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Abstract

Radiation therapy is an important and effective treatment option for prostate cancer, but

high-risk patients are prone to relapse due to radioresistance of cancer cells. Molecular

mechanisms that contribute to radioresistance are not fully understood. Novel computa-

tional strategies are needed to identify radioresistance driver genes from hundreds of gene

copy number alterations. We developed a network-based approach based on lasso regres-

sion in combination with network propagation for the analysis of prostate cancer cell lines

with acquired radioresistance to identify clinically relevant marker genes associated with

radioresistance in prostate cancer patients. We analyzed established radioresistant cell

lines of the prostate cancer cell lines DU145 and LNCaP and compared their gene copy

number and expression profiles to their radiosensitive parental cells. We found that radiore-

sistant DU145 showed much more gene copy number alterations than LNCaP and their

gene expression profiles were highly cell line specific. We learned a genome-wide prostate

cancer-specific gene regulatory network and quantified impacts of differentially expressed

genes with directly underlying copy number alterations on known radioresistance marker

genes. This revealed several potential driver candidates involved in the regulation of can-

cer-relevant processes. Importantly, we found that ten driver candidates from DU145

(ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR, ITGA2, SOX17, STARD4, VGF) and

four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) were able to distinguish irradiated pros-

tate cancer patients into early and late relapse groups. Moreover, in-depth in vitro valida-

tions for VGF (Neurosecretory protein VGF) showed that siRNA-mediated gene silencing

increased the radiosensitivity of DU145 and LNCaP cells. Our computational approach

enabled to predict novel radioresistance driver gene candidates. Additional preclinical and

clinical studies are required to further validate the role of VGF and other candidate genes as
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potential biomarkers for the prediction of radiotherapy responses and as potential targets for

radiosensitization of prostate cancer.

Author summary

Prostate cancer cell lines represent an important model system to characterize molecular

alterations that contribute to radioresistance, but irradiation can cause deletions and

amplifications of DNA segments that affect hundreds of genes. This in combination with

the small number of cell lines that are usually considered does not allow a straight-forward

identification of driver genes by standard statistical methods. Therefore, we developed a

network-based approach to analyze gene copy number and expression profiles of such cell

lines enabling to identify potential driver genes associated with radioresistance of prostate

cancer. We used lasso regression in combination with a significance test for lasso to learn

a genome-wide prostate cancer-specific gene regulatory network. We used this network

for network flow computations to determine impacts of gene copy number alterations on

known radioresistance marker genes. Mapping to prostate cancer samples and additional

filtering allowed us to identify 14 driver gene candidates that distinguished irradiated

prostate cancer patients into early and late relapse groups. In-depth literature analysis and

wet-lab validations suggest that our method can predict novel radioresistance driver

genes. Additional preclinical and clinical studies are required to further validate these

genes for the prediction of radiotherapy responses and as potential targets to radiosensi-

tize prostate cancer.

Introduction

Radiation therapy and surgery with or without anti-androgen treatment are key therapies for

prostate carcinoma. Depending on the stage of tumor and type of applied irradiation, up to

90% of prostate cancer patients can be permanently cured by radiotherapy [1–3]. Nevertheless,

normal tissue toxicity limits the delivery of a tumor curative radiation dose and is therefore

one of the major obstacles to effective external beam radiotherapy [4]. Local recurrence of

prostate cancer after radiotherapy can be attributed to radioresistance of cancer cells [5].

Molecular mechanisms and cellular properties that contribute to radioresistance of prostate

cancer are only partly understood involving activations of signaling pathways such as PI3K/

Akt and mTOR, alterations of DNA repair pathways, autophagy, and epithelial-mesenchymal

transition, and the potential existence of cancer stem cells [5]. Another important factor

involved in radioresistance of prostate cancer is the tumor microenvironment [6, 7]. Tumor

progression and therapy response can be influenced by changes of the tumor microenviron-

ment as a consequence of a radiation therapy [8, 9]. Closely related to this are immunomodula-

tory alterations triggered by radiation therapies that offer possibilities for new treatment

options [10–12]. Also changes of the metabolism of cancer cells after a radiotherapy can alter

the radiosensitivity of cells [13]. Still, the occurrence of radioresistance is highly unpredictable

leading to less effective treatments for many patients supporting local recurrence and metasta-

sis of prostate cancer [14]. Adjuvant therapies to further improve the efficiency of radiation

therapies are urgently needed. Different molecular mechanisms and various agents have

already been identified to improve the radiosensitization of prostate cancer. This includes

androgen deprivation therapy, vascular endothelial growth factor (VEGF) inhibition, mTOR
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inhibition, and cytochrome P450 enzyme CYP17A1 inhibition [15]. Several other potential

adjuvant strategies have also been suggested including the application of a Bcl-2 inhibitor [16],

cytolethal distending toxin [17], PARP inhibition [18], resveratrol [19], and an ATM kinase

inhibitor [20] to improve radiosensitization. However, additional molecular characterizations

and studies are necessary to enable a targeted transfer into the clinics to further improve the

efficiency of radiation therapies.

Still, clinical, pathological and biological factors for the prediction of treatment outcomes

are of great importance for the personalization of prostate cancer treatment. The current pre-

treatment risk stratification system for prostate cancer is based on the analysis of prostate-spe-

cific antigen, clinical T-stage and Gleason scores to guide medical decision making [21]. This

concept for risk assessment of prostate cancer is of a high clinical value, but limited by the het-

erogeneity of patients within disease-risk groups [22]. Therefore, novel prognostic factors are

required to obtain more accurate risk estimations for radioresistance.

Over the last years, different large-scale studies were performed to obtain a better general

characterization of prostate cancer at the molecular level. This has contributed to the identifi-

cation of molecular subtypes, recurrent gene mutations and DNA copy number alterations,

and the characterization of signaling and DNA repair pathways involved in the development

of prostate cancer (e.g. [23–26]). Especially the multi-omics study by The Cancer Genome

Atlas (TCGA) [23] provides omics profiles of different molecular layers along with clinical

information for hundreds of prostate cancer patients. Such data sets represent an important

basis to gain novel insights into genes and molecular mechanisms driving radioresistance, but

this search for novel candidate genes is very challenging comparable to the search for the nee-

dle in the haystack.

Irradiation of prostate cancer cells causes DNA double strand breaks and cells that survive

this highly toxic damage can show complex genomic alterations such as large deletions or

amplifications of chromosomal regions due to error-prone DNA repair [27]. Many genes are

located in such altered regions and these altered regions differ substantially between radiore-

sistant cells. Therefore, an identification of radioresistance drivers by standard statistical

approaches is nearly impossible. Innovative computational concepts are required to separate

potential drivers from passengers. A promising strategy is the analysis of gene dosage effects

triggered by underlying deletions and amplifications with the help of gene regulatory networks

[28–30]. This strategy is related to network-based stratification of gene mutations [31, 32]. We

recently demonstrated that gene regulatory networks learned from gene expression and copy

number profiles of cancer cell lines or cancer patients are capable to predict impacts of gene

copy number alterations on cancer-relevant target genes, signaling pathways and patient sur-

vival [28–30]. The key principle behind this approach is the usage of a specifically designed

network propagation algorithm to propagate gene expression alterations along the edges of a

gene regulatory network to quantify how individual gene copy number alterations influence

the expression of other genes. This concept can be adapted to the analysis of radioresistant

prostate cancer cell lines offering the great opportunity to identify novel candidate genes

involved in radioresistance.

