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Key messages

What is already known about this subject?
►► Clinical symptoms of (seronegative) rheumatoid 
arthritis (RA) and psoriatic arthritis (PsA) can be 
similar. Biomarkers for a correct diagnosis do 
not exist. Since immunosuppressive drugs have 
different therapeutic effects on both diseases, a 
correct diagnosis is important for the success of 
treatment.

What does this study add?
►► The study presents evidence that chronic 
inflammatory diseases with similar clinical 
symptoms have significant differences in their 
metabolomes and lipidomes at systemic level.

►► The study identifies novel biomarkers for the 
differential diagnosis of seronegative RA and 
PsA.

How might this impact on clinical practice or 
future developments?

►► Better and earlier attribution of patients with 
arthritis to the correct diagnosis, which will help 
a faster correct choice of drugs.

►► The expansion of nuclear magnetic resonance-
based metabolomic and lipidomic analyses to 
other cohorts of clinically and demographically 
well-characterised patients with chronic 
autoimmune diseases may unveil new 
biomarkers to improve differential diagnosis, 
therapy response or disease relapses.

Abstract
Objectives  The differential diagnosis of seronegative 
rheumatoid arthritis (negRA) and psoriasis arthritis 
(PsA) is often difficult due to the similarity of symptoms 
and the unavailability of reliable clinical markers. Since 
chronic inflammation induces major changes in the 
serum metabolome and lipidome, we tested whether 
differences in serum metabolites and lipids could aid in 
improving the differential diagnosis of these diseases.
Methods  Sera from negRA and PsA patients with 
established diagnosis were collected to build a 
biomarker-discovery cohort and a blinded validation 
cohort. Samples were analysed by proton nuclear 
magnetic resonance. Metabolite concentrations were 
calculated from the spectra and used to select the 
variables to build a multivariate diagnostic model.
Results  Univariate analysis demonstrated differences 
in serological concentrations of amino acids: alanine, 
threonine, leucine, phenylalanine and valine; organic 
compounds: acetate, creatine, lactate and choline; and 
lipid ratios L3/L1, L5/L1 and L6/L1, but yielded area 
under the curve (AUC) values lower than 70%, indicating 
poor specificity and sensitivity. A multivariate diagnostic 
model that included age, gender, the concentrations of 
alanine, succinate and creatine phosphate and the lipid 
ratios L2/L1, L5/L1 and L6/L1 improved the sensitivity 
and specificity of the diagnosis with an AUC of 84.5%. 
Using this biomarker model, 71% of patients from a 
blinded validation cohort were correctly classified.
Conclusions  PsA and negRA have distinct serum 
metabolomic and lipidomic signatures that can be used 
as biomarkers to discriminate between them. After 
validation in larger multiethnic cohorts this diagnostic 
model may become a valuable tool for a definite 
diagnosis of negRA or PsA patients.

Introduction
The diagnosis of rheumatoid arthritis (RA) is mostly 
based on clinical symptoms and the serological posi-
tivity of rheumatoid factor (RF) and/or anticitrulli-
nated peptide antibodies (anti-CCPs), whereas for 
psoriasis arthritis (PsA), only clinical and imaging 
features help in diagnosing the disease. Although 
most patients with RA are seropositive for RF and/
or anti-CCP, in about 15%–20% of cases, the levels 
of RF and anti-CCP are not elevated, and since the 
symptoms between RA and PsA can be very similar, 
making a differential diagnosis between seroneg-
ative RA (negRA) and PsA is often difficult. Since 
the therapeutic strategies for the two diseases are 

different, early recognition and correct choice of 
treatment are essential to attain remission or low 
disease activity and to prevent, or at least to limit, 
joint damage as well as systemic manifestations.1–7 
Therefore, innovative tools for a reliable diagnosis 
of negRA versus PsA are needed.

