
cells

Review

Exosomes in the Tumor Microenvironment: From Biology to
Clinical Applications

Vitor Rodrigues da Costa 1,2, Rodrigo Pinheiro Araldi 1,2,3,* , Hugo Vigerelli 2, Fernanda D’Ámelio 2 ,
Thais Biude Mendes 1,2,3, Vivian Gonzaga 2,3, Bruna Policíquio 2,3, Gabriel Avelar Colozza-Gama 1,4 ,
Cristiane Wenceslau Valverde 3 and Irina Kerkis 1,2,3,*

����������
�������

Citation: da Costa, V.R.; Araldi, R.P.;

Vigerelli, H.; D’Ámelio, F.; Mendes,

T.B.; Gonzaga, V.; Policíquio, B.;

Colozza-Gama, G.A.; Valverde, C.W.;

Kerkis, I. Exosomes in the Tumor

Microenvironment: From Biology to

Clinical Applications. Cells 2021, 10, 0.

https://doi.org/

Academic Editors: Daniela Spano and

Giuseppina Comito

Received: 27 July 2021

Accepted: 26 August 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM),
Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil;
vitor_rodriguesdacosta@hotmail.com (V.R.d.C.); thais.biude.mendes@gmail.com (T.B.M.);
avelarbio46@gmail.com (G.A.C.-G.)

2 Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; hugo.barros@esib.butantan.gov.br (H.V.);
fernanda.damelio@esib.butantan.gov.br (F.D.); vivia_gonzaga@hotmail.com (V.G.);
bruna.policiquio@gmail.com (B.P.)

3 Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil; cristiane.valverde@cellavitabrasil.com.br
4 Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics,

Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
* Correspondence: rodrigo.pinheiro.araldi@gmail.com (R.P.A.); irina.kerkis@butantan.gov.br (I.K.);

Tel.: +55-(11)-2627-9703 (R.P.A. & I.K.)

Abstract: Cancer is one of the most important health problems and the second leading cause of
death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging
to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer
cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of
cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of
anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer
biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer
treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to
be overcome.

Keywords: exosomes; cancer; tumor microenvironment (TME); immunomodulation; epithelial-
mesenchymal transition (EMT); mesenchymal-stem cell (MSC); cell-free therapy

1. Exosomes Mediate Crosstalk between Cancer and Non-Cancer Cells within the
Tumor Microenvironment

Cancer is one of the most important health problems worldwide and the second
leading cause of death globally [1]. According to GLOBOCAN, nearly 19.3 million new
cancer cases and almost 10 million cancer deaths occurred in 2020 [1]. However, cancer
incidence and mortality are rapidly growing worldwide due to population aging and
growth [1,2]. Based on the statistical projections, the International Agency for Research
on Cancer (IARC) estimates that more than 28.8 million new cancer cases and 16.1 million
cancer deaths will occur in 2040 [3].

Despite the advances in molecular oncology that have driven the identification of
tumor genotype variations between patients (interpatient heterogeneity), the presence
of subpopulations of cancer cells with unique genomes in the same patient (intratumor
heterogeneity) presents challenges to cancer therapeutics [4,5]. In this sense, cumulative
evidence has shown that cancer cells communicate with different populations of non-cancer
cells within the tumor microenvironment (TME) [6]. This communication is mediated
by a plethora of bioactive molecules, including proteins, lipids, coding and non-coding
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RNAs, and metabolites, which are secreted into nanosized vesicles known as exosomes
(30–200 nm) [7,8].

On the one hand, the discovery of the role of these exosomes in cancer biology has
allowed us to understand the complexity of the TME; on the other hand, it has also allowed
us to explore the biotechnological potential of mesenchymal stem cell (MSC)-derived
exosomes as therapeutics for cancer treatment in a novel therapeutic approach known as
cell-free therapy. Based on the recent discoveries in exosome-related cancer biology and
biotechnology, this review aims to summarize the role of these vesicles in all carcinogenesis
steps and highlight the clinical applications of MSC-derived exosomes for cancer treatment,
discussing the future prospects of cell-free therapy in the oncology field.

2. Exosome Biogenesis

Naturally, all cell types produce and secrete different types of extracellular vesicles (EVs),
which participate in both physiological and pathophysiological processes [9,10]. Depending
on their size, biogenesis mechanisms, or function, these vesicles are classified as microvesicles
(100–1000 nm), exosomes (30–200 nm), or apoptotic bodies (generally > 1000 nm) [11–13].

Typically, exosomes are surrounded by a phospholipid membrane containing an
abundance of cholesterol, sphingomyelin, ceramide, lipid rafts, and evolutionarily con-
served biomarkers, which are used to distinguish them from microvesicles or apoptotic
bodies, such as tetraspanins (CD9, CD63, CD81, and CD82), heat shock proteins (Hsp60,
70, and 90), major histocompatibility component classes I (MHC-I) and II (MHC-II), Alix,
Tsg101, lactadherin, and lysosome-associated membrane glycoprotein 2, as illustrated
in Figure 1 [11,14–18]. Besides these proteins, exosomes contain specific proteins and
transcripts, which are responsible for eliciting the regulation of recipient cells.

Figure 1. Schematic model of a typical exosome. The model shows a nanosized membrane-bound
extracellular vesicle, with a diameter between 30 and 200 nm, expressing several proteins as a marker
for exosomes, including tetraspanins (CD9, CD63, and CD81), Alix, Tsg101, and heat shock proteins
(HSP-60, -70, and -90), as well as surface proteins, such as tetraspanins, integrins, immunoregulatory
proteins (MHC-I and MHC-II), cytoskeletal proteins, signaling proteins, enzymes, and nucleic acids,
such as coding RNAs (mRNAs) and non-coding RNAs (miRNAs and lncRNAs).

Exosomes were discovered in 1983 [19–21]. However, they were initially proposed as
cellular waste resulting from cell damage or by-products of cell homeostasis [20,22]. Since
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their discovery, it has become clear that these vesicles act as a key mediator of cell-to-cell
communication [22,23].

Exosomes are generated from late endosomes, formed by inward budding of the early
endosomes, which later mature into multivesicular bodies (MVBs) [18,24]. Invagination of
late endosomal membranes results in the formation of ILVs within MVBs [22,25]. Certain
proteins are incorporated into the membrane’s invagination during this process, while the
cytosolic components are engulfed and enclosed within the ILVs [22].

Upon maturation, MVBs destined for exocytosis are transported to the plasma mem-
brane along microtubules by the Rab GTPases (Rab2b, Rab5a, Rab9a, Rab11, Rab27a, Rab
27b, and Rab35) [26–29]. After transport to and docking in the plasma membrane, secretory
MVBs couple to the soluble N-ethylmaleimide-sensitive component attachment protein
receptor (SNARE) membrane fusion machinery [18,26]. Finally, MVBs fuse with the plasma
membrane, releasing ILVs into the extracellular space called “exosomes” [18,22].