Here, we developed an approach for the network-based analysis of prostate cancer cell lines

with acquired radioresistance to identify clinically relevant marker genes associated with

radioresistance in prostate cancer patients (Fig 1). We considered the existing prostate cancer

cell lines DU145 (androgen-independent with high metastatic potential derived from a brain

metastasis) and LNCaP (androgen-dependent with low metastatic potential derived from a

lymph node metastasis) and analyzed molecular data of radiosensitive parental cells and corre-

sponding radioresistant cells that we had established in [33] and which we had further ana-

lyzed in [34]. We compared gene copy number and expression profiles of the radioresistant
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cell lines to their radiosensitive parental cells and further utilized our network-based approach

to quantify the impact of differentially expressed genes with directly underlying copy number

alterations on known marker genes of radioresistance. We identified several novel gene candi-

dates that are potentially involved in the manifestation of radioresistance enabling to separate

prostate cancer patients treated with radiotherapy into early and late relapse groups. We per-

formed in-depth wet-lab validations of a selected candidate gene (VGF: Neurosecretory pro-

tein VGF) providing further evidence that our computational approach can contribute to the

identification of genes involved in radioresistance.

Results

DU145 shows more gene copy number alterations than LNCaP

We considered radioresistant cell lines of the prostate cancer cell lines DU145 and LNCaP that

were established in [33] and further characterized in [34]. We analyzed corresponding array-

based comparative genomic hybridization (aCGH) experiments to identify gene copy number

alterations distinguishing radioresistant DU145 and LNCaP from their radiosensitive parental

cell line (Fig 1, S1 Table). Generally, radioresistant DU145 showed more copy number alter-

ations than radioresistant LNCaP (Fig 2). In more detail, comparing radioresistant to radio-

sensitive DU145, 24.8% of genes (6,109 of 24,625) had reduced and 38.6% (9,498 of 24,625)

had increased copy numbers (Fig 2a, S2 Table), whereas only 3.1% (765 of 24,625) of genes

had reduced and 1.5% (377 of 24,625) had increased copy numbers comparing radioresistant

to radiosensitive LNCaP (Fig 2b, S2 Table). For DU145, broad segments of gene copy number

alterations across all chromosomes and few focal gene copy number alterations were observed

(Fig 2a). In contrast, LNCaP only showed some broad regions of reduced gene copy numbers

on chromosomes 1, 6, and 20, greater gene copy numbers for a broad region on chromosome

12, and some focal gene copy number alterations on different chromosomes (Fig 2b). Both cell

lines further showed a significant overlap of 389 genes with reduced gene copy numbers

Fig 1. Methodological overview. Left box, Prostate cancer cell lines DU145 and LNCaP were purchased from the American Type Culture Collection and used to

establish radioresistant cell lines. Gene copy number and expression profiles of radioresistant and corresponding age-matched non-irradiated radiosensitive parental

cell lines were measured. Middle box, A prostate cancer-specific gene regulatory network was learned from gene expression and copy number data from 541 prostate

cancer patients from The Cancer Genome Atlas (TCGA) and validated on 768 cancer cell lines of the Cancer Cell Line Encyclopedia (CCLE). This network was used to

quantify putative impacts of genes with differential expression and directly underlying copy number alterations between radioresistant and radiosensitive cell lines

(orange circle) on known marker genes of radioresistance (green circles) utilizing network propagation (red arrows). Right box, Identified potential radioresistance

driver genes were evaluated for their potential to separate irradiated prostate cancer patients from TCGA into early and late relapse groups. In-depth literature analysis

was done for all cell line-based candidate genes that were predictive for the relapse behavior of irradiated prostate cancer patients. Sophisticated experimental

validations were done for the candidate gene VGF by analyzing the impact of siRNA-based VGF knockdowns on radiosensitivity. A detailed technical flow chart is

shown in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g001
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(mainly on chromosomes 1 and 6, Fisher’s exact test: P = 7.16 � 10-56) and a non-significant

overlap of 47 genes with increased copy numbers widespread across the genome.

We also compared the gene copy number alterations of radioresistant and radiosensitive

DU145 and LNCaP to normal male reference DNA to better understand the observed differ-

ences between both cell lines (S2 Fig). We found that radiosensitive DU145 had much more

gene copy number alterations than radiosensitive LNCaP, radioresistant DU145 and LNCaP

were clearly more similar to their corresponding radiosensitive counterpart than to each other,

and radioresistant DU145 had much more gene copy number alterations than radioresistant

LNCaP. These findings indicate that DU145 is generally more prone to DNA copy number

alterations than LNCaP, which could explain the strong differences observed between both cell

Fig 2. Gene copy number alterations of DU145 and LNCaP. Gene copy number profiles of DU145 (a) and LNCaP (b) comparing radioresistant to radiosensitive cell

lines. Gene copy number alterations are quantified by log2-ratios of radioresistant versus radiosensitive and plotted in the chromosomal order of genes. Deviations of

log2-ratios from zero (brown dashed line) indicate the presence of gene copy number alterations. Considered reduced (green dots below blue dashed line: log2-ratios<

-0.1) or increased (red dots above blue dashed line: log2-ratios> 0.1) gene copy numbers in the corresponding radioresistant cell lines of DU145 and LNCaP are

highlighted. Ends of chromosomes are marked by black dotted vertical lines. Unchanged genes on a chromosome are shown by alternating grey and black dots to

further support the visual separation between chromosomes. An additional heatmap representation including comparisons of radioresistant and radiosensitive DU145

and LNCaP to normal reference DNA is shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g002
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lines. An increased radioresistance of DU145 in comparison to LNCaP can also contribute to

these observations [33].

DU145 and LNCaP mainly show cell line specific expression patterns

We analyzed gene expression for DU145 and LNCaP to identify differentially expressed

genes between established radioresistant DU145 and LNCaP and their radiosensitive parental

cell line (Fig 1). We used a Hidden Markov Model to determine differentially expressed

genes [35] (see Methods). We found 857 under- and 835 overexpressed genes in radioresis-

tant DU145 and 855 under- and 670 overexpressed genes in radioresistant LNCaP compared

to their radiosensitive parental cell lines (S3 Table). The overlap of differentially expressed

genes between both cell lines was small but significant (Fig 3a: 81 under- and 51 overex-

pressed genes, P< 7.46 � 10-8, Fisher’s exact test, S3 Table). The majority of these genes was

part of signaling pathways and/or encode for transcription factors/co-factors (Fig 3b). Com-

monly underexpressed genes in radioresistant DU145 and LNCaP included e.g. known

tumor suppressors (e.g. BCL10, EPB41L4A, SPRED1, SERPINB5) and commonly overex-

pressed genes included e.g. SEMA4A involved in cell-cell signaling and migration, NROB1
associated with stem cell pluripotency, and genes involved in cytokine signaling (e.g. IL19,

IL3RA) [36].

We found similar patterns of differential expression among known cancer-relevant signal-

ing pathways for both cell lines (Fig 3). Further, radioresistant DU145 and LNCaP showed an

enrichment of overexpressed PI3K-Akt pathway genes (Fig 3d). DU145 also showed an enrich-

ment of underexpressed genes for the cytokine pathway, the p53 pathway, the PI3K-Akt path-

way, and the Jak-STAT pathway (Fig 3c) and an enrichment of overexpressed genes for the

cytokine pathway, the ECM receptor pathway, the focal adhesion pathway, and the hedgehog

pathway (Fig 3d). LNCaP showed an enrichment of underexpressed TGF-Beta signaling genes

(Fig 3c). Most of these pathways have already been associated with radioresistance of prostate

cancer and other types of cancers (e.g. [5, 14, 37–39]).