In patients with chronic inflammatory diseases, 
an altered action of cytokines and other proinflam-
matory effector molecules added to a prolonged 
intake of immunomodulatory drugs leads to major 
remodelling in cellular and tissue metabolism. 
Such metabolic modifications also have a systemic 
impact that can be monitored by analysing the 
changes in the metabolome of biofluids. Assessing 
several metabolites simultaneously can poten-
tially locate differences between disease profiles, 
thereby allowing the identification of potential 
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Table 1  Clinical and demographic data of the study participants

negRA (n=49) PsA (n=73) P value

Female:Male 39:10 29:44 <0.0001 (χ2)

Age (minimum–maximum 
in years)

64.2 (32–83) 56.2 (30–78) 0.003

Disease duration (minimum–
maximum in years)

11.6 (1–41) 9.0 (0–24) 0.042

DAS28-CRP (minimum-
maximum)

2.6 (0–6.2) 2.3 (0.96–4.09) 0.093

% active (DAS28 >3.2) 30.6% 28.8%

% remission (DAS28 <2.6) 55.1% 57.5%

CRP (±SD) (mg/L) 5.7±7.4 6.7±13.8 0.642

Rheumatoid factor positive None None

Anti-CCP positive None None

MTX (±SD) (mg)* 13.2±4.8 14.1±3.2 0.368

% from total patients 44.9% 50.7% 0.531 (χ2)

Glucocorticoid (±SD) (mg) 6.2±5.0 5.6±3.5 0.651

% from total patients 38.8% 34.2% 0.610 (χ2)

Leflunomide (±SD) (mg) 15.8±4.7 13.6±4.5 0.266

% from total 24.5% 15.1% 0.192 (χ2)

On immunotherapy 13 35 0.018 (χ2)

Anti-TNF 15.1% 27.8%

Anti-IL-6R 3.8% 0%

Anti-CTLA-4 1.9% 0%

Anti-IL-12/IL-23 0% 6.3%

JAK-blockade 5.7% 0%

p-values above 0.05 are indicated in italic.
*The average dosage of each medication (MTX, glucocorticoid and leflunomide) was 
calculated only for the patients taking that medication. The p-values bove 0.05 are indicated 
in italic.
anti-CCP, anticyclic citrullinated peptide antibodies; CRP, C reactive protein; CTLA, cytotoxic 
T-lymphocyte-associated protein 4 inhibitor; DAS28, disease activity score; IL, interleukin; 
JAK, janus kinase inhibitor 
; MTX, methotrexate; nd, not determined; TNF, anti-tumor necrosis alpha.

biomarkers and the discovery of altered metabolic pathways. 1H 
nuclear magnetic resonance (NMR)-based metabolomic studies 
of serum, urine and synovial fluid obtained from patients with 
chronic arthritis have been used for diagnostic, prognostic and 
following the response to treatment. The development of RA in 
patients with early arthritis has been associated with increased 
serum levels of certain metabolites that correlated with the C 
reactive protein (CRP) titre.8 High serum levels of lactate, acetyl-
ated glycoprotein and cholesterol differentiated healthy individ-
uals from patients with RA regardless of anti-tumor necrosis 
factor α (TNF) therapy.9 The urine metabolome from anti-TNF-
treated patients with RA identified high levels of histamine, 
glutamine, thymine, creatinine and xanthine as predictors of a 
good response to TNF-α blockade.10 An effective response to 
methotrexate (MTX) in patients with RA appears to be linked 
to elevated serum levels of uric acid, taurine, histidine, hypoxan-
thine and methionine.11 However, a comparison of the aromatic, 
sugar and aliphatic regions in the 1H NMR spectra of synovial 
fluid samples could not distinguish groups of patients with 
different types of arthritis.12

In all the studies comparing the metabolome of patients with 
RA to the metabolome of other patients with chronic inflamma-
tory arthritis, there is no separate analysis of the negRA group, 
eventually due to the small size of the studied RA cohorts. 
Therefore, the potential of using metabolomic and lipidomic 
profiling to improve the differential diagnosis of PsA and negRA 
remains largely unexplored. Hence, we carried out 1H NMR-
based metabolomic and lipidomic analysis of serum samples 
from a large cohort of PsA and negRA patients, followed by 
a validation cohort analysis in order to identify and confirm 
serum metabolome-based biomarkers as a diagnostic multivar-
iate model for these two pathologies.

Patients and methods
A detailed description of the patient selection, the experimental 
and statistical methods can be found in the online supplementary 
materials file 1.

