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Abstract
Purpose: Pinnacle Auto-Planning and Eclipse RapidPlan are 2 major commercial automated planning engines that are funda-
mentally different: Auto-Planning mimics real planners in the iterative optimization, while RapidPlan generates static dose
objectives from estimations predicted based on a prior knowledge base. This study objectively compared their performances on
intensity-modulated radiotherapy planning for prostate fossa and lymphatics adopting the plan quality metric used in the 2011
American Association of Medical Dosimetrists Plan Challenge. Methods: All plans used an identical intensity-modulated
radiotherapy beam setup and a simultaneous integrated boost prescription (68 Gy/56 Gy to prostate fossa/lymphatics). Auto-
Planning was used to retrospectively plan on 20 patients, which were subsequently employed as the library to build an RapidPlan
model. To compare the 2 engines’ performances, a test set including 10 patients and the Plan Challenge patient was planned by
both Auto-Planning (master) and RapidPlan (student) without manual intervention except for a common dose normalization and
evaluated using the plan quality metric that included 14 quantitative submetrics ranging over target coverage, spillage, and organ at
risk doses. Plan quality metric scores were compared between the Auto-Planning and RapidPlan plans using the Mann-Whitney
U test. Results: There was no significant difference between the overall performance of the 2 engines on the 11 test cases
(P ¼ .509). Among the 14 submetrics, Auto-Planning and RapidPlan showed no significant difference on most submetrics except
for 2. On the Plan Challenge case, Auto-Planning scored 129.9 and RapidPlan scored 130.3 out of 150, as compared with the
average score of 116.9 + 16.4 (range: 58.2-142.5) among the 125 Plan Challenge participants. Conclusion: Using an innovative
study design, an objective comparison has been conducted between 2 major commercial automated inverse planning engines. The
2 engines performed comparably with each other and both yielded plans at par with average human planners. Using a constant-
performing planner (Auto-Planning) to train and to compare, RapidPlan was found to yield plans no better than but as good as its
library plans.
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Introduction

Treatment planning is an essential step of radiotherapy and is

conventionally performed manually by professionally trained

medical dosimetrists and physicists through time- and effort-

consuming iterative steps. In the past decade, there have been

intensive research and development of methods to automate

treatment planning, especially inverse treatment planning. Sev-

eral of these state-of-the-art algorithms are now available in

commercial treatment planning systems, of which Pinnacle

Auto-Planning (AP) and Eclipse RapidPlan (RP) are the 2

frontrunners. Although these 2 automation algorithms were

both designed to improve the treatment planning efficiency and

reduce the planner dependence of plan quality,1-9 they operate

through 2 fundamentally different mechanisms. RapidPlan is

one commercial implementation of knowledge-based planning

(KBP) algorithms. This type of algorithm utilizes statistical or

machine learning methods to mine the historical planning data

and build predictive models to estimate the expected dose–

volume histograms (DVHs) for organs at risk (OARs) on new

patients. So for this type of algorithm, a library of successful

plans is required as the initial input to configure the DVH

estimation models, and the configured models then automati-

cally add planning objectives to conduct plan optimization. In

contrast, AP does not require a prior library of successful plans,

but uses instead the iterative approach of progressive optimiza-

tion that mimics the steps a skilled human planner would take,

such as creating rings, hotspot or coldspot regions of interest,

and planning structures from the overlaps between the targets

and OARs to iteratively fine-tune the target coverage and OAR

sparing results. Despite these differences, both engines have

been embraced by their users since their clinical introductions

and numerous studies have been reported on implementing as

well as utilizing these new tools.1-21

Although the rapid growing body of literature has proven

the clinical utilities of both AP and RP in improving planning

efficiency and reducing plan quality variability among planners

with varying levels of experience, a natural question to ask is,

Which one works better? To the best of our knowledge, there

has not been such a comparison between these 2 distinct algo-

rithms. One may get a possible glimpse in the recent report of a

comparison conducted by Wu et al on oropharyngeal cancer

inverse planning using the separately developed AP technique

and an in-house KBP model.22 In that study, they concluded

that the 2 algorithms performed comparably by reviewing plan-

ning target volume (PTV) coverage and major OAR sparing

and reporting plan reviewer (radiation oncologist) preference.

