t-test), however, and more significantly
(p= 0.0002, Student’s t-test), the expression of HPV-16
E6 abolished almost completely the induction of Krt10
in post-confluent NIKS cells (Figure 2B). These results
suggest a possible role for E6 in restricting or modulat-
ing the rate at which infected cells may be lost from the
confluent epithelial basal layer.

Among pathways regulating keratinocyte differ-
entiation, Notch signalling is known to be a strong
positive modulator [14–16]. The western blot anal-
ysis of Notch cleavage indicated that NICD starts
to accumulate at confluence (Figure 2C), consistent
with its cell contact-dependent activation [31]. While
NICD accumulation was greater and was maintained in
post-confluent (days 7–9) control cells, the expression
of HPV-16 E6 led to its dramatic down-regulation
post-confluence. Similar results were also obtained
when NICD levels were compared in LSIL- and
HSIL-like NIKS (Figure 2D). To examine Notch sig-
nalling during differentiation, a fluorescence-activated
cell sorting (FACS) approach was used to sort cells
based on their Krt10 expression (Krt10-bright and
Krt10-dim), followed by further analysis by western
blotting (Figure 2E, upper panel and supplementary
material, Figure S4). In control (LXSN) NIKS, Notch
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Figure 1. Dominant role of HPV-16 E6 in driving the growth of NIKS at high cell densities. (A, B) Effects of E6 and E7 expression on the
growth pattern of NIKS cells with (A) or without (B) supplemented growth factors. Each point on the plot represents the average from three
independent experiments. Error bars represent mean± SD. (C) NIKS HPV-16 4H cells were transfected with E6 and E7 RNAi and grown for
the indicated time before harvesting and counting. Error bars represent mean± SD (n= 3). (D) HPV-16 E6 was ectopically overexpressed in
NIKS 2 L (NIKS 2 L MV11_E6) and the effects on cell growth were monitored by growth assay. Error bars represent mean± SD (n= 3). (E)
Representative western blots validating the expression of HPV-16 E6 and E7 in the experiments in A, C, and D. Levels of p53 and pRb were
monitored as surrogate markers for the expression of E6 and E7, respectively. (F) The pattern of expression of p53 was used as a surrogate
marker to locate the expression of E6 in raft culture of NIKS 2 L and 4H episomal cell lines. The p53 fluorescence signal was enhanced
using tetramethylrhodamine (TMR) tyramide amplification. All sections were counterstained with 4’,6-diamidino-2-phenylindole (DAPI).
The fluorescent intensity was quantified in the first 0.17 inches of the raft epithelium and normalized with the background signal (BCG)
detected immediately underneath the basal layer. BL= basal layer; PL= parabasal layers.
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Figure 2. The expression of HPV-16 E6 prevents the commitment to differentiation of NIKS keratinocytes. (A) Comparison of the timing
of expression of the keratin-10 (Krt10) differentiation marker during epithelial differentiation in organotypic raft cultures of NIKS or the
NIKS 2 L (LSIL-like) and 4H (HSIL-like) episomal cell lines. Quantification of the Krt10 fluorescence signal during differentiation is shown in
the far-right panel to highlight differences between the different rafts. The fluorescence intensity was normalized against the background
signal and plotted against distance from the basal cell layer. Error bars represent mean± SD (n= 3). (B) Krt10 expression was monitored by
immunofluorescence in monolayers of the indicated NIKS cell lines grown to sub-confluence (day 3), confluence (day 5), and post-confluence
(day 7). The right-hand panel shows the quantification of Krt10-positive cells expressed as a percentage of the total cell population at the
7-day time point relative to the control (LXSN). Ten random fields were acquired for each sample and cells were counted using ImageJ
software. (C, D) Western blot analyses of the modulation of NICD by HPV-16 E6 in NIKS (C) or in NIKS 2 L and 4H (D) across a 9-day growth
assay. (E) Western blot analysis of components of Notch in Krt10-high and -dim FACS-sorted NIKS cell populations (see also supplementary
material, Figure S4).
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signalling was active in the Krt10-dim population
(Figure 2E, lower panel), whereas the expression of
16E6 markedly reduced the induction of NICD and
HES1 expression in both sorted populations, along with
the levels of Krt10. This suggests that the activation of
Notch signalling occurs transiently in keratinocytes at
early stages during the commitment to differentiation.
Our data also indicate that loss of NICD is an event asso-
ciated with increased levels of HPV-16 E6 expression,
supporting a role for E6 in preventing the commitment
of keratinocytes to differentiate upon viral life cycle
deregulation.