Serum samples were collected from 49 patients with negRA 
and 73 with PsA at the Division of Rheumatology outpatient 
clinic of the University Hospital Heidelberg. Clinical and demo-
graphic characteristics of the cohort are summarised in table 1.

Study approval and patient and public involvement
Besides their voluntary participation in donating samples patients 
had no further involvement in the planning or execution of this 
study.

NMR spectroscopic analysis and metabolite identification
Metabolic analysis of the serum samples was carried out on 
a Bruker 600MHz NMR spectrometer following previously 
described procedures.13 Metabolite identification was performed 
using the resonance assignments, chemical shifts and coupling 
patterns published for human serum samples.14 15 Further details 
on the NMR analysis can be found in the online supplementary 
materials file 1.

Results
Metabolomic and lipidomic profile of blood samples from 
negRA and PsA patients
In the 1H single-pulse NMR spectrum, peaks from both small 
molecules and macromolecules are observed, resulting in an 
uneven baseline and the overlap of the signals originating from 
different compounds. Nonetheless, due to their characteristic 

spectral profiles, it is possible to use 1H NMR to identify and 
quantify lipids in the serum (figure 1A). By suppressing the broad 
signals from lipids and proteins, the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence allows the peaks from low-molecular 
weight compounds to not be overshadowed by the signals arising 
from macromolecules. Since they are characterised by sharp 
signals and a well-defined baseline, CPMG NMR spectra allow 
better identification and analysis of signals arising from small 
molecules (figure 1B).

Untargeted analysis
Multivariate statistical analysis was performed on the bucketed 
1H single-pulse and CPMG NMR spectra in order to determine 
whether there were characteristic spectral patterns or peaks that 
distinguished between the two diseases.

Based on the results partial least squares discriminant analysis 
(PLS-DA) and random forest models, there was no evidence that 
any of the clinical and demographic covariates could influence 
the metabolomic patterns of the patients’ sera (online supple-
mentary figure SF1). Additionally, there were no significant 
correlations between the clinical or demographic covariates and 
the regions of the 1H (figure 1C) and CPMG (data not shown) 
spectra.

Since principal components analysis-based clustering of 
metabolomics data is often difficult,16–18 the 1H and CPMG 
spectral data-sets were evaluated by PLS-DA. Even though the 
principal components 1–5 explained 96.9% of the variance 
of the 1H data or 84.6% of the variance in the CPMG data, a 
clear clustering that could distinguish between the negRA and 
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Figure 1  PsA and negRA patients have distinct spectral profiles that do not correlate with clinical and demographic covariates. Representative 
water-suppressed and baseline-corrected (A) 1H single-pulse and (B) CPMG NMR spectra of blood serum from patients with PsA and negRA assigned 
with the regions and metabolites and lipid groups included in the untargeted and targeted analysis: (1) formate, (2) histidine, (3) phenylalanine, (4) 
tyrosine, (5) α-glucose, (6) proline, (7) lactate, (8) creatinine, (9) creatine, (10) creatine phosphate, (11) threonine, (12) choline, (13) sarcosine; (14) 
citrate, (15) glutamine, (16) succinate, (17) acetoacetate, (18) glutamate, (19) acetate, (20) alanine, (21) β-hydroxybutyrate, (22) valine, (23) isoleucine 
and (24) leucine. (L1) Lipid methyls, (L2) lipid aliphatic chain, (L3) lipid β-methylenes, (L4) lipid allylic methylenes, (L5) lipid α-methylenes, (L6) lipid 
polyunsaturated allylic methylenes and (L7) lipid alkenes. Fumarate (10 mM in 99.9% D2O) was used as an internal standard. (C) Correlograms 
showing the Pearson correlation coefficients between the clinical or demographic variables and the 1H spectral regions, and hierarchical clustering 
with Euclidean distance metric for the full discovery cohort, and the split PsA and negRA groups. negRA, seronegative rheumatoid arthritis; NMR, 
nuclear magnetic resonance; PsA, psoriasis arthritis.