However, the authors acknowledged that because their com-

parison results are specific to the in-house KBP, they may not

be applicable to the other KBP approaches (eg, RP). Also,

because the KBP models and the AP technique were indepen-

dently developed by 2 different institutions in their study, the

human inputs could have heavily biased the comparison.

Therefore, a performance comparison between AP and RP,

especially one that is objective, is still lacking. In addition, for

KBP algorithms like RP, although it is generally believed that

the performance is determined and limited by the qualities of

the library plans used as the knowledge base, this theory has

never been verified due to the performance variability among

human planners and even within the same planner on different

cases. Therefore, in our study, we applied an innovative study

design and an established evaluation metric that is objective

and quantitative to address 2 critical questions: (1) Which one

performs better, AP or RP? (2) Can RP outperform the planner

whose plans are used as the knowledge base to configure the

model?

To do this, our study adopted the planning objectives and

evaluation metrics used in the 2011 American Association of

Medical Dosimetrists (AAMD) Plan Challenge.23 In this plan-

ning competition, a common data set together with very spe-

cific planning objectives were given to a population of

treatment planners to design radiotherapy plans for prostate

fossa and lymphatics with a simultaneous integrated boost. A

“plan quality metric” (PQM) with 14 submetrics that address

coverage, conformity, spillage, and OAR dose to bladder and

rectum was then used to score the plans and rank the planners.23

In our study, both AP and RP were objectively compared using

this PQM on a cohort of postprostatectomy patients including

the patient used for the Plan Challenge. To ensure a rigorous

comparison, the same AP technique was used to generate the

library plans for training the RP model, and no manual adjust-

ment was performed on the AP or RP plans except for a com-

mon normalization. Using this innovative study design, we

sought to exploit the inherent differences between these 2

engines, asking the question, can the student (RP) outperform

the master (AP)?

Materials and Methods

Overall Study Design

As described in Figure 1, our study used an innovative work-

flow to objectively design the comparison and adopted the

quantitative PQM used in the 2011 AAMD Plan Challenge to

definitively perform the comparison. Under the approval of our
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institutional review board, this retrospective study involved the

clinical images and structure sets of 30 postprostatectomy

patients and the Plan Challenge patient. Auto-Planning was

employed to generate intensity-modulated radiotherapy

(IMRT) plans on 20 patients based on a “technique” developed

and tested to produce reasonable DVH’s based on the con-

straints outlined in the AAMD Plan Challenge study. These

20 plans were subsequently used to configure the RP model.

Finally, 10 other patients as well as the Plan Challenge patient

were planned by both the AP technique and the RP model in

parallel. The plan quality of the 2 parallel plans was quantita-

tively compared on each patient using the PQM. More details

will be described in the following sections.

Patient Selection and Treatment Planning

Under the approval of our institutional review board, 30

patients were selected from consecutively treated patients who

previously received radiotherapy to the prostate fossa and lym-

phatics from 2016 to 2018 in our institution. Because the treat-

ment plans of this study were planned to deliver on a

TrueBeamSTx (Varian Medical Systems, Palo Alto) that was

commonly commissioned for the 2 treatment planning systems,

patients requiring treatment fields larger than the 22 cm max-

imum Y-jaw field allowed by the TrueBeamSTx’s HDMLC

were excluded. The 30 patients were then randomly divided

into a modeling cohort of 20 patients and a testing cohort of 10

patients. All patients were replanned for a total dose of 56 Gy to

the lymphatics with an integrated boost to the prostate fossa to

68 Gy, following the fractionation scheme of 34 fractions used

in the 2011 AAMD Plan Challenge. An identical beam arrange-

ment with 9 equally spaced coplanar 6 MV IMRT beams was

used for all plans. In our study, AutoPlanning (AP) planning

used Pinnacle v9.10 (Philips Medical Systems, Fitchburg) on a

Smart Enterprise server and RapidPlan (RP) planning used

Eclipse v13.6 (Varian Medical Systems) on a 7-FAS server.

