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Abstract—Fast and accurate diagnosis is essential for
the efficient and effective control of the COVID-19 pandemic
that is currently disrupting the whole world. Despite the
prevalence of the COVID-19 outbreak, relatively few diag-
nostic images are openly available to develop automatic
diagnosis algorithms. Traditional deep learning methods
often struggle when data is highly unbalanced with many
cases in one class and only a few cases in another; new
methods must be developed to overcome this challenge.
We propose a novel activation function based on the gener-
alized extreme value (GEV) distribution from extreme value
theory, which improves performance over the traditional
sigmoid activation function when one class significantly
outweighs the other. We demonstrate the proposed acti-
vation function on a publicly available dataset and exter-
nally validate on a dataset consisting of 1,909 healthy chest
X-rays and 84 COVID-19 X-rays. The proposed method
achieves an improved area under the receiver operating
characteristic (DeLong’s p-value < 0.05) compared to the
sigmoid activation. Our method is also demonstrated on
a dataset of healthy and pneumonia vs. COVID-19 X-rays
and a set of computerized tomography images, achieving
improved sensitivity. The proposed GEV activation func-
tion significantly improves upon the previously used sig-
moid activation for binary classification. This new paradigm
is expected to play a significant role in the fight against
COVID-19 and other diseases, with relatively few training
cases available.
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I. INTRODUCTION

COVID-19 is an acute respiratory syndrome with over 6.4
million cases as of 4 June 2020, with the number of cases

rapidly increasing, and over 382,000 deaths reported world-
wide [1]. Fast and accurate diagnosis is essential for the efficient
and effective control of this pandemic. Reverse-transcription
polymerase chain reaction (RT-PCR) is the current standard
test for the COVID-19. RT-PCR has been found to have a
variable sensitivity with a low value of 71% when compared
to computerized tomography (CT) with a sensitivity of 98%
(p< 0.01) [2], leading to a significant number of false negatives.
Currently, there are no other laboratory tests able to provide
timely results with such high sensitivity.

The World Health Organization has outlined several scenarios
in which laboratory testing may not be sufficient and chest
imaging is needed [3]. Medical imaging is quickly becoming
vital in the diagnosis of COVID-19 as imaging is faster, cheaper,
and more readily available compared to RT-PCR. CT based
COVID-19 diagnosis is reported to have a higher sensitivity
(80–90%) when compared to laboratory tests at the expense of
specificity (60–70%) [4]. Chest X-ray is a cheaper alternative
to CT with a faster image acquisition time; X-Ray equipment is
also easier to sanitize compared to CT machines. Chest X-ray
is of most use in low income, low resource settings, such
as developing countries or community screening programs. A
study into the radiological features of COVID-19 [5], reported
that the most significant feature is ground-glass opacification
(GGO), sometimes accompanied by consolidation in more se-
vere forms [6]. In some cases, these features were observable on
CT but not on X-ray imaging. The authors concluded that CT
might be more sensitive to these features than X-ray.

Given that COVID-19 is a relatively new condition, there are
currently no experienced COVID-19 radiologists compared to
other established conditions, and there is little time for training.
The disease affects a large number of patients within a short
period of time, and as a result, experts are overladen with the
number of cases requiring imaging and diagnosis; this is likely
to become worse as countries look to increase testing. With
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such a rapid rate of infection, a new, fast, and accurate method
of COVID-19 diagnosis is required. Although some countries,
such as China, have been successful in controlling the spread
of the virus, it is feared that, as restrictions are relaxed, the
virus will become established in populations; therefore, a robust
and effective strategy to diagnose COVID-19 must be found.
Moreover, imaging may play an essential role in assessing the
disease response to treatment, further facilitating the urgently
needed development of effective treatments.

The automated diagnosis of COVID-19 is an active research
area as surveyed by Shi et al. [7] and Wynants et al. [8]. Despite
the high prevalence of the virus, relatively few COVID-19
images are available to build a deep learning automatic diagnosis
model, compared to the availability of healthy or non-COVID-19
images. If all available images are used, then COVID-19 cases
will be under-represented, potentially resulting in many false
negatives. This echoes the common issue of unbalanced data
in medical image analysis. Previous methods to combat this
problem primarily rely on resampling the under-represented data
or reweighting the loss function [9]; this can lead to overfitting
or can significantly increase training time. Here, we propose a
novel activation function based on the generalized extreme value
(GEV) distribution in extreme value theory [10] to address this
fundamental problem. The proposed GEV activation function is
better able to model the tail of unbalanced data, where one class
has relatively few cases when compared to the other.

We first show the benefit of our proposed activation function
over sigmoid in a balanced dataset of X-ray images. We report
performance at different level of imbalance and show improved
results over using sigmoid and using oversampling strategy with
the sigmoid activation. We then demonstrate the GEV activation
function by developing three prediction models to diagnose
COVID-19. The first model aims to diagnose COVID-19 from
a set consisting of healthy vs. COVID-19 X-ray images; these
images may be observed in a screening program. The second
model diagnoses COVID-19 from a set of COVID-19 vs. healthy
and pneumonia X-ray images. The final model classifies CT
images as COVID-19 or non-COVID-19, which may have other
diseases present.