PsA patients was not evident (figure  2A). When assessing the 
quality of the PLS-DA models, their accuracy was ≤65%, and 
both the R2 and Q2 values were very low (1H-spectra: R2=0.13, 
Q2=0.06; CPMG spectra: R2=0.16, Q2=0.08). To improve 
the diagnostic accuracy based on spectral patterns, we used a 
random forest classification algorithm, due to its robustness for 
high dimensional data analysis. In both 1H and CPMG spectra, 
the algorithm identified similar regions that classified negRA 
and PsA patients with an out-of-bag error of 0.361 for the clas-
sification based on the 1H, and of 0.336 based on the CPMG 
(figure 2B,C). Nonetheless, the significant spectral regions iden-
tified by the random forest algorithm were used to focus the 
targeted analysis.

Targeted analysis
For the lipidomic analysis, the 1H single-pulse NMR-spectra 
were used. Due to the broad character of the lipid signals, 
seven groups of lipid signals (L1–L7) were assessed and desig-
nated by the moieties present within19: L1: lipid methyls; L2: 
lipid aliphatic chain; L3: lipid β-methylenes; L4: lipid allylic 
methylenes; L5: lipid α-methylenes; L6: lipid polyunsaturated 
allylic methylenes and L7: lipid alkenes (figure 1A). Due to the 
broadness of the lipid signals, lipid groups were compared in 
patients as ratios relative to the lipid methyl group L1. In the 

metabolomic analysis using the CPMG spectra, we chose 24 
metabolites that could be clearly identified and quantified and 
are present in the healthy human sera and have been reported to 
be altered in chronic arthritis8 9 11 14 20–24 (figure 1B).

After quantifying the concentration of metabolites and lipid 
groups, the differences between patient groups were deter-
mined by univariate analysis. Among the 24 metabolites, nine 
had significantly different concentrations between both patient 
groups, namely the amino acids (AA) alanine, leucine, phenylal-
anine, threonine and valine and the organic compounds acetate, 
choline, creatine and lactate. In our analysis, lipid ratios L3/
L1, L5/L1 and L6/L1 were found to be statistically different 
between negRA and PsA patients (figure 3A). There was a clear 
enrichment of certain metabolic pathways when comparing both 
groups (figure 3B).

Correlation between serum metabolites and lipids and 
clinical data of the patients
Age, gender and therapeutic regimen can influence the concen-
tration of metabolites in biological fluids in different diseases,25 26 
thus impacting the definition of the biomarkers to be used in 
therapy-naïve patients or in patients of different ages. To analyse 
whether any of the clinical or demographic parameters could 
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Figure 2  Metabolomic profiles obtained from the 1H and CPMG NMR spectra of serum samples from negRA and PsA patients in the disovery cohort 
after supervised PLS-DA analysis and random forest analysis. (A) Pairwise scores plots between the five principal components with the corresponding 
variances shown in the diagonal. (B) Significant features identified by random forest. The features are ranked by the mean decrease in classification 
accuracy when they are permuted. (C) Cumulative error rates by random forest classification. The overall error rate is shown as the red line; the blue 
and green lines represent the error rates for each disease. negRA, seronegative rheumatoid arthritis; NMR, nuclear magnetic resonance; PLS-DA, 
partial least squares discriminant analysis; PsA, psoriasis arthritis.

have influence on the serum concentration of the 24 metabolites 
or the lipid groups, we carried out a one-way and multiway multi-
variate analysis of variance (MANOVA) of the associated metab-
olites and the potential clinical and demographic confounders 
(see online supplementary tables ST1–ST4). Disease activity was 
associated with changes in choline concentration and L2/L1 and 
L7/L1, while disease duration was associated with changes in 
the concentration of citrate, phosphocreatine, glucose, histidine, 
tyrosine and valine. Changes in metabolite concentrations and 
lipid ratios were equally seen when combining age and body 
mass index classes with the disease groups. Even though RA is a 
disease mainly affecting women, which contrasts with PsA, the 
MANOVA analyses combining disease groups and gender did not 
present any significant differences in the associated metabolites. 
The same was true when disease and therapy were combined. 
Univariate analyses did not present any significant correlations 
between metabolites’ concentration or lipid ratios and clinical 
and demographic variables (figure 3C).