Using the first 5 patients of the 20 modeling-cohort patients,

a “technique” (a prerequisite of AP; a list of preset optimization

dose goals for AP defined by the user)5 was developed for

Pinnacle AP automated treatment planning engine (Philips

Medical Systems) to yield plans trying to meet the dose objec-

tives specified by the Plan Challenge.23 The technique was

developed based on the PQM dose objectives23 for the varying

anatomy but without driving to achieve an optimal technique

for every patient. The AP technique was then used to generate

plans for all 20 patients in the modeling or training cohort. In

clinical practice, a user would most likely impose manual inter-

ventions in the optimization process or run the AP process

more than once to improve the plan quality; however in our

study, in order to ensure a rigorous comparison, all plans were

from one round of AP planning and had no manual

intervention.

These 20 AP plans were then exported to Eclipse (Varian

Medical Systems), normalized to 100% 68-Gy prescription

dose coverage to 95% of the PTV 68 volume and used to train

an RP dose–volume histogram (DVH) estimation model. The

same normalization was also performed on all other plans for

the testing cohort that will be described below, and the normal-

ization was always performed in Eclipse (Pinnacle AP plans

were exported to Eclipse before normalization) to eliminate

volume calculation and dose rounding differences between the

2 treatment planning systems.

Finally, the Pinnacle AP technique and the Eclipse RP

model were used in parallel to generate plans on the 10

testing-cohort patients and the Plan Challenge patient. Again,

no manual intervention in the plan generation was imposed on

these plans, except for the final dose normalization performed

in Eclipse.

Scoring

Both the AP and RP plans for the 10 testing-cohort patients and

the Plan Challenge patient were scored using PlanIQ (Sun

Nuclear Corporation, Melbourne) and applying the PQM scor-

ing algorithm specified in the Plan Challenge.23 The PQM has

an ideal score of 150 points summed from 14 submetrics each

with a unique score function. Many of the submetrics have a

score function that is linear in nature, but some are quadratic or

a combination of gradients. For further information on the

scoring algorithm as well as other details of the Plan Challenge,

please refer to the paper of Nelms et al.23

Evaluation

On the 11 test cases (10 in the testing cohort and the Plan

Challenge patient), the total PQM score as well as the score

for each of the 14 submetrics were compared between the

corresponding AP and RP plans using a 2-tailed Mann-

Whitney U test. If a significant difference (defined as P <

.05) was detected, a 1-tailed Mann-Whitney U test was then

conducted. The total PQM scores of the AP and RP plans on

the Plan Challenge patient were also compared with the

Figure 1. A schematic of our innovative study design.
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reported scores achieved by the 2011 AAMD Plan Challenge

participants.23

Results

Total PQM Comparison Between AP and RP

The isodose distribution and DVHs are shown for one example

patient in Figure 2 to compare the AP and RP plans. Both plans

appeared to have a dose distribution conformal to the targets

and sparing the OARs. The maximum dose (hotspot) in the RP

plan was slightly higher than the AP plan (112.5% vs 110.2%).

On all 11 test cases, AP outscored RP on 7 cases and RP out-

scored AP on the remaining 4 (Figure 3). On the total PQM

score, there was no significant difference between the AP and

RP plans (P ¼ .509).

