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Introduction
Sepsis is a serious condition that arises when the body’s 
response to infection causes injury to its own tissues and organs 
and is a great cause of concern among hospitalized patients.1 In 
sepsis, a systemic inflammatory response syndrome (SIRS) is 
caused by the infection. Sepsis can progress into severe sepsis 
accompanied by remote organ dysfunction. Septic shock is the 
most severe form of sepsis that involves presence of arterial 
hypotension and is associated with significantly worse out-
comes.2 The incidence rate of sepsis was found to be around 
6% in 2014 with about 15% of those patients dying as well as 
6.2% of those being admitted to hospice care.3 In addition to 
the high incidence of sepsis in hospitals, high mortality rates, it 
is among the most expensive illnesses to treat in the United 
States. It costs a median of around US$32 421 per patient for 
the entire hospital stay as well as US$27 461 for the intensive 
care unit (ICU) costs.4

As of now, there is no gold standard for diagnosis and pre-
diction of sepsis and septic shock. Currently, septic shock is 
predominantly diagnosed based on a combination of lab tests 
and clinical features such as fever, low blood pressure, and dif-
ficulty breathing, although some sepsis alert systems exist.5-8 
Early diagnosis of this condition is complicated by nonspecific 
clinical signs and symptoms and the fact that not all infections 
lead to sepsis and to progression into septic shock.1 The current 
standard of care for septic shock includes administration of 

antibiotics, antifungal drugs, regulating blood volume, and 
ensuring sufficient tissue perfusion. Surgical source control is a 
measure that is used less often and is recommended at the ear-
liest possible time to obtain the best outcome.9 Early detection 
of sepsis and early administration of antibiotic treatment have 
been known to be the strongest modulators of outcomes in 
patients with sepsis.10 Although highly desirable, early diagno-
sis is also more challenging to accomplish in a clinical setting 
as discussed earlier. Given the nonspecific nature of early 
symptoms, it is impractical to closely monitor all patients in the 
ICU. A screening algorithm that identifies patients at high risk 
of septic shock would enable both higher rates of early diagno-
sis of septic shock and better utilization of often scarce clinical 
resources. Such an algorithm would limit close monitoring to a 
much smaller patient population, making it both practicable 
and invaluable in the ICU setting.

Many prior efforts have been made by other research groups 
to develop algorithms to predict sepsis using electronic medical 
record data from MIMIC or other patient databases11-17; com-
mercial early warning systems are also available.18 It remains 
challenging to benchmark and compare performance of differ-
ent methods due to variation in methods used to identify 
patient cohorts from electronic medical record data and in 
clinical definitions of sepsis. The research presented in this 
article was performed with the objective of using data-driven 
methods that are unbiased by expert knowledge to identify a 
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predictive algorithm for predicting progression into septic 
shock.

The aim of this work is to use publicly available ICU data to 
develop a screening algorithm for early detection of septic shock. 
The algorithm built in this work identifies high-risk patients 
24 hours prior to a digital diagnosis of septic shock. A diagnosis 
that was made by applying certain criterion to electronic medical 
record data is referred to as a “digital diagnosis” within the scope 
of this article. A data-driven approach to developing the risk 
stratification algorithm was adopted through use of advanced 
machine learning and artificial intelligence–based techniques. 
Data-driven approaches are unbiased by current knowledge and 
provide an alternative to expert knowledge-based, hypothesis-
driven approaches. An anonymized clinical database containing 
electronic medical of close to 50 000 patients in the ICU setting 
from the Beth Israel Deaconess Medical Center was used for 
this analysis.19,20 Performance characteristics of the novel risk 
stratification algorithm are described in this article. We also 
attempted to augment currently used sepsis scores with the 
newly identified risk factors and aim to improve performance of 
the scoring systems.

Methods
Data

The MIMIC-III Clinical Database19,20 contains health records 
on ICU admissions from 2001 to 2012 at the Beth Israel 
Deaconess Medical Center. This data set is publicly available21 
and contains a wide range of medical data including laboratory 
test results, vital signs, diagnosis, and procedure codes. The data 
were imported from CareVue clinical information system22 for 
admissions between 2001 and 2008 and MetaVision (provided 
by iMDSoft) between 2008 and 2012. The local copy of the 
database was hosted on a Hadoop23 cluster and was queried 
using Hive.24 R language25 was used for the data processing 
and statistical analysis.