Multivariate diagnostic model for patient classification
Receiver operating characteristic (ROC) analyses of the single 
metabolites or lipid ratios yielded area under the curve values 
(AUC) lower than 70% (online supplementary table ST6). 
Thus, univariate models did not present enough sensitivity 
and specificity to classify PsA and negRA patients. In order to 
reach the highest diagnostic accuracy, we built three different 
machine learning algorithms: random forest, naive Bayes and 
multivariate logistic regression on the metabolomic and lipi-
domic profile of 73 PsA and 49 negRA patients. The random 
forest had an accuracy of 73.3% (Cohen’s kappa 40.1%) and 
the naïve Bayes accuracy was 63.7% (Cohen’s kappa 26.5%) 
to predict the probability of a patient having PsA (ROC curves 
not shown).

By the stepwise forward–backward selection algorithm, the 
following diagnostic predictors were included into the diagnostic 
model: age, gender, L6/L1, L5/L1, L2/L1, alanine, succinate and 
creatine phosphate.

https://dx.doi.org/10.1136/annrheumdis-2019-216374
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Figure 3  The concentrations of several metabolites and lipid groups allow the distinction between negRA and PsA patients. (A) Dot plots of the 
metabolites and lipid ratios included in the targeted analysis and that present significant differences between the two patient groups in the discovery 
cohort. Lines indicate the mean and 95% CI. (B) Summary bar graph for quantitative enrichment analysis showing the changes between negRA 
and PsA metabolomes in the discovery cohort. (C) Correlograms showing the Pearson correlation coefficients between the clinical or demographic 
variables and the metabolites, and hierarchical clustering with Euclidean distance metric for the full discovery cohort, and the split PsA and negRA 
groups. (D) ROC curve for the modelled probability ‍pPsA‍ based on the cross-validation in the discovery cohort. (E) Summary bar graph for quantitative 
enrichment analysis showing the changes between negRA and PsA metabolomes in the blinded validation cohort. (F) ROC curve for the modelled 
probability ‍pPsA‍ based on the blinded validation cohort. (G) ROC curve for the modelled probability ‍pPsA‍ based on the reassessed validation cohort. 
negRA, seronegative rheumatoid arthritis; PsA, psoriasis arthritis; ROC, receiver operating characteristic.

In a first validation procedure, the resulting model was eval-
uated using a 10-fold cross-validation (CV), which yielded the 
coefficient estimates in table 2.

Employing these estimates into the regression model yields the 
following formula:
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Table 2  Estimates of the model coefficients

Estimate SE Test statistics* P value ORs

(Intercept) 1.046 2.018 0.518 0.604 .

Age −0.055 0.025 −2.177 0.029 0.947

Gender male 2.412 0.640 3.767 <0.0001 11.155

L6/L1 16.653 8.676 1.919 0.055 17074068.923

L5/L1 16.639 6.820 2.440 0.015 16829326.675

Alanine 2.475 0.756 3.630 <0.0001 15.572

Succinate −48.819 17.246 −2.831 0.005 0.000

Creatine phosphate −11.231 4.818 −2.331 0.020 0.000

L2/L1 −1.619 0.681 −2.378 0.017 0.198

*The test statistic and the p value correspond to the Wald test, that is, test if the coefficient is equal to zero.

Table 3  Classification table of the blinded validation cohort 
(numbers in parenthesis indicate how many individuals lacked 
distinctive clinical parameters after reassessment)

Diagnosis

Prediction

PsA RA

PsA 10 7 (1)

RA 6 (3) 12

PsA, psoriasis arthritis; RA, rheumatoid arthritis.

(F1)
‍
log

(
pPsA(
1−pPsA

)
)
= x = 1.046− 0.055× Age+ 2.412×

‍
	

‍
Male+ 16.653×

[
L6
L1

]
+ 16.639×

[
L5
L1

]
+ 2.475×

[
Alanine

]
−

‍
�

	﻿‍

48.819×
[
Succinate

]
− 11.231×[

Creatine Phosphate
]
− 1.619×

[
L2
L1

]
‍�

The concentrations of each metabolite, age and gender 
(male=1, female=0) are substituted into the formula. The prob-
ability of belonging to the PsA group is then calculated by substi-
tuting the result × obtained in F1:

(F2)
‍
pPsA = ex(

1+ex
)
‍

The probability of a patient belonging to the negRA group is 
given by:

(F3)‍pnegRA = 1− pPsA‍
To classify patients into the two groups, a cut-off value for the 

calculated probability (F2) has to be chosen. Usually, the cut-off 
value 0.5 is applied and a subject is classified to PsA if its esti-
mated probability of having PsA is larger than 0.5, which reflects 
the idea to classify a subject to the diagnosis that is more likely. 
The following ROC plot shows the sensitivity and specificity of 
the model for this cut-off value and an overall area under the 
ROC curve (AUC) of 84.5%(figure 3D).

To further validate the model retrieved from the cross-
validation procedure in a prospective way, a separate blinded 
sample of 35 new arthritis patients was collected (online supple-
mentary table ST7). This cohort had a similar pathway distribu-
tion as the cohort used to build the diagnostic model (figure 3E). 
Evaluation of the cohort using the cut-off 0.5 yielded a correct 
prediction of 62.9% of the patients (table  3), and an ROC 
analysis was performed in which the AUC dropped to 71.6% 
(figure 3F).

After diagnosis prediction, there was a clinical re-evaluation of 
the 13 patients for which the predicted diagnosis was different 
from the one initially done by the rheumatologist. For four of 

those patients, a definite diagnosis could still not be assigned, 
as they kept lacking distinctive clinical parameters. Taking this 
into consideration, we removed those four individuals from the 
validation cohort and recalculated the prediction match, which 
increased to 71.0%, and performed a new ROC analysis that 
resulted in increased sensitivity (62.5%) and specificity (80.0%) 
(figure 3G).

Discussion
A definite differential diagnosis between negRA and PsA is 
often impossible due to lack of clear clinical, serological or 
radiological parameters. As therapy differs, a reliable diagnosis 
is important to prescribe the correct treatment. Additionally, 
the chronic inflammatory processes leading to the character-
istic joint destruction in RA and PsA patients may cause major 
and variant alterations in the metabolism of cells, tissues and 
organs.27–29 Such metabolic alterations result in changes in the 
serum metabolome and lipidome that we were able to quantify 
with the aim of discovering biomarkers to improve the clinical 
differential diagnosis between PsA and negRA patients and learn 
more about the specific metabolomics processes in these chronic 
arthritides. By means of 1H NMR-based metabolomics and lipi-
domic analyses, we were able to identify metabolites and lipid 
groups that differed in concentrations in the sera of negRA and 
PsA patients. A model was derived from these data to classify the 
patients into one of the two disease categories and was subse-
quently validated on separate blinded cohort of patients.

Even though we used different technical and metabolite iden-
tification approaches, we reached similar conclusions pertaining 
to the differences in the levels of the AAs alanine, leucine, 
threonine and valine between negRA and PsA patients as those 
reported in a metabolomic analysis of serum samples of healthy 
individuals, and PsA and total RA patients by mass spectrom-
etry.22 Serum alanine and valine levels in RA have been asso-
ciated with synovial B-lymphocyte stimulator expression, and 
the serum levels of threonine, phenylalanine and leucine asso-
ciated with synovial expression of IL-1β and IL-8.24 Free serum 
AA can be the result of disease-related protein catabolism, but 
they can also regulate cell functions by controlling intracellular 
signalling cascades and gene expression.30 In HeLa cells, alanine, 
valine and threonine act on the mammalian target of rapamycin 
complex 1 (mTORC1) in a two-step process in which they prime, 
and then activate, mTORC1 leading to the phosphorylation of 
its downstream targets.31 On activation, mTORC1 is a major 
inducer of aerobic glycolysis in several cell types.32 33 It is there-
fore not surprising that we found strong correlations between 
lactate levels (the product of aerobic glycolysis) and certain AA, 
particularly valine and alanine in PsA sera and to a lesser extent 

https://dx.doi.org/10.1136/annrheumdis-2019-216374
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in negRA sera. Furthermore, lactate has been shown to reshape 
CD4+ T cell phenotype in arthritis towards a proinflammatory 
profile.34 The high-energetic demand caused by chronic inflam-
mation in the joint and skin could be related to the higher levels 
of serum creatine found in PsA patients. Creatine plays a major 
role in T cell proliferation and cytokine secretion by securing a 
continuous replenishment of the adenosine triphosphate (ATP) 
pool.35