HPV-16 E6 requires interaction with p53 but not
PDZ proteins to regulate levels of Notch expression
Previous studies have suggested that E6-mediated inac-
tivation of Notch may involve p53 [37]. In order to
examine this in NIKS keratinocytes, NOTCH1 mRNA
expression was examined by RT-qPCR in post-confluent
cells. Interestingly, the expression of E6 led to a more
than five-fold decrease in NOTCH1 mRNA (Figure 3A),
with similar results being obtained for the p53 tran-
scriptional target P21. Similarly, the transient ablation
of p53 by RNA interference led to a decrease of P21
mRNA and to an approximately 50% reduction in
NOTCH1 transcripts and protein levels (Figure 3B, C).
The ablation of p53 resulted in a marginal increase
in mini-chromosome maintenance-7 (MCM7) lev-
els (Figure 3C), which might be expected given the
increased NIKS cell growth seen following p53 ablation
(Figure 3C, lower panel and supplementary material,
Figure S5). Previous studies suggested that expression
of the p53 homologue p63 maintains the proliferative
capacity of keratinocytes [38–40]. Consistent with
this, the ablation of p63 in NIKS keratinocytes led to a
dramatic reduction of their growth rate (supplementary
material, Figure S5).

To further characterize the contribution of HPV-16
E6 to the regulation of Notch, we repeated Notch
mRNA and protein analysis in NIKS expressing either
wild-type HPV-16 E6, a 16E6 mutant lacking the
C-terminal PDZ-binding motif (ΔPBM), or the 16E6
R8S/P9A/R10T (SAT) mutant, which are unable to
bind and degrade PDZ domain-containing proteins
and p53, respectively. Wild-type HPV-16 E6 strongly
repressed both Notch and p21 at mRNA and protein
levels (Figure 3D, E), and was associated with low
levels of p53 and NICD (Figure 3E). In the absence
of the PDZ binding motif, E6 retained the ability to
degrade p53 and significantly inhibited the expres-
sion of Notch1 and p21, an ability that was lost in
the E6 SAT mutant. Consistently, also E7 failed to
down-regulate Notch expression. The analysis of Krt10
induction in monolayer NIKS expressing E6 mutants
confirmed that the ability of E6 to degrade p53 is indeed
necessary to prevent commitment to differentiation,
whereas the PDZ-binding defective E6 mutant retains
the ability to significantly modulate keratinocyte dif-
ferentiation (p= 0.0162, Student’s t-test) (Figure 3F).

Taken together, these results support previous obser-
vations [37,41] and allow us to conclude that p53 and
Notch1 are crucial regulators of keratinocyte cell fate
[12,13,21].

Progression to high-grade neoplasia correlates
with a progressive loss of p53 and NICD1 in HPV-16
raft cultures
The restricted 16E6 activity in the basal layer of the raft
cultures suggests that p53 and Notch1 are strictly reg-
ulated by the virus. To examine their modulation dur-
ing progression from LSIL to HSIL, the expression of
p53, NICD, and Krt10 in organotypic raft cultures was
examined (Figure 4; see supplementary material, Figure
S6A for H&E images). In parental NIKS rafts, cleaved
Notch was occasionally detected in basal cells as well
as in the parabasal layers (Figure 4A and supplemen-
tary material, Figure S7). This supports an activation of
Notch1 at early differentiation stages (Figure 2E) and
is in agreement with studies in mice indicating that the
fate commitment of basal keratinocytes to differentiate
is an early event [42]. The pattern of p53 expression was
similar to that of NICD (Figure 4A), whereas Krt10 was
restricted to differentiating cells of the suprabasal lay-
ers. The majority of Krt10-positive cells were negative
for NICD, which agrees with the data presented above
(Figure 2E).

In raft culture, LSIL-like NIKS HPV-16 clones
showed abundant 16E4 and L1 expression (supple-
mentary material, Figure S6B), identifying them as
productive phenotypes [27]. Among these, NIKS 1 L
retained scattered NICD- and p53-positive basal cells
(Figure 4B and supplementary material, Figure S7),
consistent with the fact that these cells express E6 and
E7 at the lowest levels [27]. In contrast, NIKS 2 L rafts
had a more apparent parabasal expression of p53 and
NICD, in line with the higher levels of HPV-16 E7
seen in these cells [27]. In both LSIL-like raft cultures,
Krt10 expression was only marginally affected, with
a more evident delay in expression seen in the 2 L
rafts (Figure 4B and supplementary material, Figures
S7 and S8). These data suggest that in the context of
the productive HPV life cycle, the lower E6 activity
in the epithelial basal layer allows p53 and Notch to
persist and mediate adequate levels of keratinocyte
differentiation to support the productive viral life cycle.