Secreted exosomes can bind to a neighboring cell, interact with the extracellular
matrix (ECM), or passively be transported through the bloodstream and other body fluids,
regulating distant recipient cells [13,18,26,30]. However, the in vivo half-life of exosomes is
very short in circulation, and up to 90% of exosomes are removed within 5 min [31].

Numerous factors determine the biodistribution of isolated exosomes after their
in vivo administration, such as original cells, route of delivery, and targeting condition.
The recipient cells absorb exosomes by membrane fusion, endocytosis, or receptor-mediated
internalization through a caveolin-, clathrin-, or lipid-raft-mediated phagocytosis or endo-
cytosis mechanism [13,18,22,26,30].

Alternatively, exosomes can interact with the parental cells, resulting in autocrine
signaling. Finally, an alternative fate for MVBs is fusion with lysosomes, which leads to
degradation and recycling of their protein, nucleotide, and lipid components [13,18,22,26].

Although what distinguishes the MVBs to be secreted from those that will be degraded
remains unclear, it is known that the fate of MVBs can change in response to cellular
conditions [26]. For example, MVBs are degraded by fusion with autophagosomes under
starvation conditions, resulting in decreased exosome release [18,26,32]. The exosome
biogenesis process is summarized in Figure 2.

Figure 2. Biogenesis of exosomes: Exosome production requires double invagination of the plasma
membrane, leading to intracellular multivesicular bodies (MVBs) containing intraluminal vesicles
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(ILVs). ILVs are ultimately secreted as exosomes with a size range of 30–200 nm in diameter through
MVB fusion to the plasma membrane and exocytosis. The first membrane invagination forms a
cup-shaped structure including cell-surface proteins and soluble proteins present in the extracellular
environment. This process results in the formation of the early endosome. In this process, the
trans-Golgi network and endoplasmic reticulum also contribute to the formation and content of
the early endosome, which matures into late endosomes that eventually generate MVBs. MVBs
form by inward invagination of the endosomal limiting membrane, resulting in MVBs containing
several ILVs. MVBs can either fuse with lysosomes or autophagosomes to be degraded or fuse with
the plasma membrane to release the contained ILVs as exosomes. Exosome uptake: Exosomes are
continuously being generated by and taken up by cells. Exosomes that are taken up can be degraded
by lysosomes. In contrast, exosomes that enter cells may fuse with the pre-existing early endosome
and subsequently disintegrate and release their content into the cytoplasm. Alternatively, endosomes
can fuse back with the plasma membrane, releasing exosomes outside the cells.

3. Molecular Cargo

Exosomes contain selective repertoires of proteins, nucleic acids (RNAs), lipids, and
metabolites that regulate signaling pathways in the recipient cells [33]. The enrichment of
a particular set of molecules within the exosomes suggests the existence of specific sorting
mechanisms that orchestrate the selective packaging of the RNAs and proteins [33].

For many years, the sorting mechanism remained unclear. However, nowadays, it is
clear that the selective packaging of RNAs and proteins is governed by the endosomal sort-
ing complex required for transport (ESCRT), which also contributes to exosome formation.

The ESCRT is protein machinery composed of four ESCRT proteins (ESCRT-0, -I, -II,
and -III) that work cooperatively to facilitate MVB formation, vesicle budding, and protein
cargo sorting [22,34].

The ESCRT-mediated sorting is initiated by recognition and sequestration of ubiq-
uitinated proteins to specific domains (the Hrs FYVE domain with phosphatidylinositol
3-phosphate (PtdIns3P)) of the endosomal membrane via ubiquitin-binding subunits of
ESCRT-0 [22,35]. Next, the Hrs PSAP domain of the ESCRT-0 interacts with the subunit
tumor susceptibility gene 101 (tsg101) of ESCRT-I [22,35]. ESCRT-I recruits the ESCRT-II
proteins, which recruit and activate the ESCRT-III complex, which promotes the budding
processes [22,35]. This occurs because the Snf7 protein of the ESCRT-III complex forms
oligomeric assemblies, promoting vesicle budding [22,35]. Snf7 also recruits the Alix pro-
tein, stabilizing the ESCRT-III assembly [22,35]. Following cleaving the buds to form ILVs,
the ESCRT-III complex separates from the MVB membrane with energy supplied by the
sorting protein ATP Vps4 [22].

Although ESCRT-III is considered to be required for the scission of the ILVs into the
MVE lumen [36], studies have reported the presence of ILVs within the lumen of MVBs in
the ESCRT-depleted cells, indicating that ESCRT-independent pathways for ILV formation
exist [37,38].

In this sense, recent evidence supports an alternative pathway for sorting exosomal
cargo into MVBs in an ESCRT-independent manner, which seems to depend on raft-based
microdomains for the lateral segregation of cargo within the endosomal membrane [22,37].
These microdomains are highly enriched in sphingomyelinases, from which ceramides can
be formed by hydrolytic removal of the phosphocholine moiety [22,39].

The cone-shaped structure of ceramides might cause spontaneous negative curvature
of the endosomal membrane, thereby promoting domain-induced budding [22,39].

In addition, proteins such as tetraspanins also participate in exosome biogenesis
and protein loading. Tetraspanin-enriched microdomains (TEMs) are ubiquitous special-
ized membrane platforms for compartmentalizing receptors and signaling proteins in the
plasma membrane [22,40,41].

Thus, by exhibiting sorting mechanisms, which select the proteins and RNAs that will
compose the exosome content, it is expected that exosomes derived from non-cancer cells
and cancer cells possess distinct activities in both physiology and pathophysiology.
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4. Cancer-Derived Exosomes in Carcinogenesis

Cells of different tissue types produce and release exosomes to facilitate intercellular
communication [24]. For this reason, it is not surprising that cancer-derived exosomes
mediate the communication between cancer cells and non-cancer cells within the TME as
well as malignant and non-malignant cells, regulating all carcinogenesis steps [42].

Typically, exosomes derived from cancer cells are larger than those derived from non-
cancer cells. This size difference can be attributed to the heterogeneous nature of cancer
cells, since different subclones of cancer cells are present within the TME, as well as the
overexpression of genes related to the carcinogenic process [43]. For this reason, exosomes
derived from cancer cells have been referred to as oncosomes (100–400 nm) or large
oncosomes (LOs, 1–10 µm) according to their size and cargoes, as illustrated in Figure 3 [43].
Oncosomes are vesicles carrying abnormal and transforming macromolecules, including
oncoproteins [43,44]. LOs are atypical extracellular vesicles, produced as a byproduct of
non-apoptotic plasma membrane blebbing from cancer cells, and induced by silencing of
the cytoskeletal regulator Diaphanous-related formin-3 (DIAPH3), by overexpression of the
oncoproteins MyrAKT1, HB-EGF, and caveolin-1, or by the activation of the EGFR [45,46].
However, at present, there is no unanimous consensus on the nomenclature of these
extracellular vesicles secreted by cancer cells. Thus, to avoid misinterpretation, herein,
we adopt the term “cancer-derived exosomes” to summarize large exosomes and/or
oncosomes derived from cancer cells and the term “exosome” to refer to typical exosomes
(30–200 nm) secreted by non-cancer cells.