The GEV activation function can achieve excellent perfor-
mance with relatively few positive training images. By reducing
the number of COVID-19 images needed for training, we can use
more images in the testing to better assess the generalizability
of the model. The models developed here are to demonstrate the
strength of the proposed activation function, and we believe that
our proposed GEV based model will form the basis for further
development towards real-world clinic use after proper clinical
evaluation.

A. Contributions

Our main contributions are in both methodology and applica-
tions, for deep learning and medical image analysis, we propose
an activation function based on the GEV distribution, which
aims to model the distribution of unbalanced data better. To the
best of our knowledge, this is the first time such an activation
function has been utilized within deep learning. We demon-
strate the added benefit of the GEV activation by comparing

it to the classic sigmoid activation, with improved sensitivity.
We show that the proposed activation reduces the number of
images required in training. The GEV function can be used with
any convolutional neural network (CNN) and alongside other
unbalanced data methods, such as class weights. In terms of
applications, we have applied the new activation function to the
diagnosis of COVID-19 using X-Rays and CT images and made
some groundbreaking work for the future development of fast
and accurate diagnosis solutions of COVID-19.

II. RELATED WORK

In this section, we provide a concise and thorough overview of
the related work in the diagnosis of COVID-19 using X-ray and
CT images, attempts to overcome the unbalanced data problem,
and general uses of extreme value theory.

Deep learning-based methods have previously been used to
diagnose a variety of diseases from medical images accurately,
often outperforming human graders [11]. More recently, deep
learning has been applied to medical images to detect COVID-
19 [7]. For brevity, we do not consider papers focusing solely
on COVID-19 segmentation; readers interested in segmentation
may wish to read a recent review of AI in COVID-19 [7].

A. X-Ray Diagnosis

Wang et al. [12] developed a custom CNN with a residual
architecture, to classify images as COVID-19, pneumonia, or
healthy. The model was trained on publicly available images
from two datasets [13], [14]. With only 10 COVID-19 images
in the testing dataset, the model attained a sensitivity of 0.80
and a specificity of 0.995. This work suggests that future mod-
els need to improve sensitivity to reduce the number of false
negatives.

A Bayesian convolutional neural network (BCNN) with drop
weights, based on ResNet-50 V2 [15], was proposed by Ghoshal
et al. [16]. Data consisted of four classes, normal, bacterial
pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
A total of 14 COVID-19 images were used in the testing dataset.
In both CNNs and BCNNs with a range of drop weights, two of
the COVID-19 cases were wrongly classified. For COVID-19
diagnosis, their best model attained a sensitivity of 0.857 and a
specificity of 0.995. Various saliency maps were used to reduce
the black-box nature of deep learning; however, the maps ap-
peared to highlight some wrong areas such as the collarbone, and
this was not explained or investigated within the paper. The study
concluded that by estimating uncertainty within predictions,
model performance can be improved.

Narin et al. [17] obtained 50 healthy and 50 COVID-19 pa-
tients and used three different pretrained deep learning networks
to diagnose COVID-19. Using ten images from each class in a
testing set, they obtained perfect performance in using Inception
V3 [18] and ResNet-50 [19], with Inception-ResNet V2 [20]
misclassifying one of the healthy images as COVID-19. They
suggested that transfer learning can be used to build deep learn-
ing models for COVID-19 diagnosis. An 18-layer residual CNN
pretrained on ImageNet [21] was proposed by Zhang et al. [22].
The CNN was followed by fully-connected layers and a
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sigmoid activation for classification. A separate anomaly de-
tection mechanism was also added to the end of the CNN.
Sensitivity and specificity were reported at different thresholds,
the model achieves a sensitivity of 0.72 at 0.98 specificity and
a sensitivity of 0.966 at 0.707 specificity, in two-fold cross-
validation of 100 images from 70 patients.

In summary, these models appear to perform very well; how-
ever, increasing the sensitivity of models is a priority due to the
risk associated with missing a COVID-19 diagnosis.

B. CT Diagnosis

There have been more models developed using CT to diagnose
COVID-19, many are reviewed in [8] and [7].

Chen et al. [23] used a UNet++ [24] based approach for the
detection of COVID-19 lesions and then for the diagnosis of
COVID-19. The model was trained on expert annotated CT
slices to extract COVID-19 areas. They concluded that their
algorithm has comparable performance to expert radiologists,
with a reported sensitivity of 1.0 on the patient level, with 16 sus-
pected pneumonia and 11 COVID-19 patients. Shan et al. [25]
used a similar method with a different network to segment and
quantify COVID-19, achieving a dice score of 0.916, with 300
COVID-19 patients. The authors proposed that their method
could be used to analyze the progression of the disease.

Gozes et al. [26] combined commercial software and deep
learning to segment and quantify COVID-19, with a reported
area under the receiver operating characteristic (AUC) of 0.996.
Li et al. [27] used a ResNet-50 network for each slice in a
CT image, with shared weights. Max pooling then combined
the slices to provide a single feature vector, which was then
classified. The method achieved an AUC of 0.96, with 285
healthy and 68 COVID-19 patients. A patch-based method with
a support vector machine was proposed by Barstugan et al. [28];
this achieved a specificity of 1.0 and a sensitivity of 0.93 using
a cross-validation of 53 patients.