Direct impact of copy number alterations on expression of affected genes

We analyzed which genes with copy number alterations showed altered expression. LNCaP

showed more gene expression alterations than gene copy number alterations (1,525 vs. 1,142)

and only 8.9% (102 of 1,142) of genes with copy number alterations showed altered expression.

66 of these 102 genes showed putative direct impacts of the underlying copy number alteration

on the expression level (S4 Table; 49 genes with reduced copy number and decreased expres-

sion; 17 genes with increased copy number and expression). These findings are similar to a

related analysis of radiosensitive and radioresistant subclones of a head and neck squamous

cell carcinoma cell line that only found few differentially expressed genes with directly under-

lying copy number alterations [40]. Further, tumor suppressor genes such as PRDM1 and

RNF217 had a reduced copy number and showed reduced expression in radioresistant com-

pared to radiosensitive LNCaP.

In contrast, we found substantially more gene copy number alterations than gene expres-

sion alterations for DU145 (15,607 vs. 1,692), but only 7.3% (1,144 of 15,607) of genes with

altered copy numbers also showed altered expression. 447 of these 1,144 genes showed expres-

sion changes in the same direction (S4 Table; 191 genes with reduced copy number and

reduced expression; 256 genes with increased copy number and increased expression),

whereas the other genes had expression differences in the opposite direction possibly due to

the complex genomic rearrangements observed for DU145 affecting many transcriptional reg-

ulators (Figs 2a and 3b). These findings are supported by our previous analysis of DU145 [34].
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Further, tumor suppressor genes such as EPB41L4A and TNFAIP3 had a reduced copy number

and showed reduced expression, whereas oncogenes such as ALDH1L2 andWNT11 had an

increased copy number and showed increased expression in radioresistant compared to radio-

sensitive DU145.

Fig 3. Gene expression differences between DU145 and LNCaP. Differentially expressed genes between radioresistant and radiosensitive cell lines were determined

for DU145 and LNCaP. Identified under- (top panels) and overexpressed genes (bottom panels) in the radioresistant cell lines of DU145 and LNCaP were compared

to each other at the single gene level (a) and at the level of cancer-relevant gene annotation categories (b; categories: oncogenes (OG), tumor suppressor genes (TS),

cancer census genes (CC), phosphatases (PH), kinases (KI), metabolic pathway gene (MG), signaling pathway gene (SG), transcriptional regulator (TR)). Significant

overlaps between categories are denoted by ‘�’ (b; grey columns, P< 0.001, Fisher’s exact test). Identified under- (c) and overexpressed genes (d) were further mapped

to known cancer-relevant signaling pathways. Overrepresented pathways were highlighted by ‘�’ (P< 0.05, Fisher’s exact test) and ‘��’ (P< 0.01).

https://doi.org/10.1371/journal.pcbi.1007460.g003
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Generally, all genes with copy number alterations and consistent expression responses in

the same direction represent putative direct driver candidates that could be involved in the

manifestation of radioresistance.

Gene copy number alterations impact on expression of known

radioresistance markers

To determine which of the radioresistance driver candidates with altered expression and

underlying copy number alteration putatively contribute to the manifestation of radioresis-

tance, we computed direct and indirect impacts of these candidates on the expression of

known radioresistance marker genes (Fig 1). To realize this, we first used expression and copy

number data of 14,780 genes of 541 prostate cancer patients from TCGA [23] to learn a pros-

tate cancer-specific gene regulatory network (see Methods for details). This network was able

to predict expression levels of individual genes across 768 independent cancer cell lines [41]

with comparable power as in a previous study with other cancer types [28] (S3 Fig). Next, we

used this network to compute for each putative radioresistance driver candidate (S4 Table) its

potential impact on the expression of known altered radioresistance marker genes utilizing

network propagation [28, 29] (see Methods for details, Fig 1 for an illustration, and S1 Fig for a

detailed work flow illustration). Putative impacts of the DU145 and LNCaP driver candidates

on the expression of differentially expressed cell line specific radioresistance marker genes are

shown in Fig 4.

We found 162 driver candidates for DU145 (Fig 4a) and 27 for LNCaP (Fig 4b) that

strongly impact on the expression of cell line specific radioresistance markers (S5 Table,

q< 0.01). These driver candidates comprise overexpressed genes with increased copy number

and underexpressed genes with decreased copy number. Potential driver candidates were dis-

tributed across the whole DU145 genome, whereas they were more focally distributed in

LNCaP (Fig 4), which is expected because of the strong differences in DNA copy number alter-

ations between both cell lines (Fig 2).

Considering the 162 driver candidates identified from DU145 (S5 Table, Fig 4a), several

overexpressed genes with increased copy numbers encode membrane proteins (e.g. RHBDL2,

FZD7, SEMA5A, IL7R, STAB2, GPR124, NGFR, CAV1) and transcriptional regulators (e.g.

ETV7, FOS, ATXN1, LEF1) [36]. Further, SOX17, a transcription factor important for embry-

onic development and cell fate determination, and the tumor suppressors SEPINB5 and PTRO
were underexpressed with underlying reduced copy number [36]. Generally, these and other

driver candidates were involved in the regulation of diverse cellular processes such as cytoskel-

etal remodeling, cell growth, proliferation, adhesion, or migration.

Considering the 27 driver candidates identified from LNCaP (S5 Table, Fig 4b), most

genes were involved in cell adhesion (underexpressed with reduced copy number: CDH19,

DCC, FERMT1, FYN, VNN2 except CLEC1A and KAL1) [36]. Again genes involved in other

cancer-relevant processes such as cell proliferation, migration, differentiation, apoptosis, or

cytoskeletal remodeling were among the driver candidates (all underexpressed with reduced

copy number: ARHGAP18, DUSP10, PAK7, PDGFC, RNF217) [36]. Further, the known

tumor suppressors DCC and GPRC5A were underexpressed with underlying reduced copy

number.

Only KAL1 located on chromosome X was found as common high impact gene in DU145

and LNCaP (S5 Table, Fig 4), but KAL1 was underexpressed with reduced copy number in

DU145 and overexpressed with increased copy number in LNCaP comparing radioresistant to

radiosensitive cell lines. KAL1 encodes an extracellular matrix protein involved in cell migra-

tion [36]. Downregulation of KAL1 has been associated with increased tumor size and vascular
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invasion of hepatocellular carcinoma [42]. Similarly, silencing of KAL1 squamous cell carci-

noma accelerated the G1 to M phase transition promoting cell proliferation and colony forma-

tion [43].

Generally, the small overlap between DU145 and LNCaP was expected due to strongly dif-

ferent copy number alteration profiles (Fig 2). Still, both sets of cell line specific driver candi-

dates tend to act on the same cellular processes that could contribute to the manifestation of

radioresistance.

Fig 4. Impacts of potential radioresistance driver genes on known radioresistance markers. Impacts of differentially expressed genes with directly underlying copy

number alterations in radioresistant DU145 (a) and radioresistant LNCaP (b) on known markers of radioresistance. The impact score represents the log10-ratio of the

gene-specific impact on known radioresistance marker genes comparing the impact score reached for the prostate cancer specific network to the average impact score

obtained under 10 random networks of same complexity (degree-preserving network permutations). Impact scores of genes with significantly greater impacts under

the original network (q< 0.01) are shown by colored peaks (green: deleted and underexpressed; red: amplified and overexpressed for radioresistant vs. radiosensitive).