Figure 3. Classification of extracellular vesicles (EVs) according to their size. Basically, EVs are classified as exosomes
(30–150 nm), microvesicles (100–1000 nm), and apoptotic bodies (800–5000 nm). While microvesicles and exosomes can
operate as ‘safe containers’ mediating intercellular communication, apoptotic bodies appear after the disassembly of an
apoptotic cell into subcellular fragments. Although they were previously regarded as garbage bags, emerging evidence
supports the view that the apoptotic bodies are capable of delivering useful materials to healthy recipient cells. Different
from exosomes, microvesicles are generated from the direct outward blebbing and pinching of the plasma membrane.
Similar to exosomes, these vesicles carry proteins, nucleic acids, and bioactive lipids to recipient cells; however, they are
larger than exosomes. Exosomes are conserved structures that originate as intraluminal vesicles during the assembly of
multivesicular bodies, mediating cell-to-cell communication. However, current studies show that cancer-derived exosomes
are larger than those secreted by normal/healthy cells. For this reason, these nanosized EVs were subclassified as exomers
(<50 nm), small exosomes (60–80 nm), large exosomes (90–120 nm), and oncosomes (100–10,000 nm). Recently, a novel type
of EV was described: migrasomes (500–3000 nm). Migrasomes are vesicular structures that mediate migracytocis, a cell
migration mechanism mediated by these EVs.
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Based on the cumulative evidence supporting the view that these cancer-derived
exosomes contribute to all carcinogenesis steps [26,47–50], this review aims to summarize
the role of cancer-derived exosomes in cancer initiation, promotion, progression, and metas-
tasis, highlighting mechanisms of action commonly reported in different malignancies.

4.1. Cancer-Derived Exosomes Mediate Crosstalk between Inflammation and Cancer Initiation

Cancer initiation is characterized by irreversible genetic alterations (driver mutation)
that lead to the gain of function of oncogenes and/or loss of tumor suppression genes [51].
In addition, these mutations, associated with mitogenic stimuli from pre-cancerous mi-
cromilieu (cancer promotion), induce “initiated” cell proliferation (cancer progression).
These combined steps increase the genomic instability, facilitating the novel mutations
during the somatic evolution (passenger mutation) [52].

Current studies have demonstrated that exosomes are a key mediator of intercel-
lular communication between cancer cells and non-cancer cells within the TME, acting
as initiators of carcinogenesis by mediating crosstalk between inflammation and cancer
initiation [30,53,54].

Both historically and contemporarily, cancer has been seen as an inflammatory dis-
ease [55,56]. However, in the last couple of decades, the contribution of the immune system
and inflammation to cancer development has gained an enormous amount of interest [56].
This interest has allowed us to confirm that inflammation predisposes to the development
of cancer and contributes to the acquisition of many hallmarks of cancer [56–59].

In this sense, studies have shown that exosomes produced and released by cancer
cells contain various biomolecules, including nuclear factor kappa B (NFκB) and signal
transducer activator of transcriptions 3 (STAT3), as well as inflammatory cytokines, such
as interleukin (1L)-1β, -6, and tumor necrosis factor-alpha (TNF-α), which promotes the
recruitment of immune cells to target sites as revisited by Othman et al. [50].

In 2013, Bretz et al. [60] showed that exosomes obtained from malignant ascites of
ovarian cancer patients were able to bind to Toll-like receptors (TLR2 and TLR4) present
on the surface of THP-1 cells (a spontaneously immortalized human monocyte-like cell
line), inducing the production and secretion of the pro-inflammatory cytokines IL-1β, IL-6,
IL-8, and TNF-α in a NFκB- and STAT3-dependent manner.

However, the cancer-derived exosomes’ action is not limited to monocyte recruitment.
Studies already demonstrated that breast [61] and gastric cancer-derived exosomes induce
the differentiation of monocytes into M1 macrophages in a NFκB-dependent manner,
stimulating the production of pro-inflammatory cytokines (GCSF, IL-6, IL-8, IL-1β, CCL2,
and TNF-α) [62]. Interestingly, Chow et al. [61] revealed that the activation of NFκB
in monocytes/macrophages occurs through cancer-derived exosomes binding to TLR2,
emphasizing the Toll-like receptors’ role in the crosstalk between inflammation and cancer
initiation and progression.

The release of pro-inflammatory cytokines within the TME also recruits neutrophils
(the most abundant leukocytes in the immune system) to the TME [57], leading to the
generation of reactive oxygen species (ROS) [59,63]. The oxidative stress can lead to single
and/or double-strand DNA breaks [64,65], suggesting that exosomes can indirectly increase
the genomic instability in the pre-cancer and cancer microenvironment, contributing to
cancer initiation and heterogeneity.

Further, cancer-derived exosomes induce the formation of Web-like chromatin struc-
tures in neutrophils, named neutrophil extracellular traps, which are associated with a
pro-thrombotic phenotype and the aggressiveness of the cancer [66,67].

Besides that, exosomes play a role in the transformation of normal cells to cancer
cells [7,50,68]. This action is particularly regulated by the RNA content of the cancer-
derived exosomes, which can be translated into proteins in the cytoplasm of recipient cells
as demonstrated by Valadi et al. [69].

In this sense, Abd Elmageed et al. [70] showed that prostate cancer cell-derived
exosomes are involved in tumor clonal expansion by reprogramming adipose-derived
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stem cells via trafficking of oncogenic transcripts (H-ras, K-ras, miR-125b, miR-130b, and
miR-155). Supporting these data, Melo et al. [71] demonstrated that exosomes derived
from cells and sera of breast cancer patients could promote the formation of tumors from
nontumorigenic epithelial cells in a Dicer-dependent manner.

4.2. Cancer-Derived Exosomes Regulate Tumor Promotion and Progression

Although it is clear that cancer-driving mutations are necessary to its initiation, these
mutations are not enough to promote its development [72,73].

Thus, cancer development requires sustaining proliferative signals to guarantee the
clonal expansion of initiated cells, a step known as cancer promotion. In this sense, two
pathways are commonly upregulated in most malignancies: activation of mitogen-activated
protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR [73].

In this sense, several studies have shown that cancer-derived exosomes can provide
autocrine, paracrine, and endocrine signals, increasing the proliferation rate of non-cancer
and cancer cells [74,75], contributing to both cancer promotion and progression [76,77].

In 2009, Qu et al. [78] reported that gastric cell line (SGC7901)-derived exosomes could
promote the proliferation of gastric cancer cell lines (SGC7901 and BGC823) through the
MAPK and PI3K/Akt/mTOR pathways, providing evidence that cancer-derived exosomes
can regulate cancer growth. Supporting these data, in 2011, Kogure et al. [79] demonstrated
that miRNAs present in hepatocellular carcinoma-derived exosomes could regulate trans-
forming growth factor-beta activated kinase-1 (TAK-1), leading to hepatocellular cancer
cell growth.