An elevation of E6 and E7 expression is suspected
during progression from LSIL to HSIL [43,44]. NIKS
HPV-16 HSIL-like 4H and 5H rafts (Figure 4C) showed
a dramatic reduction in both NICD and p53. These
proteins were almost undetectable in the basal layer of
NIKS 4H rafts, with NICD present only in sporadic
parabasal cells. In accordance with this, the appear-
ance of Krt10 was delayed, and its abundance was
reduced compared with LSIL-like and normal NIKS
raft cultures. In the higher-grade rafts (NIKS 5H),
NICD was almost undetectable, with a further delay in
p53 and Krt10 expression (Figure 4C and supplemen-
tary\textbf{a} material, Figures S7 and S8). Consistent
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Figure 3. HPV-16 E6 affects the levels of full-length and cleaved Notch1 through the degradation of p53. (A, B) RT-qPCR analysis of the
expression of Notch1 and p21 mRNA in control and E6-expressing cells at post-confluence (day 7) (A) or in NIKS cells transfected with RNAi
to luciferase (control) or p53 (B). Each bar chart represents the average values from three independent experiments. Error bars represent
mean ± SD. (C) NIKS cells transfected with RNAi as in panel B were subjected to western blot analysis for the indicated proteins (upper
panel). The total cell number of NIKS transfected with control or p53 RNAi was estimated 72 h post-transfection (see also supplementary
material, Figure S5). Error bars represent mean± SD (n = 3). RT-qPCR analysis of NOTCH1 and P21 mRNA expression in control NIKS (LXSN)
and NIKS expressing E6, E7 or the indicated E6 mutants at post-confluence (day 7). Error bars represent mean± SD (n= 3). (E) NIKS cell
lines as in panel D were grown to post-confluence and subjected to western blot analysis for the indicated proteins. (F) Control NIKS or NIKS
cells expressing either the wt HPV-16 E6 or the 16E6 SAT and ΔPBM mutants were grown to post-confluence prior to fixation. The pattern
of Krt10 expression was then analysed by immunofluorescence using Alexa Fluor 594-conjugated secondary antibodies. The lower panel
shows the quantification of Krt10-positive cells expressed as a percentage of the total cell population at the 7-day time point relative to
the control (LXSN). The quantitative analysis was carried out as in Figure 2B using ImageJ software. Where shown, statistical significance
was evaluated using the Student’s t-test.
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Figure 4. Loss of p53, NICD, and Krt10 expression correlates with abortive infection phenotypes in raft culture. (A–C) Representative
images showing the pattern of p53, NICD, and Krt10 expression in organotypic raft culture sections of parental NIKS (A) and LSIL-like
(B) and HSIL-like (C) NIKS HPV-16 episomal lines. The fluorescence signal for p53 and NICD was amplified with TMR. Krt10 fluorescence
was visualized using Alexa Fluor 488-conjugated secondary antibodies (see also supplementary material, Figure S9). All sections were
counterstained with DAPI.
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with previous studies [9,27], these observations suggest
the progressive expansion of a proliferative basal-like
cell population into the suprabasal epithelial layers. To
further corroborate this in our raft culture system, we
extended our analysis to include MCM7 and p63, as
markers of cell cycle progression [45], and the basal
cell compartment [46,47], respectively (supplementary
material, Figure S9A). Rafts prepared from parental
NIKS showed a pattern of MCM7 and p63 expression
similar to that found in normal stratified epithelia
[40,46–48]. In contrast, in the LSIL-like rafts and even
more dramatically in HSIL-like rafts, the expression
of MCM7 and p63 extended into the parabasal layers
of the epithelium (supplementary material, Figure
S9A). Notably, the suprabasal expression of ΔNp63,
the N-terminally truncated p63 isoform responsible for
the inhibition of p53 activity [49,50] and keratinocyte
differentiation [51], could be observed exclusively in
the HSIL-like 5H NIKS raft cultures (supplementary
material, Figure S9A).