The majority of gene names are shown. See S5 Table for names of all putative high impact genes. High impact genes that enabled a separation of TCGA prostate cancer

patients into early and late relapse groups (Fig 5, S5 Fig) are highlighted in blue.

https://doi.org/10.1371/journal.pcbi.1007460.g004
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Potential radioresistance drivers separate irradiated patients into early and

late relapse groups

Next, we tested which of the identified cell line specific radioresistance driver gene candidates

could potentially be relevant to predict the relapse behavior of prostate cancer patients treated

by radiation therapy. To realize this, we analyzed the expression behavior of the driver candi-

dates within a subgroup of 32 irradiated prostate cancer patients available from TCGA [23]

(S6 Table). To enable relapse predictions for patients, only driver candidates with consistent

expression behavior between radioresistant cell lines and irradiated patients were considered.

Thus, a driver candidate that was underexpressed in radioresistant DU145 or LNCaP shows

consistent behavior when irradiated patients with low expression of this gene tend to show

faster relapses than patients with higher expression. In analogy, a driver candidate that was

overexpressed in radioresistant DU145 or LNCaP shows consistent behavior if irradiated

patients with high candidate gene expression tend to show faster relapses than patients with

lower expression. We applied this consistency filtering to all driver candidates by comparing

the cell line specific candidate gene expression behavior to the corresponding correlation

between candidate expression and time until relapse in patients (see Methods for details). We

found that 61 of 162 candidates from DU145 and 14 of 27 from LNCaP showed consistent

expression behavior between cell lines and irradiated patients (S5 Table).

Next, we analyzed each of these candidate genes for its potential to distinguish between

early and late relapse of irradiated prostate cancer patients by performing a Kaplan-Meier

analysis. Under consideration that the early or late relapse group must contain at least eight

patients, we found that 10 of 61 driver candidates from DU145 and 4 of 14 from LNCaP have

the potential to distinguish between early and late relapse (S5 Table, Log-rank tests: P< 0.05

and corresponding conservative false discovery rates estimated between 14% and 22% [44]

and more liberal estimates between 3% and 5% [45]). We also analyzed if the standard log-

rank p-value computation for our small cohort of 32 patients with its determined different-

sized early and late relapse subgroups had led to biased p-values [46]. We therefore computed

the exact permutational log-rank p-values with the ExaLT method [46] for all DU145 and

LNCaP driver candidates and compared them to the corresponding approximate log-rank p-

values of our initial standard analysis. We found that the approximate log-rank p-values

mostly overestimated the significance of the marker candidates, but this only marginally

affected the ten driver candidates from DU145 (except for FOXL1: log-rank p-value increased

from 0.014 to 0.076) and the four driver candidates from LNCaP and was clearly more pro-

nounced for larger insignificant p-values (S4 Fig). The selected driver candidates are shown in

Fig 5 and S5 Fig and listed in Table 1. Corresponding copy number alteration levels are shown

in S6 Fig.

We found that high expression of AKR1B10 or VGF was associated with patients that had a

faster relapse than patients with lower expression of these genes (Fig 5). Further, low expres-

sion of ADAMTS9, FOXL1, FST, GRPR, SOX17, STARD4, FHL5, LYPLAL1, PAK7, TDRD6,

CXXC5, or ITGA2 was associated with patients that showed a faster relapse than patients with

corresponding higher expression levels (Fig 5, S5 Fig). A detailed discussion of the identified

driver candidates in the context of the existing literature is provided in S1 Text. Since patient-

specific expression profiles were measured before radiation, theses driver candidates poten-

tially represent markers whose expression behavior may allow to decide if a prostate cancer

patient would profit from a radiation therapy or not.

Further, we investigated if the disease status after initial treatment of irradiated patients had

biased the observed separations into early and late relapse groups, but we did not find any sig-

nificant difference with respect to the distribution of patients with complete and non-complete
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remission after initial treatment between both groups (Fisher’s exact tests: P ranged from 0.69

to 1).

Finally, we analyzed how our predicted driver candidates contribute to the modeling of the

disease-free survival in the presence of additional covariates. Therefore, we used Cox regres-

sion [47, 48] to determine the contribution of prognostic factors (age, clinical T-stage, Gleason

score, psa) with and without considering group assignments based on each driver candidate.

We found that the prognostic factors alone were not well-suited to model the disease-free sur-

vival, whereas the driver candidates provided important information for the modeling of the

disease-free survival in the presence of the other factors (S7 Fig).

VGF and FHL5 also tend to predict relapse behavior of non-irradiated

patients

Some of these marker candidates might also be associated with relapse of prostate cancer inde-

pendent of radiation therapy. We therefore further analyzed the expression behavior of the

marker candidates for 182 prostate cancer patients from TCGA that did not receive an adju-

vant radiation therapy (S6 Table) [23]. We again tried to group the patients into early and late

Fig 5. Marker gene-based separation of irradiated prostate cancer patients into early and late relapse groups. Potential radioresistance driver genes revealed from

DU145 (top and middle row) and LNCaP (bottom row) were analyzed for their expression behavior in 32 irradiated prostate cancer patients from TCGA. Expression

levels of each marker gene across the 32 patients were used to determine a marker gene-specific optimal cutoff for disease-free survival risk curves separating patients

with low (blue curve) and high (red curve) marker gene expression with respect to the constraint that at least 8 patients must be assigned to each curve. Log-rank test

p-values indicate that these selected marker genes enable a separation of irradiated prostate cancer patients into early and late relapse groups. Shown are standard

approximate log-rank test p-values that only marginally deviated from exact log-rank p-values determined by exhaustive computations, except for FOXL1 that had a

clearly less significant exact log-rank p-value of 0.076 (see Methods for details and S4 Fig). See S1 Text for a detailed discussion of the driver candidates in the context

of the existing literature.

https://doi.org/10.1371/journal.pcbi.1007460.g005
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relapse groups by performing a Kaplan-Meier analysis using the same driver gene-specific

expression cutoffs determined in the prior analysis. We found that only VGF and FHL5
enabled a similar separation of non-irradiated patients as observed for irradiated patients (S5

Fig, Log-rank test: P< 0.1). As for irradiated patients (Fig 5), high expression of VGF was asso-

ciated with early relapse, whereas high expression of FHL5 was associated with late relapse of

non-irradiated patients (S5 Fig). Thus, both marker genes may also have at least some general

prognostic potential for relapse, but only the increased expression of VGF in early relapse

patients is of greater potential therapeutic relevance, because knockdowns are potentially bet-

ter to realize than knockins.

Validation of VGF by in vitro radiobiological assays

We selected the neuroendocrine factor VGF for in-depth validation studies. This was moti-

vated by our observation that VGF showed increased expression in prostate cancer patients

with early relapse (Fig 5) and further triggered by recent studies that highlighted the impor-

tance of VGF in different types of cancer [49–52].

We found that VGF was significantly upregulated in DU145 and LNCaP prostate cancer

radioresistant cell lines in our genome-wide gene expression analysis (Fig 6a; average expres-

sion difference of 2.85 in DU145 and 1.37 in LNCaP, t-tests: P< 0.01, S7 Table). We further

analyzed the expression of VGF in independent radioresistant clones of DU145 and LNCaP in

comparison to their radiosensitive parental cell lines and found that VGF was also significantly

overexpressed in these clones (Fig 6b, t-test: P< 0.05 for DU145 and P< 0.03 for LNCaP, S7

Table). Interestingly, two of the four radioresistant DU145 clones had VGF expression levels

that were comparable to those of the radioresistant LNCaP clones. These two radioresistant

DU145 clones may not have an increased VGF copy number, but they still showed significantly

increased VGF expression in comparison to the parental radiosensitive DU145 cell line (t-test:

P< 0.04). This is comparable to the overexpression of VGF in radioresistant LNCaP without a

Table 1. Summary of potential radioresistance drivers.