Besides promoting the upregulation of cell-cycle-related genes and increasing the
S phase entry, cancer-derived exosomes can also downregulate the expression of cell
cycle-arrest-related genes, contributing to the evasion of apoptosis. This is because
esophageal adenocarcinoma-derived exosomes and microvesicles could promote the
post-transcriptional downregulation of the phosphatase and tensin homolog (PTEN)
and the apoptosis-inducing factor 2 (AIFM2) gene in a miR-25- and miR-210-dependent
manner [80].

Moreover, exosomes of non-cancer cells, such as macrophages, could also promote
cancer cell proliferation by different signaling pathways [77,81–83], reinforcing the crosstalk
between the immune system and cancer development. This is because macrophage-derived
exosomes play a key role in post-transcriptional control, regulating the phosphorylation
of proteins in the recipient cells as revisited by Liu et al. [84]. Thus, both cancer- and
non-cancer-derived exosomes can increase the intratumor heterogeneity, facilitating the
gain and accumulation of passenger mutations during cancer progression [85,86].

4.3. Cancer-Derived Exosomes Regulate Several Steps of the Metastatic Process
4.3.1. Cancer-Derived Exosomes as a Key Regulator of the Epithelial–Mesenchymal
Transition (EMT)

Undoubtedly, metastasis is the most dramatic consequence of cancer, responsible for
about 90% of cancer deaths globally [87].

Metastasis is a multistep process, which involves local invasion, intravasation, trans-
port, extravasation, and colonization [88]. These steps require a series of genetic, bio-
chemical, and morphological deregulations that are present in an evolutionarily conserved
developmental program known as the epithelial–mesenchymal transition (EMT) [64,89–91].

The EMT is a natural process of transdifferentiation of epithelial cells to mesenchymal
cells that is crucial for embryogenesis [92–94] and re-epithelization in tissue repair [95].
During embryogenesis, the EMT (EMT type I) gives rise to mesoderm (responsible for
the formation of muscle, bone, and connective tissues) during gastrulation and neural
crest delamination (which results in glial cell, adrenal gland, and epithelial pigmented cell
formation) [90,96]. In adult life, the EMT plays a key role in tissue re-epithelization during
wound healing (EMT type II) [95,97,98] but, when inappropriately active, such as occurs in
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carcinogenesis (EMT type III), the EMT causes important disturbances in epithelial tissue
homeostasis and integrity, leading to cancer cell spread and metastasis [89,99].

The EMT (type III) is a consequence of cancer progression away from the cancer cells
from the stroma, which is responsible for providing nutrients and oxygen support to the
cells, creating a hypoxic environment. In addition, the partial reduction in the oxygen
pressure leads to the activation of hypoxia-inducible factor 1 alpha (HIF-1α) in both cancer
cells and cancer-associated fibroblasts (CAFs) [100–102].

HIF-1α nuclear translocation promotes the upregulation and stabilization of Snail and
Twist, resulting in cadherin switching, which is characterized by the downregulation of
E-cadherin (leading to a loss of intercellular adhesion and consequent activation of the
Wnt/β-catenin pathway) and N-cadherin upregulation in cancer cells [103–105]. Combined
with the F-actin reorganization of invadopodia sites, these actions create sites of transient
adhesion that confer cell motility, facilitating the dissemination of cancer cells [89,106].

HIF-1α also acts as a key regulator of metabolic plasticity, promoting genetic and
metabolic deregulations [90,107,108]. These deregulations drive the oxidative metabolism
to glycolytic metabolism. This process is crucial to guaranteeing the energy supply (ATP)
in hypoxic conditions [90]. In addition, glycolytic metabolism increases lactate production,
which is generated as a byproduct of glycolysis.

L-Lactate is an important oncometabolite produced by the glycolytic cells within
the TME, promoting a metabolic symbiosis between cancer cells and cancer-associated
fibroblasts (CAFs) [109]. However, due to its high toxicity, L-lactate is transported out of
the cytoplasm of CAFs to the extracellular compartment by a monocarboxylate transporter
(MCT4), whose expression is upregulated by HIF-1α [110]. Thus, when released into the
TME, the L-lactated CAFs can be uptaken by the MCT1 present in the plasma membrane
of glycolytic cancer cells, which acts as a fuel source [111]. This is because cancer cells can
oxidize the L-lactate to pyruvate in the mitochondria by lactate dehydrogenase, providing
intermediate metabolites to the tricarboxylic acid cycle (TCA) [111,112].

However, the L-lactate exported to the extracellular space promotes the acidification
of the TME [111]. The TME’s acidification inhibits the activation and proliferation of CD4+
and CD8+ lymphocytes, natural killer (NK) cells, and dendritic cells (DC) [111] as well as
causes the polarization of the macrophages toward the M2 phenotype [111], contributing to
immune evasion, which is recognized as a hallmark of cancer [113]. The TME’s acidification
also induces the synthesis of metalloproteinases (MMPs) in both cancer and stromal cells,
facilitating extracellular matrix (ECM) degradation and, therefore, cancer cell migration
and spread [90,114].

Interestingly, studies have demonstrated that activation of HIF-1α by hypoxia in-
creases the secretion of exosomes in both cancer [115–118] and non-cancer cells within the
TME [119,120]. For this reason, hypoxia has been explored to increase the production of
mesenchymal stem cell-derived exosomes for novel therapeutic strategies based on cell-free
therapy [18,120,121]. This occurs because the hypoxia increases the L-lactate production
and, therefore, reduces the pH, increasing the exosome release and uptake, contributing to
the crosstalk between cancer and non-cancer cells within the TME [122–124].

In this sense, numerous studies have provided evidence that hypoxic cancer-derived exo-
somes regulate different EMT-related pathways in a miRNA-dependent manner [118,125,126].
In this context, it was reported that the miR-665 identified in hepatocellular carcinoma-
derived exosomes can downregulate Hippo signaling through directly targeting tyrosine
phosphatase receptor type B (PTPRB) [127], serving as a novel invasive biomarker for
this malignancy [128]. This is because the Hippo tumor suppressor signaling pathway is
crucial to controlling cell proliferation and apoptosis by inhibiting the oncogenic coactiva-
tors Yes-associated protein (YAP)/transcriptional coactivator with the PDZ-binding motif
(TAZ) [129,130].

However, considering the plethora of biomolecules, especially miRNAs, delivered by
cancer-derived exosomes, the mechanism of action of these vesicles on EMT could not be
limited only to the Hippo signaling pathways.
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In this sense, Yue et al. [131] showed that exosomal miR-301a, secreted by hypoxic
glioblastoma cells, targets transcription elongation factor A like 7 (TCEAL7), leading to
the activation of the Wnt/β-catenin signaling pathway, resulting in the expression of
the EMT-related transcription factors Snail, Slug, and Twist. Similar results were veri-
fied by Nam et al. [132], who demonstrated that miR-301a functions as an oncogene in
prostate cancer by directly targeting the p63 tumor suppressor, leading to loss of E-cadherin
and EMT.