To assess more precisely the role of E6 and E7 in
modulating basal cell fate, raft analysis was repeated fol-
lowing the expression of these proteins in isolation (sup-
plementary material, Figure S9B, C). Cleaved Notch1
and Krt10 were drastically depleted in E6-expressing
rafts, whereas E7 expression reduced Krt10 accumu-
lation slightly, but did not obviously perturb NICD
(supplementary material, Figure S9B). Conversely, E6
expression led to an enhancement of MCM7 limited to
the basal and parabasal layers when compared with con-
trol rafts (supplementary material, Figure S9B), suggest-
ing that, in contrast to E7, E6-driven modulation of cell
fate occurs in the basal compartment.

Disrupted Notch1 activation is a characteristic
of HPV-16-positive cervical lesions
In order to confirm that comparable Notch1 activa-
tion was similarly affected during in vivo infection,
NICD was examined in characterized patient-derived
CIN1–3, as well as uninfected cervix. Representa-
tive NICD patterns were collected from tissue areas
where three pathologists independently agreed on the
neoplastic grade (Figure 5A). As seen in raft tissue,
patient-derived normal cervical squamous epithelium
showed prominent NICD staining in the immediate
parabasal layers and in scattered cells of the basal layer
(Figure 5B; 5Bi, ii; and supplementary material, Figure
S8). Adjacent to this uninfected epithelium, an area
of productive infection was apparent using cell cycle
(MCM2) and viral (HPV-16 E4) biomarkers [9,52]
(supplementary material, Figure S10). In this region,
cleaved Notch was absent in the basal layer but was
maintained in parabasal cells (Figure 5B; see also
Figure 4). In low-grade (CIN1/LSIL) lesions, a strong
positivity for NICD could still be observed in the lower
parabasal layers as well as in basal cells (Figure 5 Ci and
supplementary material, Figure S8). By contrast, the
transition towards transforming infection (CIN2/HSIL;
supplementary material, Figure S10) was characterized

by a general reduction in the intensity of staining and
the number of NICD-positive basal and parabasal cells
(Figure 5Cii; Di, ii; and supplementary material, Figure
S8), which was more evident in areas of higher-grade
disease (CIN3/HSIL; Figure 5Ei, ii and supplementary
material, Figures S8 and S10).

Discussion

In this study, we have examined Notch1 disruption by E6
in productive infection and during abortive/transforming
infection. We provide evidence that in productive infec-
tions, the activity of full-length E6 is subjected to a tight
restriction in the basal layer, likely through the modula-
tion of its splicing patterns, and that the progression to
high-grade lesions is associated with an expansion of the
cell population able to support the activity of E6.

In the uninfected epithelium and in rafts, Notch cleav-
age is first seen in the basal layer, but increases in the
parabasal layers, coinciding closely with the first induc-
tion of keratin-10. This pattern is typical of squamous
epithelia [53] and is consistent with the enrichment of
Notch receptors and ligands (Dll1 and Jag2) in these
epithelial layers [54]. A similar pattern of expression
was also observed for p53, which fits well with the role
of p53 as a Notch transcriptional activator [37,41].