Gene Faster Relapse Annotations

ADAMTS9 low expression protease function, renal tumors

AKR1B10 high expression all-trans-retinaldehyde reductase, detoxification

FOXL1 low expression transcription factor, proliferation, differentiation, metabolism

FST low expression follistatin, sexual hormone

GRPR low expression receptor for gastrin releasing peptide, associated with activation of phosphatidylinositol messenger system

SOX17 low expression transcription factor, inhibits Wnt signaling, key regulator of embryonic development

STARD4 low expression putative role in intracellular transport of sterols and other lipids

VGF high expression nerve growth factor inducible protein, regulation of cell-cell interactions

FHL5 low expression putative role in spermatogenesis, stimulates CREM activity

LYPLAL1 low expression lysophospholipase like 1, no phopholipase activity, able to hydrolyze short chain substrates

PAK7 low expression protein kinase, involved in cytoskeleton regulation, cell migration, cell proliferation, and cell survival

TDRD6 low expression involed in spermatogenesis, chromatin body formation, miRNA expression

CXXC5 high expression required for DNA-damage induced phosphorylation, p53 activation and cell cycle arrest

ITGA2 low expression trans-membrane receptor subunit, cell adhesion

Potential driver genes of radioresistance dividing irradiated prostate cancer patients from TCGA into early and late relapse groups. The column ‘Faster Relapse’ reports

if patients with low or high gene-specific expression levels showed a faster relapse in the corresponding Kaplan-Meier curves shown in Fig 5 and S5 Fig. See S1 Text for a

detailed discussion of the driver candidates in the context of the existing literature.

https://doi.org/10.1371/journal.pcbi.1007460.t001
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Fig 6. Experimental validation of VGF as regulator of cell radioresistance. (a) Increased VGF expression in radioresistant DU145

and LNCaP in comparison to their radiosensitive parental cell lines in our microarray data. Three biological replicates were

considered for each condition. (b-d) RT-qPCR analysis of VGF expression under different conditions. (b) Increased VGF expression

in four independent radioresistant DU145 and three independent radioresistant LNCaP clones relative to their radiosensitive

parental cell lines. (c) Increased VGF expression in sphere relative to monolayer cultures of parental DU145 and LNCaP cells.
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directly underlying VGF copy number alteration and supports that increased VGF expression

could contribute to increased radioresistance.

We further analyzed the expression behavior of VGF in parental DU145 and LNCaP cells

grown under sphere-forming conditions (see S8 Fig for microscope images) that enrich cancer

stem cell populations [53]. This was motivated by a recent study that showed that VGF is an

important regulator of glioma stem cells [52]. We found that VGF expression was strongly

increased under sphere-forming compared to monolayer conditions (Fig 6c, t-tests: P< 0.06

for DU145 and P< 0.02 for LNCaP, S7 Table). This observation was also supported by an

additional analysis of the prostate cancer cell line PC3 that showed a moderately increased

VGF expression under sphere-forming conditions (S8 and S9 Figs, t-test: P< 0.02, S7 Table).

Next, we considered the parental DU145 and LNCaP cells to determine changes in their

radiosensitivity in response to reduced VGF expression by siRNA-mediated gene silencing.

We first validated the knockdown efficiency by RT-qPCR and found clearly reduced VGF
expression in VGF knockdowns compared to negative controls in both cell lines, where the

efficiency was greater for DU145 than for LNCaP (Fig 6d, t-tests: P< 0.002 for DU145 and

P< 0.02 for LNCaP, S7 Table). We also tried to validate the VGF knockdown by Western

blots, but the two tested VGF antibodies (anti-VGF Santa Cruz sc-365397, B-8 mouse;

St. John’s Laboratory, STJ96661, rabbit, polyclonal) gave unspecific bands that were not consis-

tent with the corresponding RT-qPCR data (S10 Fig). Since we had confirmed VGF knock-

downs by RT-qPCR (Fig 6d), we next performed clonogenic assays to analyze the impact of

VGF knockdowns on radiosensitivity. We found that an inhibition of VGF significantly

increased the radiosensitivity of DU145 and LNCaP in comparison to controls transfected

with scrambled siRNAs (Fig 6e and 6f; e.g. t-tests: P< 0.02 for siRNA VGF #2 vs. negative con-

trol at 4 Gy for DU145 and LNCaP, S7 Table). In addition, clearly lower surviving fractions of

LNCaP cells further suggest that DU145 is more radioresistant than LNCaP, which is in accor-

dance with our prior findings [33, 34].

Finally, we also considered the prostate cancer cell line PC3 and could confirm the effi-

ciency of VGF knockdowns and we also observed a moderately increased radiosensitivity in

response to VGF knockdowns (S9 Fig, e.g. t-test: siRNA VGF #2 vs. negative control: P< 0.03

at 4 Gy, S7 Table). We further estimated linear-quadratic models [54] of the clonogenic sur-

vival data of DU145, LNCaP, and PC3 to obtain functional representations of the individual

survival curves (S11 Fig).

Discussion

Radioresistance of prostate cancer is driven by different cellular processes enabling cancer cells

to survive radiation doses that can safely be delivered to the tumor [4, 5]. Molecular markers

are urgently needed to better predict the clinical outcome of radiotherapies and to develop tar-

geted adjuvant strategies to sensitize radioresistant cells. Radioresistant prostate cancer cell

lines represent an important model system for the identification of novel candidate genes and

the analysis of molecular mechanisms involved in radioresistance, but they typically show

large chromosomal deletions and amplifications that affect many genes. This in combination

with the small number of cell lines that are usually profiled and their cell line specific gene

(d) ReducedVGF expression in parental DU145 and LNCaP cells induced by siRNA-mediated gene silencing relative to negative

controls. (e-f) Increased radiosensitivity of parental DU145 and LNCaP cells induced by siRNA mediated reduction of VGF
expression. Shown are average fractions of surviving cells in log10-scale for increasing radiation dose. Error bars represent the

standard error of the mean and ‘n’ specifies the number of biological replicates. Corresponding linear-quadratic (LQ) model curves

are shown in S11 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g006
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copy number and expression profiles does not allow a straightforward identification of radio-

resistance drivers by standard statistical approaches for gene copy number and expression

analysis. In this situation, it is almost impossible to derive promising candidates from hun-

dreds or thousands of differentially expressed genes with directly underlying gene copy num-

ber alterations without prior knowledge about genes involved in altered cellular processes that

contribute to radioresistance.