Thus, it is not surprising that cancer-derived exosomes can regulate different steps
of the EMT, including cancer progression [133], dissemination [134,135], ECM remodel-
ing [136,137], stemness [138], and metastasis [139], though different miRNAs.

Interestingly, studies have demonstrated that exosomes derived from cancer-associated
macrophages can also regulate stem cells’ dormancy [140] and cell migration and inva-
sion [141], providing evidence that exosomes are also implicated in metastasis.

In this sense, lung cancer cell-derived exosomes (from the A59 and H358 cell lines)
alter the transcriptional and bioenergetic signature of M0 macrophages, leading them to
an M2 phenotype [142]. However, the M2 macrophage-derived exosomes can transfer
miR-21-5p and miR-155-5p to cancer cells, promoting the downregulation of transcription
factor Brahma-related gene-1 (BRG1), leading to cell migration and invasion in colon cancer
cells [141,143]. Gastric cancer showed similar results; M2 macrophage-derived exosome-
mediated apolipoprotein E (ApoE) transfer was found to increase the cancer cell migration
in a PI3K/Akt signaling pathway activation-dependent manner [144].

Altogether, these data reinforce the view that exosomes promote crosstalk between
cancer and non-cancer cells within the TME, regulating the EMT and metastasis.

4.3.2. Exosomes in Angiogenesis

Tumor vascularization is crucial to guaranteeing the support of nutrients and meeting
oxygen needs to sustain cancer growth. For this reason, the activation of HIF-1α also serves
as a signal to induce sustained angiogenesis [100,145]. Once phosphorylated, HIF-1α
induces the expression of vascular endothelial growth factor (VEGF) [145–148]. VEGF binds
to VEGF receptors (VEGFRs)-1, -2, and -3, which are expressed on vascular endothelial
cells, regulating vessel formation through endothelial cell migration [149,150].

In this context, studies have demonstrated that cancer-derived exosomes act as a key
regulator of angiogenesis [151,152]. This is because exosomes derived from cancer cells can
stimulate endothelial cell migration and tube formation independently of uptake [153]. This
response is mediated by the 189-amino-acid heparin-bound isoform of VEGF, which, unlike
other common isoforms of VEGF, is preferentially enriched on the exosome surface [153].

However, cancer-derived exosomes can also promote angiogenesis in an uptake-
dependent manner. In this sense, Li et al. [154] showed that hepatocellular carcinoma-
derived exosomes transporting lysyl oxidase-like 4 (LOXL4) induce angiogenesis. In an-
other study, Zhang et al. [155] demonstrated that ovarian cancer-derived exosomes express-
ing prokineticin receptor 1 (PKR1) promote angiogenesis by promoting the migration and
tube formation of HUVEC cells. Similar results were also described by Umezu et al. [156],
who demonstrated that hypoxia increases the production of multiple myeloma cell-derived
exosomes transporting miR-135b, which can bind to factor-inhibiting hypoxia-inducible fac-
tor 1 (FIH-1) in endothelial cells, enhancing the formation of endothelial tubes. In another
study, Zeng et al. [157] showed that colorectal cancer-derived exosomes drive miR-25-3p to
endothelial cells, targeting Kruppel-like factors 1 and 4 (KLF2 and KF4, respectively) and
promoting vascular permeability and angiogenesis.

Altogether, these data strongly suggest that cancer-derived exosomes are involved
in angiogenesis.

4.3.3. Cancer-Derived Exosomes Contribute to Pre-Metastatic Niche (PMN) Formation

Angiogenesis contributes to both cancer cell and cancer-derived exosome dissemi-
nation. However, the outcome of cancer metastasis depends on the interactions between
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metastatic cells and the host microenvironment [158]. These interactions between the
cancer cells (“seeds”) and the host microenvironment (“soils”) were first discovered by the
English surgeon Stephen Paget in 1889 [158]. About 40 years later (in 1928), James Ewing
postulated that metastasis is determined by a mechanism associated with hemodynamic
factors of the vascular system [159]. In a complementary hypothesis postulated in the 1970s,
Isaiah Fidler demonstrated that, although the mechanical properties of blood flow are
important, metastatic colonization only occurs at certain organ sites (organotropism) [159].
Fidler’s theory was supported by additional discoveries, which revealed that tumors in-
duce the formation of microenvironments in distant organs, facilitating the survival and
outgrowth of cancer cells before they arrived at these sites [159–162]. These predetermined
microenvironments are termed ‘pre-metastatic niches’ (PMNs) [163].

In the context of the “seed and soil” theory (Paget’s theory), the exosomes are similar
to fertilizers, which can make barren land fertile and facilitate the colonization of can-
cer cells [163–166]. This occurs because exosomes exhibit adhesion molecules on their
surface, particularly integrins (ITGs), which bind to the ECM and organ-specific PMN re-
ceptors [164]. Supporting this theory, in a study evaluating the biodistribution of exosomes
from different cancer cell lines, Hoshino et al. [167] provided evidence that cancer-derived
exosomes are preferentially uptaken by tissues commonly recognized as metastatic sites.
The authors also demonstrated that this site-specific biodistribution is associated with high
expression levels of integrins (ITGα6, ITGβ4, and ITGβ1 for lung tropism; ITGβ5 and
ITGαv for liver tropism; and ITGβ3 for brain tropism) [167], reinforcing the view that the
integrins involved in PMN formation.

Cumulative studies have provided evidence that the local inflammatory microenvi-
ronment drives the formation of PMNs as revisited by Guo et al. [163]. In this sense, the
exosomes play a key role in the metastatic process, inducing immune suppression in the
PMN. This is because cancer cells release exosomes carrying programmed death-ligand 1
(PD-L1) [163]. When PD-L1 binds to programmed death receptor 1 (PD-1), which is mainly
expressed on macrophages and activated T or B cells, it provides an inhibitory signal,
inducing T cell apoptosis and/or inhibiting T cell activation and proliferation [168]. Thus,
PD-L1/PD-1 binding allows the exosomes to circulate through the bloodstream without
being recognized by immune cells [163,169,170].

In addition, cancer-derived exosomes contain many immunomodulatory molecules
that can impair the immune cell function, resulting in an immunosuppressive pre-metastatic
microenvironment [163]. These molecules can induce natural killer (NK) cell dysfunction,
inhibit antigen-presenting cells, block T cell activation, and enhance apoptosis [171,172].

However, the effects of cancer-derived exosomes in PMN formation are not limited to
immune suppression. Studies have demonstrated that exosomes released from hypoxic
tumors increase angiogenesis and vascular permeability in the PMN by carrying different
miRNAs, such as miR-105 and miR-25-3p, which can disrupt the vascular endothelial
barrier by targeting specific gene products [166,167,173].