Criterion for identif ication of patients who have 
progressed into sepsis shock

A working definition for digital diagnosis of septic shock is 
described in this section. The definition provided here is used 
as the “gold standard” for (1) building a novel predictive algo-
rithm for septic shock, (2) evaluating performance of a novel 
predictive algorithm for septic shock, and (3) evaluating per-
formance of widely used scoring systems for sepsis. The crite-
rion for identifying patients in septic shock from electronic 
medical record data was based on an earlier work by Kadri 
et al26 The algorithm proposed by Kadri at al was adopted to 
enable use with the MIMIC-III database.

Figure 1 describes the timelines and the clinical criterion 
used to identify progression to septic shock in a patient during 
their stay in the ICU. A patient is considered to have gone into 
septic shock on day 0 if the following conditions are met: (1) 

Relevant vasopressor use occurs on day 0 and day 1. Vasopressor 
drugs that were considered are norepinephrine, epinephrine, 
vasopressin, dopamine, and phenylephrine. Vasopressors were 
identified from the input events and chart events tables in the 
MIMIC-III database. (2) Relevant blood culture orders were 
made from day −2 to day 2 relative to the onset of septic shock. 
Blood culture orders were identified from the microbiology 
events table from the database. (3) Administration of a new 
antibiotic or antifungal from day 0 to day 3 is considered rele-
vant to identification of onset of septic shock. Similarly, paren-
teral administration of antibiotic between day −2 and day 2 is 
also considered relevant. Drug administration was identified 
from the input events table based on National Drug Codes 
(NDCs). National Drug Codes from the MIMIC-III database 
were mapped to the complete NDC directory as listed by the 
Food and Drug Administration.27 The drug class categories as 
defined in the NDC directory were used to identify 2704 anti-
bacterial and 560 antifungal drugs. Based on route of adminis-
tration information from the NDC directory, 1252 antibacterial 
and 226 antifungal drugs were identified to characterize paren-
teral administration of antimicrobials. Details corresponding to 
identification of various features listed here are available in the 
supplementary material.

Patient cohort selection

A cohort of “septic shock patients” or cases was built by apply-
ing the algorithm for digital diagnosis of septic shock as 
described previously. A control cohort was identified by ran-
domly sampling from all admissions in the database not includ-
ing patients who have been identified as progressing into septic 
shock. No matching at the individual patient level was per-
formed—a simple random sampling approach was taken. For 
each patient in the control cohort, a time point during their 
ICU stay was chosen for notional diagnosis of septic shock. 
The time points for notional diagnosis of septic shock in con-
trol patient population was chosen as follows: (1) the number 
of hours of hospital stay prior to diagnosis of septic shock was 
identified for each patient in the septic shock cohort and (2) 
time point of notional septic shock for each patient in the 

Figure 1. Occurrence of septic shock in each patient is identified based 

on 2 conditions: (1) Presence of an indicator of shock (vasopressor use) 

and (2) at least one indicator of presumed infection: blood culture test, 

administration of antibiotics or antifungals. Day 0 is considered to be the 

day of onset of septic shock. Timelines for identification of conditions are 

indicated in the figure.
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control cohort was sampled from the time points calculated 
from the septic shock cohort.

For each patient in the control cohort, a time point for 
notional diagnosis of sepsis was chosen as described above. A 
time point for notional diagnosis of septic shock was chosen to 
temporally align patients from the septic shock and control 
cohorts. Patients in the control cohort do not have a diagnosis 
of septic shock at the time of notional septic shock, however, 
relevant lab and diagnosis code data for the control cohort 
patients was determined based on the time of notional septic 
shock.

Data processing for construction of Bayesian 
networks

For patients in the septic shock and control cohort, data rele-
vant to lab events, specifically the lab test item ID and the 
results from manual interpretation, were extracted from the 
MIMIC-III database for all visits. The extracted lab data were 
inherently discrete with the following levels: normal, abnormal, 
delta (a large or sudden change of a lab result from the previous 
test result), and missing data. If a lab measurement was not 
made for the time window under consideration, the lab meas-
urement was interpreted as “not measured.” The International 
Classif ication of Diseases, Ninth Revision (ICD-9) diagnosis and 
procedure codes for both cohorts were extracted from the 
MIMIC-III database. The large number of ICD-9 codes were 
reduced using the Clinical Classification Software28 (CCS) 
algorithms from the Agency for Healthcare Research and 
Quality. The CCS data set allows for group similar diagnostic 
and procedure codes to increase the density of the data and 
improve interpretability of the codes.