Therefore, we developed a network-based method to jointly analyze the gene copy number

and expression profiles of an individual cell line to distinguish potential drivers from passen-

gers. The essential basis of this approach was the prostate cancer-specific gene regulatory net-

work that we learned from gene expression and copy number data of 541 prostate cancer

patients from TCGA. This network inference was very time and resource consuming requiring

670 hours on a high-performance compute server (Taurus ZIH TUD). Validations on data of

768 cancer cell lines from [28, 41] confirmed that this network can predict the expression

behavior of individual genes in cancer cell lines enabling an analysis of the prostate cancer cell

lines DU145 and LNCaP. This analysis is limited by the fact that the cancer samples from

TCGA and our cell lines were analyzed on different experimental platforms. Both data sets

also showed differences in the number of expressed genes, where more genes were expressed

in our cell line models than in the cancer samples. Thus, it is clear that not all observations

form our in vitro prostate cancer cell lines are transferable to the in vivo situation in prostate

tumors. Nevertheless, we applied network propagation to differentially expressed genes with

directly underlying copy number alterations from DU145 and LNCaP to determine their

impacts on known markers of radioresistance. Comparisons to random networks of same

complexity (degree-preserving network permutations) in combination with further filtering

revealed ten candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR,

ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) that

were able to distinguish irradiated prostate cancer patients from TCGA into early and late

relapse groups. A detailed discussion of these candidate genes is given in S1 Text. These candi-

date genes may allow to develop biomarkers for the analysis of biopsy samples to predict

relapse risk and to adapt treatment for individual prostate cancer patients. Targeted perturba-

tions of these genes may allow to increase the radiosensitivity of prostate cancer cells. Addi-

tional preclinical and clinical studies are required to validate these candidates.

We experimentally validated the novel radioresistance marker gene candidate VGF, a neu-

roendocrine factor, that was highly overexpressed in DU145 and LNCaP radioresistant pros-

tate cancer cell lines and whose high expression was associated with shorter disease-free

survival of irradiated prostate cancer patients. VGF was originally identified in a pheochromo-

cytoma cell line in response to the addition of the nerve growth factor (NGF) [55]. VGF is an

important regulator of metabolism and endoplasmic reticulum (ER) stress in neurons and

endocrine cells [56–58], where it activates pro-survival signaling pathways such as PI3K/AKT/

mTOR and MAPK/ERK1/2 [59, 60], but its role in regulation of cancer cells remained unclear

for a long time. Experimental evidences from in vitromodels, mouse xenografts and analysis

of patient outcomes showed that VGF expression is associated with resistance to EGFR inhibi-

tors and further induces epithelial-mesenchymal transition (EMT) and tumor cell dissemina-

tion [50, 51]. In addition, VGF has been shown to be preferentially expressed in glioblastoma

stem cells promoting glioblastoma stem cell survival and stemness and to further support sur-

vival of differentiated glioblastoma cells to promote tumor growth [52]. Our previous studies

showed that the emergence of radioresistance also triggers EMT, increases migratory proper-

ties, and further results in enrichment of cancer stem cell populations in prostate cancer cells

[33]. In accordance with this, our in vitro validation experiments confirmed an upregulation

of VGF expression in additionally analyzed independent radioresistant DU145 and LNCaP
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clones, showed that VGF is highly expressed under sphere forming conditions, and further

demonstrated that VGF knockdowns lead to increased radiosensitivity. These results suggest

that VGF is involved in radioresistance of prostate cancer. This is also supported by our find-

ings for the prostate cancer cell line PC3.

For Western blotting analysis of VGF in response to siRNA-mediated gene silencing, we

tried two available antibodies (anti-VGF Santa Cruz sc-365397, B-8 mouse; St. John’s Labora-

tory, STJ96661, rabbit, polyclonal) and we additionally performed RT-qPCR analysis of VGF
expression as control in parallel. Although we observed a pronounced knockdown of VGF by

RT-qPCR, we did not observe the specific VGF band by Western blotting, which can be

explained by the observation of substantial background signals. Therefore, we focused on

PCR-based analysis of VGF expression in our validation studies.

We observed that VGF knockdowns were more efficient in DU145 than in LNCaP, but

fewer LNCaP cells survived irradiation. The relation between knockdown efficiency and cell

survival after irradiation is complex. Different factors can contribute to cell line specific radio-

resistance. We already know from our prior studies [33, 34] that DU145 is more radioresistant

than LNCaP. This is in accordance with our observation that DU145 had substantially more

DNA copy number alterations than LNCaP and could explain better survival of DU145 cells in

response to irradiation by a greater tolerance of DNA double strand breaks. Further, the

knockdown efficiency also depends on the protein turnover rate [61] and highly expressed

genes can be more susceptible to siRNA-mediated gene silencing [62]. Thus, the found stron-

ger expression of VGF in DU145 than in LNCaP may also have influenced the VGF knock-

down efficiency observed for both cell lines. Nevertheless, our clonogenic assays clearly

indicate that VGF could be involved in the regulation of radioresistance.

Further, our in vitro characterization of DU145 and LNCaP is limited to the identification

of molecular alterations that are associated with intrinsic cellular radioresistance. Additional

preclinical and clinical studies are necessary to further analyze the revealed marker genes in in
vivo studies. Especially the tumor microenvironment and immune signatures of tumors can be

altered by radiation therapies influencing tumor progression and therapy response [6–12].

Thus, also microenvironmental and immunomodulatory factors, which we could not cover by

our analysis, can strongly influence the response of individual tumors to radiation therapy.

Such and other limitations of in vitro cancer models have been reported over the last years [63]

and special care has to be taken on work with cancer cell lines [64]. For example, in a trans-

genic breast cancer model tumors with similar growth characteristics but different immune

signatures differed in their response to radiation therapy [65]. Therefore, a combination of

radiation and immune therapy is important to improve patient outcomes [11, 66]. Another

example is the treatment of the prostate cancer cell line PC3 with the HIV protease inhibitor

nelfinavir that resulted in a small but significant increase of radiosensitivity in vitro which was

not observed in corresponding PC3 xenografts [67]. Still, our analysis of revealed markers that

distinguished between early and late relapse of irradiated prostate cancer patients provides a

first important hint that these markers have the potential to enable predictions for the in vivo
situation.

In summary, our detailed literature analysis and results of radiobiological assays for the

maker gene VGF suggest that our network-based approach can predict potentially clinically

relevant driver candidates involved in radioresistance of prostate cancer.

Materials and methods

A detailed flow chart of our developed data analysis pipeline is shown in S1 Fig. See Fig 1 for a

high-level overview.
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Identification of gene copy number alterations

Array-based comparative genomic hybridization (aCGH) was used to compare the genomes

of radioresistant to radiosensitive cell lines for DU145 and LNCaP and to compare these

genomes to normal reference DNA (Agilent Euro Male). Experiments were done on Agilent’s

SurePrint G3 Human CGH Microarray Kit 2x400K (Design ID: 028081, Agilent) and per-

formed and standardized as described in [68]. Normalized measurements were used to com-

pute aCGH profiles. An aCGH profile represents for each of the 294,371 genomic probes a

log2-ratio that compares the probe-specific DNA copy number in a radioresistant cell line rela-

tive to its radiosensitive counterpart (or to compare DNA copy numbers of a radioresistant or

radiosensitive cell line to normal DNA). aCGH profiles were sorted according to chromosomal

locations of probes and further segmented into chromosomal regions of constant copy num-

ber using DNAcopy [69]. Corresponding DNA segmentation profiles are provided in S1

Table. Copy number values of 24,625 genes (focusing on genes for which we also measured

expression) were determined by mapping chromosomal locations of genes to the aCGH seg-

ments as described in [28]. The resulting log2-ratio gene copy number values were used to

determine genes with increased or reduced copy number in radioresistant DU145 or LNCaP

relative to their non-resistant counterpart using an absolute log2-ratio cutoff of 0.1 (Fig 2, S2

Table). The choice of this cutoff was motivated by moderately increased or decreased gene

copy number alteration values comparing radioresistant to radiosensitive LNCaP. This choice

did not influence the network inference and the computation of the network propagation

matrix. This cutoff only defines a filter for the selection of candidate genes that were consid-

ered for more in-depth analyses. A heatmap representation that summarizes all gene copy

number comparisons is shown in S2 Fig. aCGH data have been deposited in the Gene Expres-

sion Omnibus (GEO) database, accession no GSE134500.