4.3.4. Exosomes in Cancer Stem Cell (CSC) Formation

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subset
of cancer cells that share various features with stem cells, including the ability to self-
renew and differentiation into the heterogeneous lineages of cancer cells, producing a
variety of tumor cell subpopulations [49,174–176]. In addition, these cells can induce cell
cycle arrest (quiescent state), conferring chemo- and radio-resistance. This is because
many common chemotherapeutic agents target the proliferating cells to lead to their
apoptosis [174]. Furthermore, CSCs overexpress ATP-binding cassette (ABC) transporters,
increasing chemotherapeutics’ efflux [177–179]. In addition, by exhibiting a high capability
to repair DNA damage, the CSCs are resistant to radiation therapy (RT) [180,181]. Thus,
although the origin of CSCs remains incompletely understood [182], it is clear that these
cells are currently involved in therapeutic resistance [183].
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Cumulative evidence has shown that genomic instability contributes to CSC formation
and accelerates the development of many genetically variable cancer stem cells, increasing
the intratumor heterogeneity [89,184–187].

However, recent studies have provided evidence that cancer-derived exosomes me-
diate crosstalk between the EMT and cancer stem cell (CSC) formation, acting as a key
regulator of cell plasticity [49].

In this sense, numerous studies have shown that cancer-derived exosomes mediate
the instability of cadherins (which was verified during the EMT) in recipient cells by
transferring oncogenic microRNAs and long non-coding RNAs (lncRNAs) as revisited by
Wang et al. [188].

The loss of E-cadherin, mediated by these non-coding RNAs [188], promotes β-catenin
release into the cytoplasm [189]. Once translocated to the nucleus, β-catenin downregulates
not only cell-junction-related genes (E-cadherin and claudin-7) [89,190] but also upregulates
stemness-related genes, facilitating the formation of CSCs [191–193].

In addition, studies have also demonstrated that cancer-derived exosomes mediate
drug resistance in several malignancies, which is considered a major impediment in medical
oncology [194].

Basically, there are two main types of resistance in cancer: (i) inherent resistance,
where insensitivity already exists before treatment; and (ii) acquired resistance, which
subsequently appears following the initial positive response [194]. Interestingly, studies
have demonstrated that cancer-derived exosomes mediate the acquired resistance by
transferring microRNAs as revised by Bach et al. [194].

In this sense, Zheng et al. [195] showed that TME-derived exosomes transfer miR-21
to gastric cancer cells, resulting in therapeutic resistance to cisplatin. In another study,
Richards et al. [196] provided evidence that CAF-derived exosomes confer resistance to
gemcitabine on pancreatic ductal adenocarcinoma by transferring miR-146a.

Moreover, numerous studies have shown that CSC-derived exosomes transfer ATP-
binding cassette (ABC), also known as multidrug resistance (MDR), proteins and mRNA,
which are implicated in drug resistance [177,197,198], to recipient cells in different malig-
nancies [199], such as breast cancer [200,201], prostate cancer [202], melanoma [203], and
osteosarcoma [204], leading to drug-acquired resistance.

In addition, studies have also suggested that cancer-derived exosomes can confer
resistance to radiotherapy by transferring circular RNA (circATP8B4) [205]. Further,
Mustschelknaus et al. [206] showed that irradiated cancer cells increase the exosome up-
take and improve the repair of DNA double-strand breaks.

5. Mesenchymal Stem Cell (MSC) Recruitment to the Tumor Microenvironment (TME)

Mesenchymal stem cells (MSCs) are important components of the tumor microenvi-
ronment (TME), which regulates and determines the final destination of cancer cells [207].

The inflammatory process creates an important network of communicability within
the TME, acting as a mediator of the interaction between neoplastic and non-neoplastic
cells through the production and secretion of a variety of pro-inflammatory cytokines,
such as IL-1β, IL-6, IL-17, INF-γ, and TNF-α [208]. These pro-inflammatory cytokines,
produced by the TME [209,210], recruit MSCs that naturally reside as pericytes in various
tissues and (endogenous) organs [211] to the TME [212,213], driving cancer development
and promoting changes in the tissue architecture [210]. Among these cytokines, IL-6 acts
as a key component of the MSC recruitment [209], acting in a paracrine fashion on both
endogenous and exogenous MSCs, stimulating the activation of the signal transducer and
activator of transcription 3 (STAT3) and MAPK pathways, and enhancing the migratory
potential and cell survival, which are necessary to MSC homing [209].

However, when naïve MSCs arrive at the TME, they are “educated” to have a pro-
tumorigenic phenotype [214,215], supporting tumor growth through different mechanisms,
such as: (i) differentiation in pro-tumorigenic stromal cells; (ii) suppression of the im-
mune response; (iii) promotion of angiogenesis; (iv) enhancement of the EMT; (v) en-
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richment of CSCs; (vi) an increase in tumor cell survival; and (vii) promotion of cancer
metastasis [214,216–218].

The role of MSCs in the TME is controversial since other studies have reported that
MSCs elicit antitumorigenic potential by the: (i) enhancement of the immune response; (ii)
inhibition of angiogenesis; (iii) regulation of cellular signaling; and (iv) induction of cell
apoptosis [211,219–222].

Despite these controversial data, the tumor-suppressive effects are observed when
MSCs are used in higher ratios than tumor cells [223]. Furthermore, the MSC function
appears to be tissue-type-dependent and may rely on cancer education to reprogram
a naïve MSC with antitumor effects [223]. For these reasons, efforts are mandatory to
understand when MSCs promote or suppress carcinogenesis [224].

6. Mesenchymal Stem Cells as a Source of Exosomes for Cancer Treatment

In the last decade, MSCs have become the most used stem cell type for clinical
applications. This is because these cells can easily be obtained from numerous adult and
perinatal tissues, such as bone marrow, umbilical cord vein, Wharton’s jelly, adipose,
and placental tissues, peripheral and menstrual blood, the liver, the spleen, and the pulp
of deciduous teeth [16,225,226]. Furthermore, these cells can be propagated for several
passages and show differential potential in various cell types and lineages, including
adipose, osteogenic, and chondrogenic lineages (exogenous) [18,227,228]. Because of
these advantages, these cells have been biotechnologically explored in advanced cellular
therapies to treat numerous diseases [229–231].

For a long time, the therapeutic benefits of MSCs were associated with the replacement
of dead cells [16,232]. However, cumulative evidence has demonstrated that less than 1% of
transplanted MSCs survive for more than one week after systemic administration [225,232–238],
suggesting that the therapeutic effects of MSCs are mediated by their “secretome” [226,239,240].
Supporting this hypothesis, several bioactive molecules identified in the MSCs’ secretome,
such as chemokines, cytokines, interleukins, growth factors, lipid steroids, nucleotides,
nucleic acids, ions, and metabolites [27,226], were already described to mediate biological
functions [11,16,225,226,241] related to tissue regeneration [27,232,242].