Shi et al. [29] segmented scans to extract infection and lung
fields, an infection size aware random forest classifier then clas-
sified images according to infection size. The method attained an
overall AUC of 0.94, with 1,027 healthy and 1,658 COVID-19
patients using 5-fold cross validation. Jin et al. [30] first seg-
mented lesions using a 3D neural network, before classifying
those lesions as COVID-19 or not, with a 2D ResNet network.
Data from two hospitals were used and this method achieved
an AUC of 0.99 on 128 healthy and 154 COVID-19 patients.
Jin et al. [31] used a segmentation network (Deeplab v1, [32])
and a ResNet152 classification network for the classification
of CT slices, GradCAMs [33] were then produced to high-
light the diseased area. This network was trained on local and
public datasets, achieving an AUC of 0.98 on 1,072 healthy
and 183 COVID-19 patients. Xu et al. [34] proposed using
a deep learning model to segment out the candidate infection
regions. Patches of infected regions, with the distances from
the edge of the lung, were input to a ResNet-18 network for
classification into three groups: COVID-19, Influenza-A, and
healthy patients. The model achieves an overall accuracy of
0.867 on 30 COVID-19 patients and 60 other patients.

Wang et al. [35] have applied an inception network for
the diagnosis of COVID-19 using an in-house dataset. They
reported a total accuracy of 89.5% with a specificity of 0.88
and a sensitivity of 0.87 in the internal validation, and a total
accuracy of 0.793 with a specificity of 0.83 and a sensitivity
of 0.67 in the external validation set. The external validation
set consisted of 100 healthy patients, 100 pneumonia patients,
and 10 COVID-19 patients. Song et al. [36] proposed using
ResNet-50, and a feature pyramid network (FPN) combined
with an attention module and experimented on their in-house
dataset. An AUC of 0.99 and a sensitivity of 0.93 for COVID19
and healthy images were reported, on a set of 24 healthy and 27
COVID-19 patients. In a dataset of 30 pneumonia 27 COVID-19
patients, their method attained an AUC of 0.95 and a sensitivity
of 0.96 for COVID and bacteria pneumonia-infected patients.

Tang et al. [37] used a random forest (RF) model to assess
the severity of COVID-19 based on quantitative features derived
from a deep learning model. With three-fold cross-validation on
176 patients the method attained an overall accuracy of 0.875. A
weakly supervised method was proposed by Zheng et al. [38].
Their method automatically generated segmentation masks. The
CT image and mask are fed into a 3D CNN for classification.
This method attained an AUC of 0.959.

In summary, similar to the studies using X-ray imaging, most
studies use a small number of COVID-19 images from different
resources without standardized protocols. It seems that they are
just applications of existing AI tools to a new problem, and
thus novelty in AI and clinical usefulness are limited. The high
data heterogeneity among the studies makes it difficult to com-
pare with. Although all models achieved excellent performance,
Wynants et al. [8] found that the risk of bias high in all the eight
studies that they have reviewed, according to PROBAST [39].

Overall models for COVID-19 diagnosis, using X-ray or CT
images, attain excellent performance; however, some models
only use as few as 10 COVID-19 images within the testing set,
and few models use external validation primarily due to the
issue of data availability. Therefore they may not necessarily
be generalizable to other cases. A method that is more data-
efficient, attaining high performance with fewer training images
is needed; this would allow more images of the rare class to be
used in the testing data. The aim of our work is not necessarily
to beat these previous models but to provide a method which
may improve the previous models.

C. Unbalanced Data

When a dataset has only a few classes containing the majority
of the data and many classes that only occur a few times, the data
distribution becomes long-tailed. It has been observed that the
classes with more samples have a greater effect on the learned
features [40]. The most frequent classes become much easier to
model, and the tail of the distribution, consisting of rarer classes,
is not adequately modeled [41]. This issue exists in both binary
and multiclass problems and remains a major challenge in data
science.

There are many published methods aimed at addressing the
issue of unbalanced data by better modeling the tail of the data
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distribution. Several papers have proposed reweighting the loss
function [42] or oversampling under-represented classes. Other
methods include utilizing representation learning [41], learning
features by clustering classes into visually similar groups [40],
and introducing a loss function to increase the within-subject
variation [22].

More recently, Cui et al. [9] proposed a new loss function that
exploits the information overlap within the data. They argue that
although more data will increase the information available, the
marginal benefit will decrease with each new sample due to
information within the data overlapping. The authors provide a
theoretical framework for quantifying the data overlap so that the
theoretical effective number of samples. The effective number
of samples allows samples from the training set to rebalance the
data slightly; however, this does not guarantee that the data will
then be sufficiently balanced.