Identification of differentially expressed genes

Gene expression levels of radioresistant and radiosensitive cell lines of DU145 and LNCaP

were measured in three biological replicates. Experiments were done on Agilent’s SurePrint

G3 Human Gene Expression 8x60K v2 microarrays (Design ID: 039494, Agilent) and per-

formed as described in [34]. Hybridization signals of 24,625 genes of all cell line specific

experiments were quantile normalized [70]. Expression differences between the three radiore-

sistant and the three radiosensitive LNCaP cell lines were not strong enough to enable a pre-

diction of differentially expressed genes by standard t-tests with significant p-values after

correction for multiple testing. Still, the t-test statistic, the p-value or the average log-ratio pro-

vide important information to rank genes according to their expression differences. We there-

fore used a specifically designed three-state Hidden Markov Model (HMM) to identify

differentially expressed genes [35]. We trained two independent HMMs, one for DU145 and

one for LNCaP, on the average gene expression log2-ratio profile comparing radioresistant to

radiosensitive cell lines to account for cell line specific expression characteristics. This training

was done with standard settings and initial state-specific means of -1.25 (underexpressed), 0

(unchanged), and 1.25 (overexpressed). We used state-posterior decoding to assign each gene

to its most likely underlying state (underexpressed, unchanged, or overexpressed) in radiore-

sistant relative to radiosensitive cell lines (S3 Table). Gene expression data have been deposited

in the Gene Expression Omnibus (GEO) database, accession no GSE134500.

Inference of prostate cancer-specific gene regulatory network

We learned a prostate cancer-specific gene regulatory network to predict potential impacts of

gene copy number alterations in DU145 and LNCaP on known radioresistance marker genes.
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We downloaded aCGH profiles and gene expression data of 541 prostate cancer patients from

TCGA and processed them as described in [28]. In addition, we removed all genes with very

low constant or nearly non-variable expression across all patients and only kept genes with on

average at least 1 transcription unit (normalized RSEM [71] counts from TCGA) per patient.

Gene copy number and expression measurements of the remaining 14,780 genes were used to

learn a gene regulatory network as outlined in [28] using the R package regNet [29]. Briefly,

the expression of a specific gene was modeled as a linear combination of its copy number and

the expression of all other genes. Lasso regression [72] in combination with cross validation

and a significance test for lasso [73] were used to determine for each gene those predictors

(e.g. gene-specific copy number or expression levels of other genes) that best explained the

expression behavior of the considered gene across all prostate cancer patients. As done in [28],

we focused on the most relevant links (p-values approximately zero) and removed spurious

local regulators (local gene cutoff of 50) resulting in a prostate cancer-specific network with

60,447 activator and 2,105 inhibitor links between genes (S8 Table). We further confirmed

that this network was capable to predict the expression of genes in cancer cell lines outper-

forming random networks of same complexity derived by degree-preserving network permu-

tations (S3 Fig). The predictive power of our network was comparable to the predictive power

of other networks that we had learned with the same lasso approach [28].

Impact quantification of gene copy number alterations on radioresistance

markers

We applied network propagation [28] in combination with the prostate cancer-specific gene

regulatory network to determine impacts of differentially expressed genes with underlying

gene copy number alterations on the expression of known radioresistance marker genes. We

used the R package regNet [29] to compute a specific impact matrix based on the cell line spe-

cific log-ratio gene copy number and expression profiles comparing the radioresistant cell line

to its radiosensitive counterpart for DU145 and LNCaP separately. Each cell line specific

impact matrix quantifies for each gene pair (a, b) how strong gene a acts on the expression of

gene b by computing the impact that flows from gene a to gene b via all possible network paths

in the prostate cancer-specific gene regulatory network connecting both genes under consider-

ation of the predictive power of individual genes. More weight was given to genes with greater

positive correlations than to genes with smaller positive correlations utilizing gene-specific

correlation estimates obtained from cancer cell lines (S3 Fig). Next, we only considered poten-

tial radioresistance driver candidates focusing on genes with increased expression and under-

lying increased copy number and on genes with decreased expression and underlying

decreased copy number in radioresistant versus radiosensitive cell lines (S4 Table). In total,

292 of 447 genes for DU145 and 40 of 66 genes for LNCaP that fulfilled these criteria were also

expressed in prostate cancer samples of TCGA patients. We considered each candidate gene

and determined its average impact on known differentially expressed cell line specific radiore-

sistance markers (DU145: CCL2, CLDN4,MRC2, SNAI2 overexpression; LNCaP: CXCR4
underexpression in radioresistant vs. radiosensitive cell lines; S3 Table) from the cell line spe-

cific impact matrix (S5 Table). Finally, we determined which of the potential radioresistance

driver candidates had significant impacts on these differentially expressed cell line specific

radioresistance markers. Therefore, we computed corresponding average impacts under 10

random networks of same complexity as the original prostate cancer-specific network. These

random networks were derived based on degree-preserving network permutations by

exchanging active predictors between gene-specific linear models while keeping the number of

incoming and outgoing links constant for each gene. We compared the driver gene specific
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random impacts to the corresponding original impact by computing differences between the

original impact and each corresponding random impact and used t-tests to determine which

gene-specific differences in impact scores were significantly greater than zero. Genes with

impacts significantly greater than under random networks were selected based on FDR-

adjusted p-values (q-values) with q< 0.01 [44] leading to 162 potential driver candidates for

DU145 and 27 for LNCaP (S5 Table).

Transfer of cell line specific radioresistance driver genes to prostate cancer

patients

We analyzed the expression of potential radioresistance drivers of DU145 and LNCaP in pros-

tate cancer patients from TCGA to identify marker candidates that distinguish between early

and late relapse after adjuvant radiation therapy. Sufficient meta-information about initial

treatment, treatment response and disease free survival were available for 214 of 541 prostate

cancer patients of which 32 patients received radiation and 182 did not (S6 Table). All patients

were either disease free or showed a relapse after initial treatment. In more detail, the majority

of patients showed a complete remission (156 of 214), whereas other patients showed a stable

disease (22 of 214), partial remission (23 of 214), or a progressive disease (13 of 214) after ini-

tial treatment. To determine marker genes that distinguish between early and late relapse, only

genes with consistent expression behavior between radioresistant cell lines and irradiated

patients were considered. Therefore, we translated the observed expression state of a potential

marker candidate from the cell lines into a meaningful interpretation for irradiated tumor

patients. We assumed that if a marker candidate was overexpressed (underexpressed) in the

radioresistant compared to the radiosensitive cell line, then this overexpression (underexpres-

sion) may contribute to radioresistance. Consequently, irradiated patients with high (low)

expression levels of this gene may show a faster relapse than irradiated patients with lower

(higher) expression levels. Thus, a negative (positive) correlation between marker gene-specific

expression in patients and disease free survival is expected.