These molecules can be found in free form or within exosomes [243]. However,
whereas the soluble biomolecules present in the extracellular medium are subjected to rapid
hydrolysis and/or oxidative effects, those present in exosomes are more stable [232]. This
attracted the interest of researchers towards MSC-derived exosomes that could potentially
be used in cell-free therapies [11–13].

Further, considering that MSCs can easily be manufactured on a large scale, these
cells are an efficient mass producer of exosomes, allowing these vesicles to be used for
therapeutic purposes [16,18].

Moreover, cell-free therapy possesses different advantages when compared with cell-
based therapy, such as: (i) exosomes can be easily prepared and stored for a relatively
long period without any toxic preservative, such as dimethylsulphoxide (DMSO); (ii) the
use of exosomes instead of whole cells avoids possible complications associated with
pulmonary embolism after intravenous infusion of MSCs; (iii) the use of exosomes avoids
the risk of unlimited cell growth and tumor formation since exosomes do not divide; (iv)
MSC-derived exosomes do not induce toxicity when repeatedly injected; (v) exosomes may
be isolated from unmodified or genetically modified human MSCs; and (vi) the evaluation
of a culture medium for safety and efficacy is much simpler to perform and analogous to
that of conventional pharmaceutical agents [18,226,232,242,244,245].

All these advantages are directly related to the biological nature of the exosomes,
which serve as intercellular messengers, delivering their contents to target cells. Moreover,
exosomes exhibit a specific tropism for inflamed tissues, such as the TME [30].

Despite these advantages, the absence of scalable methods to isolate exosomes on a
large scale has always been considered the main obstacle to the success of cell-free therapy.
This is because most of the available technologies used for this purpose are time-consuming
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and generally provide few EVs [232]. However, improved methods for the isolation and
purification of exosomes have facilitated the application of exosomes in clinical translation
as previously discussed by us [18].

Thus, since the discovery that the therapeutic potential of MSCs is mediated by
the exosomes produced and secreted by these cells, which have pleiotropic effects in
recipient cells [246,247], including immunomodulatory properties [248,249], these vesicles
became useful candidates for cancer treatment in a novel therapeutic approach known as
cell-free therapy.

7. Clinical Applications of MSC-Derived Exosomes for Cancer Treatment

Considering that exosomes are natural nanocarriers of specific mRNAs, regulatory
miRNAs and lncRNAs, and proteins, these vesicles have therapeutic potential for cancer in
future clinical nanomedicine [250].

In this sense, recently, exosomes isolated from menstrual MSCs were found to inhibit
tumor growth and angiogenesis of oral squamous cell carcinoma in a dose-dependent
manner [251]. Supporting this antitumor effect, two independent studies showed that MSC-
derived exosomes transporting TNF-related apoptosis-inducing ligand (TRAIL) induced
apoptosis in 11 cancer cell lines in a dose-dependent manner [252,253].

In addition, MSC-derived exosomes can be engineered to act as vehicles for the
delivery of specific miRNAs or chemotherapeutics, enlarging the range of therapeutic uses
of these vesicles for cancer treatment [30]. In this sense, Lou et al. [254] demonstrated that
exosomes derived from miR-122-transfected adipose tissue-derived MSCs increased the
antitumor efficacy of sorafenib on hepatocellular carcinoma. Similar results were described
by Li et al. [255], who demonstrated that exosomes derived from siGRP78-transfected bone
marrow mesenchymal stem cells (BM-MSCs) suppress sorafenib resistance, inhibiting the
growth and metastasis of hepatocellular carcinoma in vivo. Another study reported that
exosomes derived from MSCs transfected with miR-199a reduce the proliferation, invasion,
and migration of glioma cells via downregulation of ArfGAP with the GTPase domain,
ankyrin repeat, and PH domain 2 (AGAP2) [256]. Similar results were also verified by
Xu et al. [257], who demonstrated that BM-MSC-derived exosomes transporting miR-16-5p
inhibit the proliferation, migration, and invasion and promote the apoptosis of colorectal
cancer cells by downregulating ITGA2.

Using another biotechnological strategy, Melzer et al. [258] showed that taxol-loaded
exosomes, obtained from continuously proliferating human MSC54 incubated with the
drug (taxol), elicited anti-tumor effects in a mouse in vivo breast cancer model. In addition,
the authors provided evidence that the intravenous injection of taxol-loaded MSC54 exo-
somes derived from the cell line displayed superior tumor-reducing capabilities compared
with the application of taxol exosomes by oral gavage and that the exosome delivery route
can affect the therapeutic efficacy of the cell-free therapy.

Studies on exosomes derived from different cells, including cancer cells, have also
demonstrated that exosomes serve as an effective carrier of anti-tumor biomolecules and
chemotherapeutic agents [259–261]. Based on this, in a study using cholangiocarcinoma
cells, Ota et al. [262] demonstrated that exosome-encapsulated miR-30e, a widely studied
tumor-suppressive miRNA [129,263,264], which negatively regulates tumor growth, inva-
sion, and metastasis by targeting ITGB1, TUSC3, USP22, and SOX2 mRNAs [129,265–268],
could suppress EMT in tumor cells by inhibiting Snail expression.

The antitumorigenic properties of MSC-derived exosomes have also attracted a great
deal of interest due to the capability to drive specific molecules to cancer stem cells
(CSCs) [208,269,270].

In this sense, Lee et al. [271] described that it is possible to reprogram CSCs into
non-tumorigenic cells using osteogenic differentiating human adipose-derived exosomes
(OD-EXOs) containing specific cargoes capable of inducing osteogenic differentiation of
CSCs (alkaline phosphatase (ALPL), osteocalcin (BGLAP), and runt-related transcription
factor 2 (RUNX2)). Furthermore, the authors demonstrated that the expression of ABC
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transporters, the breast cancer ge-e family (BCRA1 and BCRA2), and the ErbB gene family
were significantly decreased in OD-EXO-treated CSCs, suggesting the exploration of MSC-
derived exosomes for cancer therapy [271].

In an innovative approach, Tang et al. demonstrated that tumor cell-derived micropar-
ticles could be used as vectors to deliver chemotherapeutic drugs, resulting in cytotoxic
effects and inhibition of drug efflux from cancer cells [259]. Similar results were later ob-
served by Ma et al. [260], reinforcing the therapeutic use of exosomes for chemotherapeutic
delivery to CSCs.

In another strategy, Kim et al. [272] developed an exosome-based formulation of
paclitaxel (PTX), a commonly used chemotherapeutic agent, to overcome multidrug resis-
tance (MDR) in cancer cells. For this, the authors employed three methods to incorporate
PTX into exosomes: incubation at room temperature, electroporation, and mild sonica-
tion. Among these methods, electroporation resulted in the highest loading efficiency and
sustained drug release [272]. However, the authors also showed that the PTX-loaded exo-
somes increased cytotoxicity by more than 50 times in drug-resistant MDCKMRD1 (Pgp+)
cells [272]. Similar results were reported by Saari et al. [261], who described that prostate
cancer-derived exosomes enhance the cytotoxicity of PTX in autologous cancer cells.