Submetric Comparison Between AP and RP

Table 1 lists the average scores as well as the comparison P

values for the 14 submetrics from the AP and RP plans. The

scoring differences for most submetrics were insignificant,

except for the following 2: (1) dose (Gy) covering highest

0.03 cc of PTV 68 and (2) percent of the (PTV 56-PTV 68)

volume �58.8 Gy (ie, percent above 105% of 56 Gy). The first

submetric describes the in-target hotspot, and for this AP out-

scored RP (P ¼ .01 in the 1-tailed Mann-Whitney U test) with

an average score of 6.2 versus 3.7 (the full score for this sub-

metric is 10), indicating a better target dose uniformity of the

AP plans. The second submetric describes the percent of the

(PTV 56-PTV 68) volume that receives above 105% of 56 Gy,

and RP outscored AP with an average score of 2.5 versus 0.4

(P ¼ .01 and the full score is 10). It is worth noting that all

plans were normalized in Eclipse to have 95% of PTV 68

receive the prescription dose (68 Gy), which would by defini-

tion yield a full score of 30 on the first submetric shown in the

table. However, the scores for this submetric were not always

perfect and that was due to the small calculation (interpolation)

differences between Eclipse and PlanIQ on doses and volumes.

On these plans, the PTV 56 coverage requirement, 95% of the

volume receiving 56 Gy, was always met with the normaliza-

tion we used. Therefore, the scores for these 2 submetrics were

not compared.

Score Comparison Among AP, RP, and Human Planners
on the Plan Challenge Case

From the report by Nelms et al, a total of 140 plans were

received by the Plan Challenge from which 125 plans were

accepted after rejecting extra plans from the same planner and

plans with impractical treatment times.23 Among the 125 plan-

ners, the majority were certified medical dosimetrists (81%) and

with a high self-reported planner confidence level of 5 (34%) or

4 (47%) on a scale of 1-beginner to 5-master. Pinnacle (56%)

and Eclipse (32%) also consisted the vast majority of the treat-

ment planning systems used by the 125 Plan Challenge partici-

pants. As can be seen from Figure 4, both AP and RP performed

at par with average human planners that participated in the Plan

Challenge, with the AP and RP plan PQM scores comparing

favorably with all human participant scores as well as the scores

of the participants using either treatment planning systems. Spe-

cifically, out of the perfect score of 150, AP scored 129.9, RP

scored 130.3, and the average score of all participants was 116.9.

Treatment Planning Efficiency

Both AP and RP are highly automated and efficient. In our

experiment, only one round of AP or RP planning was per-

formed involving no human intervention on the optimization.

With our hardware/software combination for each treatment

planning system, on average for each case, the total treatment

planning time was about 30 minutes for AP and 10 minutes for

RP. The AP treatment planning time included about 2 minutes

Figure 2. Isodose distributions (A, B) and the DVH (C) plots com-

paring the AP and RP plans on one example patient (patient 3). On the

isodose distributions, the targets are shown in color wash (red is PTV

68 and cyan is PTV 56-68). AP indicates Auto-Planning; DVH, dose–

volume histogram; PTV, planning target volume; RP, RapidPlan.
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of human inputs, spent mostly in assigning unmatched struc-

tures. The RP treatment planning time included about 5 min-

utes of human inputs, spent mostly in adding beams, setting

prescriptions, assigning unmatched structures, and waiting for

the DVH estimation to generate.

Discussion

Using an innovative workflow to objectively design the com-

parison and adopting the quantitative PQM scoring system

used in the Plan Challenge to definitively perform the compar-

ison, our study showed that (1) as previously believed,

the performance of RP, a KBP algorithm, is determined by the

quality of the plans used as the knowledge base. Although the

student (RP) did not outperform its master (AP), it performed

as well as its master. (2) Although there were some plan

quality characteristics differences, there was no significant

difference between the overall performances of the 2 auto-

mated planning engines in our experiment. Both automated

engines performed at par with the average human planners on

the Plan Challenge case. (3) Both engines provided consistent

Figure 3. A comparison of the total PQM scores of the corresponding RP versus AP plans on the 11 test cases. The perfect score is 150 and

patient #11 is the Plan Challenge case. AP indicates Auto-Planning; PQM, plan quality metric; RP, RapidPlan.