D. Extreme Value Distributions

Deep learning classification networks often consist of a CNN
followed by classification layers comprised of a fully connected
(FC) layer and an activation function, usually sigmoid for binary
classification and softmax for multiclass classification. When the
sigmoid activation function is used, then the classification layers
become analogous to a generalized linear model with logistic
link function, also called logistic regression. Logistic regression
uses the sigmoid function as a link function and assumes that the
errors follow the logistic distribution; however, this assumption
is not valid in highly skewed or unbalanced data.

In highly unbalanced data, it is vital to model the tail and
skewness of the distribution appropriately, to avoid introducing
bias. A simulation study by Czado and Santner [43] found that
a highly mispecified link function greatly increases bias in both
the parameter estimates and the predicted probability. A highly
skewed distribution such as the GEV distribution can be used to
properly describe the distribution, ensuring that bias within the
model is reduced.

In traditional statistics for problems such as finance, weather,
or epilepsy [44], [45], link functions based on extreme value
distributions [10] have been proposed for when data is highly
unbalanced. Extreme value distributions assume that the errors
follow a highly skewed distribution, such as those observed when
data has some rare classes.

Extreme value theory has previously been used in deep learn-
ing to infer labels from intermediate CNN features from a
bag of 3D image volumes, in multiple-instance learning [46].
Our work differs significantly by using the generalized extreme
value distribution to create a new activation function, which
improves classification, in particular sensitivity, when one class
has significantly fewer cases.

III. METHODS

We first describe the general network in which the proposed
activation function may be used. We then describe the proposed
activation function and its implementation. An overview of the
framework is shown in Fig. 1.

Fig. 1. Overview of the general framework. The dataset is highly un-
balanced, with one class significantly outweighing the other. A CNN is
used to extract features from the images. A fully connected layer then
reduces the features to a single value using a linear combination. The
GEV activation function converts that value to a probability.

A. CNN

The proposed activation function may be added to any neural
network, including pretrained networks such as ResNet [15],
[19] or more novel networks such as COVID-NET [12]. Here,
we begin with a pretrained CNN, namely Inception V3 [18].
Inception V3 is a variation of the original inception network
with improvements in accuracy and a reduction in computational
complexity. Inception V3 is commonly used in classification
problems, due to its high generalizability. Inception V3 attains
high accuracy while maintaining reasonable computational ef-
ficiency through its use of batch normalization and heavy regu-
larization. In brief, Inception V3 network stacks 11 inception
blocks where each block consists of convolution filters and
pooling filters with rectified linear units as activation functions.
The input of the model is a two-dimensional image with three
channels. At the end of the model, we apply a global averaging
pooling layer and add a fully connected layer of size 2048. A
dropout rate of 0.6 is used to reduce overfitting. Transfer learning
is utilized to reduce training time, with the network pretrained
on Imagenet [21]. The model is then fine-tuned on our datasets.

B. Activation Functions

The proposed GEV activation function is implemented as a
network layer with three trainable parameters, ξ, μ, σ. Extreme
value distributions are designed explicitly for long-tailed distri-
butions, such as those produced when one class has relatively few
cases [10]. Extreme value theory allows us to better model the tail
of the distribution than the traditionally used sigmoid activation.
The GEV distribution cumulative distribution function (CDF) is
given by:

F (x|ξ, μ, σ) =
{
exp(− exp(x−μ

σ )), if ξ = 0,

exp(−(1 + ξ
(
x−μ
σ

)−1/ξ
), if ξ �= 0.

(1)
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Fig. 2. Example curves of the sigmoid curve, and GEV distribution
cumulative distribution functions (CDFs). True indicates the actual curve
learned from the toy pneumonia dataset at a imbalance ratio of 1:50.

This distribution is a generalization of three extreme value
distributions. When ξ = 0, the GEV becomes the Gumbel distri-
bution, when ξ > 0, the GEV becomes the Frechet distribution,
and when ξ < 0, the GEV becomes the Weibull distribution.

To assess the added benefit of the proposed activation func-
tion, we compare the proposed activation function with the
previously used sigmoid function, given by:

σ(x) =
1

1 + exp(−x)
.

Examples showing the sigmoid curve and three types of GEV
CDF are shown in Fig. 2. The three parameters allow the GEV
to adapt. Small changes within the parameters can lead to large
differences in predictions. The GEV activation function has
three trainable parameters that change the shape and scale of
the curve. In traditional statistics, the GEV parameters would
be estimated using maximum likelihood [47], which requires
a full rank design matrix; however, in a deep learning context,
these parameters can be learned through gradient descent along
with the other model parameters. This only adds an extra three
parameters to be trained.

C. Datasets

1) Balanced Dataset: To evaluate our activation function we
first look at a widely used toy dataset related to our main aim.
The dataset consists of community acquired pneumonia and
normal X-ray images [48]. We begin by balancing the data to
1,583 in each class giving a ratio of 1:1. We split the data into
800 images for training, 200 images for validation, and 583
images for testing, from each class. We then reduce the number
of pneumonia images in the training and validation sets, with
testing remaining constant. Pneumonia images were removed to
give pneumonia:normal ratios of 1:10, 1:25 and 1:50.