A recent study has suggested a role for Notch in
progenitor keratinocytes, where it is required for the
maintenance of an undifferentiated stem cell-like phe-
notype [55]. Other studies have shown that Notch
activity represents the switch promoting commitment to
differentiation in mouse embryonic keratinocytes [56],
suggesting that Notch activation identifies progenitor
keratinocytes that are committed to differentiation. This
is also supported by promoter activity studies, which
reveal that the differentiation marker involucrin can be
detected in occasional basal keratinocytes in murine
interfollicular skin epidermis [42]. Again, these cells
are regarded as progenitors that are committed to leave
the epithelial basal layer and undergo terminal differ-
entiation. Differentiation markers can also be detected
in human keratinocytes grown in monolayer culture,
with committed cells being eventually excluded from
the cell monolayer to allow their differentiation [57].
When taken together, these results invoke a competition
between proliferating and differentiating cells in the
epithelial basal layer, and depict the stratification of
differentiating keratinocytes as the consequence of fate
commitment towards terminal differentiation rather
than the cause [57] (Figure 6A). This paradigm fits well
with the detection of cleaved Notch in basal/parabasal
keratinocytes prior to the first appearance of keratin-10.
This is further supported by the FACS sorting of dif-
ferentiating NIKS populations, which similarly shows
that the activation of Notch, and the detection of early
events during keratinocyte differentiation (as marked
by increased keratin-10 expression), is also temporally
segregated in monolayer culture.
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Figure 5. Loss of NICD expression correlates with abortive infections in the human cervix. (A) Low-power images of H&E-stained
HPV-16-positive cervical lesions. Cervical tissue sections were stained with NICD antibodies followed by TMR tyramide fluorescence signal
amplification. Tissue sections were counterstained with DAPI. Digital images of stained sections were acquired with a Pannoramic Slide
Scanner prior to counterstaining with H&E. Coloured circles with relative CIN grading (according to pathologist’s diagnosis) mark the areas
shown in detail in panels B–E. (B–E) Magnified images showing the pattern of NICD staining and relative H&E counterstains in normal
cervix (B), CIN1 (C), CIN2 (D), and CIN3 (E) (see also supplementary material, Figure S10).
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Figure 6. Proposed model for the modulation of keratinocyte cell fate based on the inactivation of p53 and Notch by E6 expression. (A)
Homeostasis in the squamous epithelium is determined by the balanced probability of the outcome of each cell division: two differentiating
cells, one differentiating and one proliferating progenitor, and two proliferating progenitors (left panel). According to this model, the fate
of each division is stochastic; however, across the total population, the odds of having one of the three possible outcomes is balanced.
As a result, in the basal layer the proliferation of progenitor cells (red cells with circles) compensates for the loss of cells by terminal
differentiation (green cells with arrowhead). (B) Upon infection with HPV-16, the inactivation of p53 and Notch leads to an unbalanced
fate of cell divisions, with a skew towards proliferation (left panel). In low-grade lesions (upper-right panel), reduced levels of p53 and
Notch in HPV-infected (purple) cells allow for the maintenance and expansion of the HPV-infected pool in the basal layer. However, low
levels of E6 and E7 expression allow for an adequate level of keratinocyte differentiation able to sustain the viral life cycle. Its deregulation
(lower-right panel) is thought to be associated with an elevation of E6 and E7 expression. Increased E6 levels further reduce the proportion
of differentiating cells within the infected basal cell population, allowing for their clonal expansion and persistence with the colonization
of large areas of the epithelium. Increased levels of proliferation and long-term persistence in the epithelium may eventually lead to the
accumulation of oncogenic mutations (cells with dark purple nuclei) predisposing to the development of malignancy.

Interestingly, the E6-mediated down-regulation of the
Notch pathway is not an exclusive function of high-risk
HPV types, with recent studies suggesting that β-HPVs
can also inhibit Notch signalling, albeit through a dif-
ferent mechanism [58–60]. Both E6 proteins interact
with a short LXXLL amino acid motif that is present in
both the ubiquitin ligase E6AP (a high-risk E6 interac-
tor) and the Notch transcriptional co-activator MAML1
(a beta HPV interactor). The role of E6AP in p53 deple-
tion is well established, with both alpha and beta HPV
types disrupting normal Notch signalling to some extent
[58,59]. These observations suggest that the inhibition of
Notch and the modulation of keratinocyte differentiation
are important for a wide range of HPV pathologies.

Our analysis of LSIL-like HPV-16 raft culture indi-
cates that in productive infections, the degradation of
p53 and the down-regulation of NICD are restricted to

the basal layer of the epithelium, an effect that, to our
knowledge, has not been previously described. The acti-
vation of the Notch pathway is a switch governing the
transition from keratinocyte proliferation to differentia-
tion [31]. The restricted inactivation of Notch signalling
in the basal layer provides a mechanistic insight into the
way that the high-risk α-HPV E6 proteins can contribute
to basal cell persistence and expansion [3]. At the same
time, the virus must ensure adequate levels of differenti-
ation to support viral genome amplification. In our study
and others [29], it appears that signal transduction from
growth factor receptors, such as EGFR, plays a critical
role in modulating HPV-16 E6 function by restricting
full-length E6 expression to a growth factor-rich envi-
ronment. In stratified epithelia, this environment occurs
in the lower epithelial layers, which are subject to dermal
growth factor stimulation and which express EGFR [61].
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It appears that such a mechanism might represent an evo-
lutionary adaptation of the high-risk mucosal HPV types
to limit the extent to which their full-length E6 proteins
are expressed in the differentiating layers. This is also
consistent with the fact that in HSIL-like HPV-16 NIKS
rafts, the levels of basal and parabasal p53 and NICD
are dramatically reduced compared with LSIL-like and
parental NIKS raft cultures. This correlates with a lower
level of Krt10 induction, supporting a crucial role for the
elevation of E6 and E7 activity in the deregulation of the
HPV life cycle [4,27].