Table 1. Comparison of the Individual Scoring Submetrics Between

AP and RP Plans on the 11 Test Cases.a

Metric Description

P

Value

Average

AP Score

Average

RP Score

[PTV 68] V68 >95% NA 29.5 28.6

[PTV 56] V56 >95% NA 30 30

[Prostate bed] V68 >99% .49 9.9 10

[PTV 68] D0.03 cc <78.2 Gy .01 6.2 3.7

Rectum V68 <10 cc .94 4.4 4.5

[PTV 56-PTV 68] V58.8 <45% .01 0.4 2.5

68 Gy spillage <50 cc .06 4.7 6.5

Rectum V65 <35% .76 9.2 9.3

Rectum V40 <45% .94 3.8 2.9

Bladder V65 <40% .76 2.4 2.8

Global max location .49 4.5 4.1

Rectum serial slice evaluation .16 �2.7 6.4

PTV 68 conformation number >0.5 .2 4.1 4

Bladder V40 <70% .7 1.4 1.2

Abbreviations: AP, Auto-Planning; NA, not applicable; PQM, plan quality

metric; RP, RapidPlan.
aReported are the average scores as well as the P values (2 tailed for insignif-

icant differences and 1 tailed for significant differences).

Figure 4. Comparison of the total PQM scores of the AP and RP plans

on the Plan Challenge case with the human planner scores from the

Plan Challenge. The average scores and score ranges were plotted for

all human participants as well as all Pinnacle planners and all Eclipse

planners. AP indicates Auto-Planning; RP, RapidPlan.
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plan quality and an efficient treatment planning workflow that

reduces the manual planning time (which was estimated to be

at least an hour per plan).

On the third item described above, it is worth noting that

when using the 20 training plans generated by AP to configure

the RP model, no dosimetric outlier was identified, whereas in

our clinical practice configuring RP models with clinically

accepted historical plans, outliers have always been identified,

which would then require re-planning before they could be

used in the plan library for model configuration. This indicates

that AP is able to produce plans with more consistent plan

quality on different patients than the real planners could. Com-

paring the planning time between AP and RP, it was easy to

notice that the total treatment planning time used by AP was

much longer than RP. This could be attributed to many factors.

Intrinsically, AP consists of many iterative optimization cycles

and hence could take longer while the RP optimization is not

iterative in nature. But at the same time, the reported planning

time here was also directly related to our specific software and

hardware combination for each treatment planning system as

well as the maximum number of iterations we set in AP.

Although the total treatment planning time for AP was longer

than RP in our experiment, the human interaction time or man-

ual planning time was shorter. This was mostly due to the fact

the prescription and beam setup was defined in the AP tech-

nique and hence automatic, whereas for RP these were manual

steps. Utilizing presets such as a plan template could easily

further reduce the RP manual planning time. Also for both

treatment planning systems, a substantial part of the manual

planning time was spent in assigning unmatched structures

because some of the clinical structure labels did not match the

ones specified by the automated planning engines. Standardiz-

ing the clinical naming conventions could help reduce this part

of manual interaction time and further automate the process for

both engines. It is worth noting that although many recom-

mended to iteratively replan the dosimetric outlier library plans

for model refinement when configuring an RP model,24,25 a

study by Delaney et al found that dosimetric outliers may only

start to degrade the model performance when they reach a high

percentage of total training plans and conversely, a small num-

ber of outliers may even lead to an improved model perfor-

mance.26 This seemingly counterintuitive finding was due to

the fact that RP always places the OAR line objective at the

inferior boundary so that a few “bad” plans will not compro-

mise the line objective for the corresponding OAR but the line

objectives for other OARs may in effect get set stricter by these

“bad” plans. So in our case, the dosimetric consistency of the

AP training plans, while helpful in performing an objective

comparison of 2 systems, may not lead to the optimal clinical

performance of RP.