2) X-Ray Datasets: COVID-19 positive X-Rays were ob-
tained from the COVID-19 image data collection [13], con-
sisting of images from a variety of sources such as case notes
and publications. In the training and validation, we used images
from the Italian Society of Radiology [49] only, with images
obtained from other sources used for testing/external validation.
Healthy X-rays for training and validation were taken from the

Fig. 3. Examples images of (a) healthy patient, (b) COVID-19 patient,
and (c) bacterial pneumonia patient.

Fig. 4. Examples of (a) non-COVID-19 and (b) COVID-19 positive CT
scans.

ChestX-Ray8 [14], with testing/external validation images taken
from Kermany et al. [48] and the Shenzhen Hospital X-Ray
dataset [50].

Any images with distinguishing annotations/artifacts that
could not be cropped out or less than 256 pixels in either height or
width were removed. After this, we were left with 30 COVID-19
and 40,240 healthy images in the training dataset, 15 COVID-19
and 20,120 healthy images in the validation dataset, and 84
COVID-19 and 1,907 images in the external validation/testing
dataset. In training and validation sets, the normal to COVID-19
ratio is 1341:1.

We also obtained pneumonia images to assess the model
performance in distinguishing COVID-19 from healthy or pneu-
monia (bacterial and viral) images. From the ChestX-Ray8
dataset, we added 944 pneumonia images to the training set
and 472 images to the validation set. From the Kermany et al.
dataset [48], we added 4,273 images to the testing set. Example
images are presented in Fig. 3.

3) CT Datasets: A private CT dataset comprising subjects
with or without COVID-19 was collected and used with all
relevant approval. This dataset consists of 1919 non-COVID-19
images and 30 COVID-19 images. We divided this the dataset
into 909 non-COVID-19 and 15 COVID-19 for training, 303
non-COVID-19 and 5 COVID-19 for validation, and 707 non-
COVID-19 and 10 COVID-19 for testing. The ratio of non-
COVID-19 to COVID-19 images is at 60.6:1. Example images
are shown in Fig. 4. We then externally validated the trained
model on data from two publicly available datasets, using the
same exclusion criteria as for X-ray. The first dataset is taken
from the COVID-CT-Dataset [51], the second from the Italian
Society of Radiology [49]. From the COVID-CT-Dataset, we
extracted 169 non-COVID images and 100 COVID-19 images.
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From the Italian Society of Radiology dataset, we extracted 99
COVID-19 images.

IV. EXPERIMENTAL SETUP

A. Computing

All experiments were performed on a Linux machine running
Ubuntu 18.04, with 32 GB of memory and a 12 GB Titan X
graphics card. Models were developed using Keras 2.3.1 [52]
with Tensorflow 2.1.0 [53] as the backend. Analysis of the results
was carried out in R [54] using the pROC [55], reportROC [56],
and PredictABEL [57] packages. Source code is available at
[github link, will be uploaded in time for publication].

The discriminative performance was evaluated using the
AUC, sensitivity, and specificity, with the optimum chosen based
upon Youden’s index. We assessed reclassification using the net
reclassification index (NRI). DeLong’s method [58] was used to
construct 95% confidence intervals for AUC, and 2000 sample
bootstrapping for sensitivity and specificity. Difference in AUCs
was identified using DeLong’s test [58].

Model training was conducted with 250 epochs with model
checkpoints and early stopping with a patience of 10, to prevent
overfitting. The best model was chosen based on the validation
AUC. The initial learning rate was set to 1e-4 and was reduced
to two-thirds if the validation AUC did not improve after five
epochs. All hyperparameters were kept the same for all experi-
ments.

V. RESULTS

In this section, we will present our results from the experi-
ments that we have described above. We will compare the pro-
posed GEV activation function with the previously used sigmoid
activation. We begin with results in the toy healthy vs. pnemonia
dataset, to show how the ratio of imbalance affects the results.
Results on X-rays are then given for healthy vs. COVID-19
images, then for healthy and pneumonia vs. COVID-19. We
also demonstrate the performance of the activation function on
CT images. The proposed activation function can be combined
with other long-tailed distribution methods to improve accuracy
further; to demonstrate this, we also use class weights in the
model training. GradCAMs [33] were used to highlighted areas
that the model believes more important for the prediction where
more bright yellow means more relevant while blue means less
relevant.

A. Balanced Data

We began by comparing the GEV function with the sigmoid
activation in a balanced dataset of X-ray images. We then
increase the ratio of imbalance to assess at what point the
proposed activation function becomes useful. We also compare
with a popular resampling technique, namely oversampling,
which repeats cases from the smaller dataset to rebalance the
set.