Short-chain fatty acids (SCFAs), such as acetate, originate 
from microbiota in the gastrointestinal tract and are involved 
in a plethora of essential cellular, tissue and organ functions. 
However, disease-induced dysbiosis leads to altered local and 
systemic concentrations of SCFA resulting in functional modi-
fications that contribute to disease exacerbation and develop-
ment of comorbidities. Dysbiosis of the gut microflora has been 
reported for RA and PsA patients affecting bacteria families that 
are major SCFA producers.36–38 However, the role of acetate 
and other SCFA in inflammatory diseases is still not fully under-
stood as different animal models yield contradictory results. In 
experimental autoimmune encephalopathy, a model for multiple 
sclerosis, and in collagen-induced arthritis, a model for autoim-
mune polyarthritis, dietary supplementation with acetate leads 
to amelioration of disease scores. However, in another model 
of polyarthritis, acetate supplementation resulted in increased 
inflammation and joint destruction39 and dietary supplementa-
tion of healthy mice with acetate resulted in kidney disease with 
increased serum levels of creatinine and urea, elevated systolic 
pressure and higher IL-17A and IFN-γ secretion by T-lympho-
cytes.40 Nonetheless, SCFAs have a positive effect on increasing 
bone mass by suppressing osteoclastogenesis.41

Choline and acetyl-coenzyme A (CoA) build the neurotrans-
mitter acetylcholine, which is found in the RA synovium.42 
Moreover, on action of choline kinase, choline is used to synthe-
sise the cell membrane phospholipid phosphatidylcholine, which 
is present in synovial fibroblasts and associates with TNF-α 
production and migration.43 Thus, it was not surprising that we 
detected changes in the serum concentrations of choline, which 
have been associated to the expression of synovial markers.24

The lipid groups L3, L5 and L6 show significant differences 
between PsA and negRA patients, being all higher in PsA. While 
L3 and L5 can mostly associate with changes in levels of lipids 
in the sera, since they reflect the lipid β-methylenes and α-meth-
ylenes, common to most medium and long-chain fatty acids, 
the L6 group reflects polyunsaturated allylic methylenes due to 
the presence of polyunsaturated fatty acids (PUFAs), which are 
known to play a central role in the homeostasis of the immune 
system. PUFAs have been associated with both proinflammatory 
(ω6-PUFAs) and anti-inflammatory (ω3-PUFAs) features.44–46

Even though the univariate analysis pointed to differences in 
the serum metabolome and lipidome between PsA and negRA 
patients, none of the identified compounds for itself could clearly 
and accurately distinguish between the two groups. Therefore, a 
multivariate approach was pursued that also accounts for possible 
interactions between the covariates, and a variable selection was 
performed for noise reduction. Even though the model was able 
to reach more than 70% prediction match in the blinded valida-
tion cohort, there were still four patients with a mixed diagnosis 
that could not be assigned to any of the groups. Consequently, 
we must accept that this proposed model will still fail to identify 
patients presenting clinical features of both diseases. Moreover, 
for a translation into clinical practice, it still needs to be tested 
in a larger multinational/multiethnic cohort for its validation 
in genetically heterologous populations. Nonetheless, our data 
propose expanding 1H NMR-based metabolomic and lipidomic 

analyses as a biomarker discovery tool to other autoimmune 
diseases, for which differential diagnosis, response to therapy 
or disease prognosis are still hard to determine or predict.47 
Supported by several reports on successful implementation of 1H 
NMR-based metabolomics as a routine diagnostic tool in clin-
ical settings for non-autoimmune diseases,23 48 49 our study helps 
paving the way to extend this technique to the routine diag-
nostic techniques for autoimmune pathologies. Moreover, our 
data once again highlight that the metabolomic processes associ-
ated with inflammatory rheumatic diseases are different between 
diseases even when clinical feature are similar. Consequently, 
metabolomics and lipidomics are starting to feed a completely 
new field of research in autoimmunity.
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