To realize this, we first considered gene expression profiles of tumors before treatment to

compute correlations between the expression of each potential radioresistance driver gene and

the months until relapse (disease free survival) considering all 12 of 32 irradiated patients that

had a relapse (S6 Table). Next, we compared the obtained gene specific correlations to the cor-

responding expression states observed for the cell lines and only kept those potential marker

genes for further analysis that were in accordance with the transfer of the expression behavior

from cell lines to tumors outlined above (overexpressed in radioresistant cell line vs. negative

correlation between tumor expression and time until relapse, undexpressed in radioresistant

cell line vs. positive correlation between tumor expression and time until relapse). This was ful-

filled by 61 of 162 potential radioresistance driver genes from DU145 and for 14 of 27 from

LNCaP (S5 Table). Finally, we analyzed each of these marker candidates for its potential to dis-

tinguish between early and late relapse of prostate cancer patients that received adjuvant radia-

tion therapy. Therefore, we did a Kaplan-Meier analysis for each marker candidate where we

tried to split the 32 irradiated TCGA prostate cancer patients into an early and late relapse

group under consideration of the marker specific expression (R package ‘survival’ [74]). We

determined an optimal gene expression cutoff for each marker for the separation into early

and late relapse (disease free survival) by computing corresponding log-rank p-values with

respect to the constraint that each group must contain at least eight patients. We selected all

marker candidates with p-values less than 0.05 resulting in 10 markers from DU145 and 4

markers from LNCaP capable to distinguish between early and late relapse of irradiated pros-

tate cancer patients for further analysis (S5 Table). The correlation between predicted and
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experimentally measured expression levels of these 14 candidate markers was significantly

greater than zero (t-test: P< 0.019) and at the level of individual genes also significantly better

than for random networks of same complexity derived by degree-preserving network permu-

tations (paired t-test: P< 0.02). Corresponding estimated conservative false discovery rates

were between 14% and 22% [44] and more liberal estimates between 3% and 5% [45] (S5

Table). Random selections of genes would have resulted on average on 0.90 genes for LNCaP

and 2.25 genes for DU145 with log-rank p-values less than 0.05 (95% confidence interval [0.88,

0.91] for LNCaP and [2.22, 2.27] for DU145), which is significantly less than the number of

driver candidates predicted by our network-based approach.

In addition, we used the ExaLT algorithm [46] to compute exact permutational log-rank p-

values for each optimal candidate gene-specific split between early and late relapse patients.

Our initially computed approximate log-rank p-values (R package ‘survival’) varied only mar-

ginally from the exact permutational p-values, except for FOXL1 (increase in log-rank p-value

from 0.014 to 0.076), supporting that our selection of driver gene candidates based on the

small cohort of irradiated patients was robust (S4 Fig). We also used Cox regression [47, 48] (R

package ‘survival’) to analyze if our driver candidates were still informative for disease-free

survival in the presence of currently used prognostic factors (age, clinical T-Stage, Gleason

score, psa). The grouping information about early or late relapse derived form each individual

driver candidate was important to model disease-free survival and reached more significant

p-values than the other covariates for 13 of 14 candidate genes (S7 Fig, AKR1B10: clinical T-

stage was slightly more significant than the grouping information derived from AKR1B10
expression).

Further, we used the determined optimal marker gene-specific expression cutoffs to analyze

the 182 non-irradiated TCGA prostate cancer patients to determine those markers that were

exclusively associated with relapse of irradiated patients but not with relapse of non-irradiated

patients.

Cell lines and culture conditions

Prostate cancer cell lines DU145, LNCaP and PC3 were purchased from the American Type

Culture Collection (ATCC, Manassas, VA) and cultured according to the manufacturers rec-

ommendations in a humidified 37˚C incubator supplemented with 5% CO2. DU145 and PC3

cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich) and

LNCaP cells in RPMI-1640 medium (Sigma-Aldrich) containing 10% fetal bovine serum (FBS,

PAA Laboratories) and 1 mM L-glutamine (Sigma-Aldrich). The analyzed radioresistant cell

lines of DU145 and LNCaP were established in [33] and further analyzed in [34]. In more

detail, radioresistant cell sublines of DU145 and LNCaP had been generated by multiple frac-

tions of 4 Gy X-ray irradiation until a total dose of more than 56 Gy was reached (Fig. 4a in

[33]). Colony assays had been used to demonstrate the enhanced radioresistance of surviving

cells (Fig. 4b in [33]). Corresponding age-matched non-irradiated radiosensitive parental cells

were used as controls for radioresistant cell lines. All cell lines were genotyped using microsat-

ellite polymorphism analysis and tested for mycoplasma directly before the experiments.

Sphere formation assay

To evaluate the self-renewal potential, cells were grown as non-adherent multicellular cell

aggregates (spheres). Cells were plated at a density of 1,000 cells/2 mL/well in 6-well ultra-low

attachment plates (Corning) in MEBM medium (Lonza) supplemented with 4 μg/mL insulin

(Sigma-Aldrich), B27 (Invitrogen), 20 ng/mL EGF (Peprotech), and 20 ng/mL FGF (Pepro-

tech). Media containing supplements were refreshed once a week and spheres with a
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size > 100 μm were assayed after 14 days using Axiovert 25 microscope (Zeiss) or were auto-

matically scanned using the Celigo S Imaging Cell Cytometer (Brooks).

Knockdown of VGF by siRNA transfection

For knockdown of VGF expression, cells were transfected with RNAiMAX (Life Technologies

GmbH) according to the manufacturer’s protocol. The siRNA target sequences were obtained

from the Life Technologies website and corresponding RNA duplexes were synthesized by

Eurofins. The sequences were VGF siRNA 1: sense GGAAGAAGCAGCUGAAGCUdCdT;

antisense AGCUUCAGCUGCUUCUUCCdTdC and VGF siRNA 2: sense GGAGGAGCUG

GAGAAUUACdAdT; antisense GUAAUUCUCCAGCUCCUCCdTdG for targeted knock-

downs of VGF. Scrambled siRNA 1: sense UGCGCUAGGCCUCGGUUGCdTdT; antisense

GCAACCGAGGCCUAGCGCAdTdT, scrambled siRNA 2: sense: AGGUAGUGUAAUCGC

CUUGdTdT; antisense CAAGGCGAUUACACUACCUdTdT, and scrambled siRNA 3: sense

GCAGCUAUAUGAAUGUUGUdTdT; antisense ACAACAUUCAUAUAGCUGCdTdT

were used as negative control. In addition, knockdown efficiencies of VGF siRNA 1 and 2

were analyzed by RT-qPCR in comparison to scrambled siRNAs considering three biological

replicates for DU145 and PC3 and two for LNCaP. Seven technical replicates were done for

each biological replicate.

Clonogenic cell survival assay

Cells were plated at a density of 500 cells/well in 6-well plates in complete medium and irradi-

ated with doses of 2, 4 and 6 Gy of 200 kV X-rays (Yxlon Y.TU 320; dose rate 1.3 Gy/min at 20

mA) filtered with 0.5 mm Cu. The absorbed dose was measured using a Duplex dosimeter

(PTW). After 10 days, the colonies were fixed with 10% formaldehyde (VWR) and stained

with 0.05% crystal violet (Sigma-Aldrich). Colonies containing > 50 cells were counted using

a stereo microscope (Zeiss). The plating efficiency (PE) was calculated as ratio between the

number of colonies and the number of cells plated. The surviving fraction (SF) was calculated

as ration between the PE of irradiated cells divided by PE of corresponding non-irradiated

control cells. We also learned linear-quadratic (LQ) models to obtain a functional representa-

tion of the surviving fraction for each cell line using the R package ‘CFAssay’ [54] with stan-

dard settings (S11 Fig). We did not consider higher irradiation doses of 8 or 10 Gy in our

experiments, because only few cells survived at 6 Gy especially for LNCaP and PC3.
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