When data is balanced we observe no significant difference in
performance between the sigmoid activation and the proposed
GEV activation, the same is also true at a small imbalance ratio of

TABLE I
RESULTS OF PNEUMONIA VS. HEALTHY WITH DIFFERENT RATIOS OF

IMBALANCE. SIGMOID INDICATES NO BALANCING METHOD USED, OS USES
OVERSAMPLING WITH THE SIGMOID ACTIVATION, GEV INDICATES THE

PROPOSED GEV ACTIVATION. VALUES FOR OS SIGMOID WITH BALANCED
DATA ARE OMITTED AS NO RESAMPLING STRATEGY IS NEEDED HERE

1:10, with oversampling also showing no significant difference.
When the imbalance is increased to 1:25, the GEV provides
a statistically significant improvement in AUC and sensitiv-
ity over the sigmoid activation; however, using oversampling
also improves sensitivity. There is a non-significant increase in
performance when using GEV rather than oversampling. At a
ratio of 1:50, GEV again provides a significant increase in AUC
and sensitivity; however, oversampling overfits and classifies
almost all images as negative. Here, we see that resampling
strategies may lead to overfitting, even at relatively low levels
of imbalance.

Results are displayed in Table I, with the learned GEV acti-
vation function for the ratio 1:50 displayed in Fig. 2 compared
to the sigmoid function and two other possible GEV curves.

B. COVID-19 vs. Healthy

In the binary classification between COVID-19 and healthy,
the proposed method achieves an AUC of 0.820 (95% confi-
dence interval [CI]: 0.770, 0.870), 0.798 (95% CI: 0.712, 884)
sensitivity, and 0.778 (95% CI: 0.759, 0.796) specificity in the
testing dataset. The sigmoid activation attained an AUC of 0.750
(95% CI: 0.690, 0.809), sensitivity of 0.488 (95% CI: 0.381,
0.595), and specificity of 0.932 (95% CI: 0.921, 0.944). Results
are presented in Table II, with the ROC presented in Fig. 5.
DeLong’s test for a difference in AUC gave a p-value < 0.05,
indicating that our AUC value is significantly higher than that
of using sigmoid function at the 95% confidence level. The NRI
between the model using the sigmoid activation and the proposed
GEV activation is 0.2845 (95% CI: 0.1664, 0.4026), indicating a
significant improvement in the classification of GEV activation.
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TABLE II
RESULTS OF COVID-19 VS. HEALTHY X-RAY IMAGES. 95% CONFIDENCE

INTERVALS ARE GIVEN IN BRACKETS

Fig. 5. Receiver operating characteristic curve for COVID-19 vs.
healthy X-ray images using both the traditional sigmoid activation and
the proposed GEV activation, with 95% confidence bands.

Fig. 6. CAMs of some testing images for the classification of COVID-
19 vs. healthy images. Red areas show which parts of the image the
algorithm believes to be useful in the diagnosis. The algorithm appears
to identify the correct regions of interest, concentrating on areas with
GGO and consolidation.

Saliency maps were produced to show which areas of the image
were considered relevant by the algorithm, shown in Fig. 6.

C. COVID-19 vs. Healthy and Pneumonia

For the classification of COVID-19 versus healthy and pneu-
monia, our method achieves an AUC, sensitivity, and specificity
of 0.731 (95% CI: 0.672, 0.790), 0.726 (95% CI: 0.631, 0.822),
and 0.669 (95% CI: 0.657, 0.681), respectively. The sigmoid
activation attains an AUC, sensitivity, and specificity of 0.752
(95% CI: 0.684, 0.819), 0.571 (95% CI: 0.466, 0.677), and
0.886 (95% CI: 0.878, 0.894), respectively. Delong’s test [58]
shows a non-significant difference in AUC (p= 0.370); however,
the NRI suggests a significant improvement in classification
(p < 0.0001), when using the GEV activation. Results are

TABLE III
RESULTS OF COVID-19 VS. HEALTHY AND PNEUMONIA X-RAY IMAGES.

95% CONFIDENCE INTERVALS ARE GIVEN IN BRACKETS

Fig. 7. Receiver operating characteristic curve for COVID-19 vs.
healthy and pneumonia X-ray images using both the sigmoid activation
and the proposed GEV activation, with 95% confidence bands.

Fig. 8. Saliency maps of some testing images for the classification of
COVID-19 vs. healthy and pneumonia X-ray images. Red areas show
which parts of the image the algorithm believes to be useful in the
diagnosis.

presented in Table III, with the ROC curve shown in Fig. 7. Fig. 8
presents some example saliency maps that highlight which parts
the algorithm believes to be useful in the diagnosis.

D. Classification Using CT

To demonstrate the generalizability of our proposed activation
function, we also applied the proposed GEV activation function
on computerized tomography images. Here, we classify COVID-
19 vs. other patients. The GEV activation achieves an AUC,
sensitivity, and specificity of 1.0 (95% CI: 1.0, 1.0), 1.0 (95% CI:
1.0, 1.0), and 1.0 (95% CI: 1.0, 1.0), respectively. The sigmoid
activation attains an AUC, sensitivity, and specificity of 0.6498
(95% CI: 0.444, 0.855), 0.40 (95% CI: 0.096, 0.704), and 0.908
(95% CI: 0.887, 0.929), respectively. External validation using
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TABLE IV
RESULTS OF COVID-19 VS. HEALTHY IN THE CT TESTING DATASET. THE

SIGMOID ACTIVATION CLASSIFIED ALL IMAGES AS NON-COVID, RESULTING
IN THE UNUSUAL CONFIDENCE INTERVALS GIVEN IN BRACKETS

Fig. 9. Receiver operating characteristic curve for COVID-19 vs. other
CT images using both the sigmoid activation and the proposed GEV
activation.