8. Future Prospects of Cell-Free Therapy for Cancer Treatment and Challenges to
Be Overcome

Despite the numerous studies supporting the view that exosomes can be applied for
cancer treatment in a new era of medicine, known as nanomedicine, there are consider-
able challenges to be solved, such as: (i) understanding the differences among exosomes
from different sources to identify those whose content naturally elicits antitumor effects;
and (ii) describing the mechanisms of action of these exosomes in order to explore their
therapeutical potential for each histological type of cancer.

To overcome these difficulties, it is mandatory to develop novel in vitro methodolo-
gies that could provide detailed data about the exosomal biodistributions and provide
information about the mechanisms of action of these vesicles, which is also required for
the licensing of these exosomes as therapeutics by regulatory agencies. In this context,
the future of exosomes as therapeutics for cancer depends on the improvement of 3D
cell cultures.

Although 2D cultures are commonly used in cancer research [273], they do not reca-
pitulate the complexity of the tumor microenvironment (TME). This is because 2D cultures
do not exhibit the cell–ECM interactions or other cell types found within the TME, such as
immune and stromal cells. Furthermore, despite the evidence that 2D cultures from cancer
cell lines have a certain degree of heterogeneity [274], this heterogeneity does not reflect the
genotypic and phenotypic cell heterogeneity verified within the TME [273,275]. Further, the
cancer cell monolayer cannot recapitulate the biochemical properties, composition, tissue
architecture, cell behavior, and exosome-mediated intercellular communication verified
within the TME [276–279].

In this sense, 3D cell cultures and organoids have emerged as more reliable models
to investigate the role of exosomes in cancer pathophysiology, allowing us to explore the
mechanism of action of these vesicles in cancer biology [280].

Organoids are 3D cell culture systems formed through cell differentiation and the
self-organization of pluripotent stem cells or tissue-derived progenitors that recapitulate
the original function and structure of the tissue that they were derived from. Furthermore,
these micro physiological systems can contain supporting stromal elements that mimic the
TME [281].

Several studies suggest that the composition and dynamics of exosome secretion are
influenced by many factors, including stimuli from the environment [282,283]. Presumably,
extracellular vesicles derived from biomimetic tissue culture conditions better reflect
secreted exosomes’ in vivo composition and function [25,280].

In this sense, Rocha et al. [283] compared the biochemical, transcriptomic, and pro-
teomic profiles of exosomes from 2D and 3D cultures of gastric cancer cell line-derived
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exosomes. This study showed that 3D cultures produce more extracellular vesicles than 2D
cultures. In addition, the global profile of microRNA and proteins was different compared
with the 2D and 3D cultures, supporting the view that the tissue architecture affects the
exosome content.

In another independent study, Thippabhotla et al. [280] analyzed RNA content from
cervical cancer-derived extracellular vesicles (EVs) obtained from 2D and 3D cultures of
HeLa cells and compared it with the RNA content from cervical cancer patient plasma-
derived EVs. The study revealed remarkable differences between the EV content from
the 2D and 3D cell cultures. Interestingly, the authors showed that the profile of small
RNAs from a 3D-culture-derived EV exhibits a much higher similarity (~96%) to in vivo
circulating EVs from cervical cancer patient plasma compared with a 2D-culture-derived
EV. Similar results were verified by Villasante et al. [284], who showed that EVs derived
from a 3D culture of Ewing’s sarcoma type 1 exhibit higher similarity to EVs derived from
plasma patients than EVs from 2D cultures, supporting the view that these 3D culture
models are better mimics of the TME, serving as powerful and useful models to study the
role of exosomes in cancer biology and therapy.

In this context, different cancer organoids have been established as models to study
different malignancies, including colorectal [285], colon [286], lung [287], liver [288], and
pancreatic cancer [289]. In addition, these organoids have provided new clues about the
exosome’s role in cancer pathophysiology and have enabled the description of the exosomal
mechanism of action [290].

In this sense, using a 3D organoid model, Oszvald et al. [291] showed that fibroblast-
derived EVs transporting amphiregulin (AREG) increase the number of proliferating
colorectal cancer cells (CRC) in patient-derived organoid lines in an epidermal growth
factor (EGF)-dependent manner. Further, although the authors observed that normal colon
fibroblasts (NCF) activated with TGFβ (one of the most important activating factors of
fibroblasts) secrete EVs with a different miRNA content profile compared with controls
(NCF not active with TGFβ), they did not find differences in the biological effects between
the EVs treated and not treated with TGFβ, suggesting that TGFβ-induced sorting of
specific miRNAs into EVs does not play a major role in enhancing CRC proliferation [291].
Thus, the authors provided evidence that amphiregulin, transported by EVs, is a major
factor in inducing CRC proliferation [291].

Despite the benefits of 3D cultures, to date, few works have studied the role of
immobilized exosomes in the extracellular matrix of the TME. However, bioprinting
technology has allowed the evaluation of the exosome effects on extracellular matrix
remodeling [101,292–294]. This is because bioprinting technology is a powerful tool em-
ployed for tissue engineering, which allows for the precise placement of cells, biomaterials,
and biomolecules in spatially predefined locales within confined 3D structures [295].

9. Conclusions

Exosomes are recognized as a key mediator of cell communication in both physiologi-
cal and pathophysiological processes. For this reason, it is not surprising that these vesicles
mediate cell-to-cell communication within the TME. In this sense, numerous studies have
provided evidence that TME-derived exosomes are involved in all carcinogenesis steps,
mediating crosstalk between cancer and non-cancer cells. This crosstalk not only increases
the intratumor heterogeneity but recruits fibroblasts, pericytes, immune cells, and mes-
enchymal stem cells (MSCs) to the TME. When these cells enrich the TME, they can regulate
the proteins, RNAs, and metabolites present in the cancer-derived exosomes. On the one
hand, naïve MSCs can be polarized to type 2 MSCs (anti-inflammatory), which produce
and secrete exosomes and cytokines that facilitate immune evasion; on the other hand,
MSC-derived exosomes have emerged as useful candidates for cancer treatment in a novel
therapeutic approach (cell-free therapy). This is because these vesicles can naturally deliver
molecules able to suppress different steps of the carcinogenic process. Moreover, these
vesicles can be biotechnologically engineered to be used to deliver drugs, especially cancer
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stem cells, which exhibit chemoresistance against multiple drugs. However, the therapeutic
potential of these exosomes is conditioned to the MSC tissue since the exosomes share
transcriptional and proteomic profiles similar to those of their producer cells. In this sense,
novel efforts are needed to investigate the therapeutic potential of MSC-derived exosomes
for different malignancies.
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