Keratinocyte squamous differentiation is an extremely
complex biological process, involving major changes
in the pattern of gene expression, morphology, and cell
function. The combination of these changes leads basal
keratinocytes to form a stratified tissue formed of three
layers: spinous, granular, and cornified. Terminally
differentiated cells in the stratum corneum (i.e. the
cornified layer) are subject to nuclear degeneration
and form a continuous barrier that is mechanically
strengthened by the cross-linking of keratin filaments
[5]. The initial event triggering differentiation in basal
keratinocytes is thought to lead to asymmetrical cell
division and the migration of committed daughter cells
into the parabasal epithelial layers. One of the crucial
consequences of this transition is reduced exposure
to proliferative cues and more restricted expression
of molecules involved in cell proliferation [e.g. inte-
grins and receptor-associated tyrosine kinases (RTKs)].
Keratinocyte differentiation therefore results from the
balanced activity of proliferative and anti-proliferative
pathways, including RAS–MAPK, TGFβ, TGFα, inte-
grins, RTKs, Notch, p63, and others, which have been
reviewed elsewhere [62–64].

While trying to avoid any oversimplification of
HPV-16 E6 function and its effect on keratinocyte
differentiation, we feel that the data presented here
highlight a physiologically very important role of E6
in modulating initial cell fate decisions in basal ker-
atinocytes, through the inhibition of Notch signalling.
Such a potent fate-determining effect has been hypoth-
esized to occur when asymmetric cell divisions lead
to the inheritance of a stronger Notch signal by one of
the daughter cells, thereby counteracting proliferative
signals and promoting differentiation [65,66]. This sce-
nario is also supported by recent studies in mice, where
the accumulation of inactivating mutations in Tp53
and Notch genes confers a so-called ‘super-competitor’
phenotype, skewing keratinocyte cell fate towards
proliferation rather than differentiation [13,21]. This
allows the persistence and clonal expansion of mutant
cell populations, and similar mechanisms of clonal per-
sistence have been recently described in sun-exposed
human skin [12]. It is therefore tempting to speculate
that HPV-16 E6, through the coupled inactivation of
both p53 and Notch, might confer a similar competitive
phenotype to infected cells (Figure 6B), a condition
particularly relevant in abortive infections, as well
as HPV-driven cancers where E6 levels are thought
to increase [4] (Figure 6B). Such an interpretation is

again supported by our FACS sorting experiments,
which clearly showed that the expression of HPV-16 E6
interferes with activation of the Notch pathway prior to
the induction of differentiation (Krt10-dim population).
In addition, and in contrast to E7, our 2D monolayer
experiments highlight E6 as a major stimulator of
cell growth, particularly at high cell densities. In this
situation, the expression of HPV-16 E6 was necessary
and sufficient to (i) recapitulate the growth advantage
phenotype of HSIL-like NIKS, (ii) abrogate the expres-
sion of full-length and cleaved Notch1, and (iii) prevent
induction of Krt10 in post-confluent NIKS monolayers.
Consistent with a scenario in which the E6-mediated
degradation of p53 contributes to the acquisition of these
neoplastic traits, the transient ablation of p53 led to a
reduced level of Notch mRNA and protein expression
and to an increased proliferation rate of NIKS cells. It is
interesting to note that the transient ablation of the p53
family member p63 in NIKS led to the opposite pheno-
type. Nonetheless, this is consistent with the fact that
p63 is up-regulated in HPV-driven and HPV-negative
squamous cell carcinomas [67–71], suggesting a role in
supporting keratinocyte proliferation [38]. In our LSIL-
and HSIL-like HPV-16 NIKS raft cultures, p63 levels
were progressively up-regulated in the differentiating
layers of the epithelium, along with the marker for cell
cycle entry MCM7. Interestingly, levels of ΔNp63, the
p63 isoform responsible for antagonizing p53 activity
and driving cell proliferation [72], were more strongly
up-regulated in the 5H NIKS HPV-16 raft culture,
which was also the most disrupted with regard to
pattern of p53, NICD, and Krt10 expression.

When taken together, our study highlights the impor-
tance of E6 and E7 elevation during the progression from
productive to abortive (i.e. transforming) HPV infec-
tions. The modulatory effects of E6 on keratinocyte cell
fate have important implications on the clonal expansion
of infected cells and their persistence in the epithelium,
ultimately favouring the onset of malignancy.
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