Fig. 10. CAMs of some testing images for the classification of COVID-
19 vs. other CT images. Red areas show which parts of the image the
algorithm believes to be useful in the diagnosis.

the datasets previously described attained an AUC, sensitivity,
and specificity of 0.675 (95% CI: 0.621, 0.730), 0.628 (95% CI:
0.561, 0.695), and 0.651 (95% CI: 0.579, 0.723), respectively,
using the GEV activation. The sigmoid activation attained 0.561
(95% CI: 0.502, 0.620), 0.0 (95% CI: 0.0, 0.0), and 1.0 (95% CI:
1.0, 1.0), for AUC, sensitivity and specificity respectively. The
sigmoid activation classified all images as non-COVID giving
perfect specificity with 0.0 specificity. DeLong’s test indicated
a significant difference in AUCs at the 95% confidence level
(p = 0.002), the NRI also indicated a significant improvement
in classification. Results are shown in Table IV with the ROC
curve shown in Fig. 9 and CAMs maps shown in Fig. 10. The
CAMs shown here identify correct regions; however in the first
and second CAMs, the left side of the image is also identified.
The lungs were not segmented, so there is a lot of noise outside of

Fig. 11. Receiver operating characteristic curve for COVID-19 vs.
other CT images using both the sigmoid activation and the proposed
GEV activation.

the region of interest. This suggests that segmenting the lung and
masking all other regions before classification may be useful.

E. Extension to Other Networks

To demonstrate that the proposed network extends to other
neural networks, we reperform the COVID-19 versus healthy
patients experiments using another pretrained neural network,
namely MobileNet. We chose MobileNet as it is specifically
designed to be smaller and more deployable than other deep
neural networks. As COVID-19 diagnostic models are deployed,
more computationally efficient algorithms will be needed to re-
duce the cost to healthcare services. MobileNet uses depth-wise
separable convolutions to reduce the computational complexity
of the network, with only a small reduction in accuracy. The
network is designed

The sigmoid activation attains an AUC, sensitivity, and speci-
ficity of 0.759 (95% CI: 0.692, 0.827), 0.679 (95% CI: 0.579,
0.778), and 0.777 (95% CI: 0.758, 0.795), respectively. While
the GEV activations attains an AUC, sensitivity, and specificity
of 0.888 (95% CI: 0.838, 0.937), 0.774 (95% CI: 0.684, 0.863),
and 0.918 (95% CI: 0.905, 0.930), respectively. DeLong’s
method indicated a non-zero difference in AUC (p < 0.0001)
and the NRI shows a significant improvement in classification
(p < 0.0001). The ROC curve is shown in Fig. 11.

VI. DISCUSSION

In this work, we have proposed a novel activation function
inspired by extreme value theory and studied its significance
for the diagnosis of COVID-19. The proposed GEV activation
is better suited to highly unbalanced data than the commonly
used sigmoid activation. Experiments conducted using both X-
ray and CT imaging to diagnose COVID-19 have shown that
the GEV activation function significantly increases sensitivity
compared to sigmoid.

On a balanced dataset, we found no significant difference
between the GEV activation and the sigmoid activation. As the
ratio of imbalance between the classes increased, we found that
the GEV activation provided improved sensitivity, accounting
for the relatively small number of positive images. Compared to
oversampling, when the ratio of imbalance was low, there was
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no signifcant difference to the GEV activation. However, at a
ratio of 1:50, oversampling lead to overfitting, with worse per-
formance that using the sigmoid activation alone. This highlights
a common criticism of resampling procedures.

In the diagnosis of COVID-19, hospitals are beginning to use
a chest X-ray before CT, as an X-ray is much faster, cheaper,
and the machine is much easier to clean than the CT scanner
after use. Any negative patients are sent for a CT to confirm the
negative diagnosis; hence, it is vital to improve the sensitivity of
X-ray algorithms to reduce the number of unnecessary CTs. It
is reported that the sensitivity of X-rays for the diagnosis is only
about 0.69 in clinical settings [59]. It is expected that automated
AI diagnosis algorithms can help to improve sensitivity.

For the COVID-19 vs. healthy experiment, the GEV activation
function gave a statistically significant increase in AUC, with a
significantly improved sensitivity while maintaining a reason-
ably high specificity. In the COVID-19 vs. healthy and pneu-
monia experiment, the GEV activation had a non-significant
decrease in AUC with the benefit of increasing sensitivity sig-
nificantly.

In the CT experiment, the internal testing set was too small
to be meaningful (10 patients), and the model using the GEV
activation attained perfect performance, while the model using
the sigmoid activation was equivalent to random chance. In
the external validation set, the GEV model had much lower
performance; however, the model still improved significantly
over the sigmoid model, which just classified all images as
non-COVID.

We have also shown that the proposed activation function
generalizes to other networks and improves over the previously
used sigmoid activation. In this case, the proposed activation
function gave a non-significant increase in sensitivity but gave
a significant increase in specificity at the 95% confidence level.