In our experiment, both AP and RP plans competed favor-

ably on the Plan Challenge case whencompared with the plans

by the real participants, indicating these tools, when properly

used, can generate treatment plans comparable to an average

planner. On the other hand, there are also some caveats about

these results. First, although fully automated treatment

planning was used in our experiment, the performances of these

automated planning engines were also the direct results of the

human experience, such as setting up the AP technique. Sec-

ond, the improvements of the treatment planning systems not

related to the automated engines such as the optimization algo-

rithms could have also favored the automated plans since these

plans used more recent versions of the software (ie, Pinnacle

v9.10 released in 2014 and Eclipse v13.6 released in 2015) than

what were available to and used by the Plan Challenge parti-

cipants in 2011. Third, our experiment was limited to a specific

planning task and may not be generalized to the planning of all

disease sites. Finally, while providing an objective way of

quantitatively evaluating the plan quality for the comparison,

using a single quantitative PQM to represent a complex multi-

faceted clinical evaluation of many competing factors may

have its limitations, although they were partially offset by the

detailed inspection of all submetrics.

Our study conducted a well-controlled experiment by involv-

ing only the automated planning engines and applying no human

intervention in the treatment planning process. In clinical prac-

tice, such human interactions are routinely used to further

improve the plan quality. For example, the performance of RP

depends not only on the quality of DVH predictions but also on

how the model is configured to turn these predictions into objec-

tives for the plan optimization. In our work, we did not attempt

to optimize the second part but instead used the default line

objectives generated by the model for the OARs, as in this way

less subjective bias would be introduced. In addition, because the

target objectives were user set, the poorer target homogeneity in

the RP plans could also reflect the suboptimal setting of these

objectives in the model or suboptimal performance of the opti-

mizer in attempting to meet these objectives together with the

OAR line objectives. If such target hotspot doses are encoun-

tered in the clinical practice and deemed unacceptable, then the

planner would either reoptimize the particular plan using manual

structures or refine the target objectives in RP model configura-

tion for a general trend change. Also, as shown by one of the

submetrics where a significant difference was found between AP

and RP, in our clinical experience, we have also observed that

target conformity sometimes needs further improvement with

the AP setting described in this article, so the planner often

works one extra cycle of optimization or add a manual struc-

ture in the optimization to achieve a better plan. Such skilled

human inputs have also been reported in the numerous studies

applying these engines on diverse clinical inverse optimiza-

tion problems.1-20,22,27-29 Interestingly, Janssen et al applied

the DVH estimation for a plan quality audit on clinical AP

plans that had been manually refined after AP if deemed

necessary and identified some suboptimal plans that could

be further improved.12 This study indicated that they may not

always produce Pareto-optimal plans, despite the success of

these automated planning engines in producing plans at or

near clinical acceptance and driving the DVHs for OARs

beyond the specified dose goals. Obviously realizing this, the

vendors have also been working to further improve these

automated engines. For example, multicriteria optimization
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has just been introduced into the newest version of Eclipse,

and PlanIQ has been utilized by the newest version of

Pinnacle to give anatomy-specific updates on the dose goals

for AP.

Although our controlled experiment has provided useful

insight on objectively comparing the 2 automated planning

engines, the readers should also be aware of some limitations

of our study. First of all, our study was conducted on IMRT

plans for prostate fossa and lymphatics with simultaneous inte-

grated boost, whether the conclusion could be generalized to

other disease sites or planning techniques was not probed. Also,

ours was a relatively small cohort study, using a total of 31

cases. The effect of including more plans for RP modeling or

increasing the number of test plans for comparison was not

studied. As the RP model was trained on a minimum required

20 cases, the RP model performance could have been limited

by the model quality instead of the RP itself. However, the RP

model seemed to be of reasonable quality judged by the

vendor-supplied model training results as well as the good

RP performances on the 11 test cases. Possibly benefitted from

the dosimetric consistency of the AP plans and the well-

dispersed anatomical distributions, the 20 training cases were

able to train a reasonable model using the relatively simple

training methods in RP.

Conclusion

Using an innovative study design, an objective comparison has

been conducted between 2 major commercial automated

inverse planning engines. The 2 engines performed comparably

with each other and both yielded plans at par with average

human planners. Using a constant-performing planner (AP)

to train and to compare, RP was found to yield plans no better

than, but as good as, its library plans.
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