In all experiments, while the AUC was not necessarily im-
proved, the sensitivity was always increased and the NRI in-
dicated that the classification was significantly improved upon
when using the GEV activation.

COVID-19 is a new challenge, as yet there is no consensus on
performance requirements for any diagnostic models. From our
experience, it is believed high sensitivity with a reasonably good
specificity would be a preferred option; any false negatives will
leave COVID-19 undiagnosed, increasing the risk of spreading
this highly infectious disease, while any false negatives may only
lead to unnecessary further investigations including CT. Our
activation function leads to preferable models over the sigmoid
function.

We are cautious to compare out quantitative results with previ-
ous work, as summarized in Shi et al. [7]. Although the previous
models have shown the potential of AI, they often only use a
relatively small testing dataset. For instance, the total number of
positive cases is between 45 and 100 for the X-ray work [16],
[17], [22]. The need for large amounts of training data has led
to very few COVID-19 images being used in the testing set.
This makes it challenging to determine the model performance
and generalizability fully. The proposed GEV activation requires
fewer COVID-19 images in the training dataset, meaning we
can use more images in the testing set. Although we may not

necessarily obtain improved results over previously published
COVID-19 diagnostic models, we show that our approach may
help to improve those methods, particularly the sensitivity. The
other reason for not comparing our model to previous models
is that we are not able to obtain the exact same datasets for
the experiments, to report the performance. To make a fair
comparison, community effort is needed to curate a dataset for
reproducible research. It is also of great importance to standard-
ize how results are reported and the measures of a successful
model. A systematic review by Wynants et al. [8] identified eight
studies diagnosing COVID-19 and found that the risk of bias was
high in all studies, according to PROBAST [39]. In this work,
we have strived to follow best practices for prediction modes,
as outlined by PROBAST [39] and TRIPOD [60], and would
encourage new prediction models in AI to follow PROBAST
and TRIPOD guidelines carefully to increase the robustness of
developed models.

Similar to previous studies, the most significant limitation
of this study lies in the data used. First, relatively few images
are available in the public domain. The data that is available is
curated by several initiatives, and typically they are COVID-19
images, without matching negative controls. Currently, non-
COVID images must be found elsewhere, and these often
use different protocols, making the images slightly different
in appearance. Secondly, those that are available are often of
low quality, for example: the COVID-19 Image Collection is
extracted from published papers and reports [13]. Annotations
or captions are on many of the images and it is not always
possibly to crop these annotations out. The contrast may have
been adjusted during the publication process, and some were
downsampled, leading to a significant reduction in details. For
the healthy X-ray images used here, although we aimed to crop
annotations out of every image, with such a large dataset, we
were forced to use an automated cropping technique; this may
leave some images still with annotations. It is also possible that
some labels in the datasets used were wrong. The samples may
also not be representative of the overall population. When we
developed our CT model (unreported results), we firstly used
publicly available datasets for training; the non-COVID-19 im-
ages came from a lung cancer screening set, and the COVID-19
came from [13]. We found that performance was near perfect.
After further investigation, we found that the algorithm was
learning the appearance of the images and not the features of
COVID-19. This highlights the dangers of black-box models
and the need for visualization techniques such as saliency maps.
We then obtained higher quality images for training, and those
results are presented here. Third, many datasets do not contain
clinical or demographic information, such as diagnostic test
used, age, or gender; these could be used to further imporve
models. There is a lack of information on how the image is
generated from the raw data. For instance, different window
functions will produce different appearance of the same CT.
These need to be standardized if there is to be a public dataset
being made available in the future.

Although we only considered COVID-19 here, the method
can be used whenever one class significantly outweighs the
other, such as is the case in rare diseases. Future work is
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needed, both in COVID-19 and other diseases, to confirm the
benefit of the proposed activation function and to assess the
situations in which it is preferable over the sigmoid activation.
In our experiments, we combined the GEV activation with class
weights; Other experiments without class weights experienced
a loss of model performance (unreported results). This suggests
that a combination of methods may be the best strategy. The
effect of other data-efficient methods also needs to be assessed.
The proposed method also needs to be extended to multiclass
problems. For COVID-19 diagnosis, the proposed activation
function needs to be tested on improved base networks to provide
improved diagnostic performance.

Although only diagnosis is considered here, CT is likely to
play an important role in the treatment and in monitoring the
progression of COVID-19. Future work is needed to consider
how AI can aid clinicians in decision making for the treatment
of COVID-19.

This work, along with previous work, has displayed the poten-
tial of AI in the diagnosis of COVID-19, these algorithms will be
used as either standalone tools or as diagnostic aids to existing
systems, to support decision making. Any methods deployed
must first be appropriately validated in clinical settings to obtain
regulatory approval

VII. CONCLUSION

We propose an activation function based on the generalized
extreme value distribution. The GEV activation improves model
performance in binary classification when one class significantly
outweighs the other. The method is applied to a COVID-19
dataset and improves upon a standard pretrained network using
the sigmoid activation. Future models using highly unbalanced
data may benefit from using the proposed activation function.
We hope these models could support better management for
COVID-19 with improved sensitivity.
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