A data set representing snapshots of the medical record of 
the patients 24 hours prior to the diagnosis of septic shock was 
created. For lab data, to increase the completeness of the patient 
profiles, all lab result data between 24 and 30 hours prior to 
diagnosis of septic shock was considered. For diagnosis and 
procedure codes, if the code was observed any time prior to 
24 hours preceding septic shock diagnosis, it was assigned as 
“present.” If the diagnosis or procedure code was not observed 
any time prior to the time point, it was assigned as “absent.”

Model building using bAIcis

An integrated data set containing lab data, diagnosis, procedure, 
and observation of septic shock was created containing all 
patients in both the septic shock and control. A Bayesian net-
work containing inferred cause-and-effect relationships 
between variables in the data set was built using bAIcis. The 
method has been described in previous studies.29,30 Demographic 
information was considered to be fixed information regarding 
the patients. Therefore, in the causal network, no other variables 
were permitted to drive changes in the demographic character-
istics of the patients. Due to temporal nature of the septic shock 

diagnosis in relation to other data elements, the diagnosis of 
septic shock was not permitted to causally drive changes in 
other variables in the data set. An ensemble of 500 causal net-
works were built and the results were summarized as a single 
representative network. The edges (edges link variables/nodes 
in network) were weighted based on the frequency of observa-
tion in the ensemble of networks. The summarized causal net-
work was then filtered to retain only interactions that were 
observed with a frequency of 0.4 or greater. A subnetwork was 
selected from the summarized network to include risk factors 
that drive progression into septic shock. A regression model was 
built using factors from the subnetwork around the outcome of 
septic shock. Multiple thresholds were selected to obtain the 
most desirable model performance in a clinical application. 
Factors included in the regression model were manually selected 
from the subnetwork based on their power to predict septic 
shock.

Calculation of other sepsis scores

Sequential organ failure assessment (SOFA), quick SOFA 
(qSOFA), modified early warning score (MEWS), and SIRS 
were calculated. Based on the scores calculated, patients were 
classified as “high risk of septic shock,” “low risk of septic 
shock,” or “NA” (score could not be calculated). The SOFA 
scores31 were calculated based on published guidelines using 
data from MIMIC-III. Data from the chart events, lab events, 
medication, and diagnosis tables were used. Relevant item IDs 
corresponding to clinical measure of interest such as coagula-
tion were identified though text searches and manual match-
ing. Six categories (Glasgow Coma Scale [GCS], liver function, 
coagulation, renal function, respiratory function, and cardio-
vascular function) were evaluated and the total SOFA score 
was calculated. Changes in SOFA score could not be estimated 
from the data due to lack of resolution in the data set. 
Alternatively, a threshold of 4 was chosen to assign patients to 
the “high risk of septic shock” group. If all measures were una-
vailable or could not be calculated from the data and the SOFA 
score was less than the threshold, the SOFA score was set to 
“NA” to indicate it could not be calculated. For all remaining 
patients, an assignment of “low risk of septic shock” was made. 
The qSOFA score was calculated by accounting for mental sta-
tus, respiratory rate, and blood pressure as described by 
Seymour et al.32 If the qSOFA score was 2 or higher, an assign-
ment of “high risk of septic shock” was made. If the qSOFA 
score was 1 with all 3 measures available in the data set, an 
assignment of “low risk of septic shock” was made. For the 
remaining patients, qSOFA-based assignment of septic shock 
was set to “NA.”

The SIRS score was calculated based on 4 criteria: body 
temperature, heart rate, respiratory rate, and white blood cell 
counts.33 Patients whose scores added up to 2 or greater were 
considered positive for SIRS (“high risk of septic shock”) while 
other patients where the score was calculated were negative for 
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SIRS (“low risk of septic shock”). The Modified Early Warning 
Score (MEWS)34 was calculated based on the patients systolic 
blood pressure, heart rate, respiratory rate, temperature, and 
Alert, Voice, Pain, and Unresponsive (AVPU) scores. The 
AVPU35 scores which are an approximation of the GCS scores 
were not directly available in the MIMIC-III database and 
hence were not estimated. The GCS scores were used in place 
of AVPU scores based on work by Kyriacos et al.36 The GCS 
scores were available in the MIMIC-III database. A MEWS 
score of 2 or greater was used for an assignment of “high risk of 
septic shock,” whereas a combination of availability of all data 
and score of less than 2 was used for assignment of “low risk of 
septic shock.” All other patients were assigned to “NA” cate-
gory based on MEWS scores.

Risk factor selection for predictive model

All first- and second-degree neighbors of septic shock diagno-
sis from the cause-and-effect networks were considered for 
final model selection. For each Bayesian network, stepwise for-
ward selection was performed to identify neighbors that were 
most predictive of septic shock. Based on manual analysis of 
the selected factors, lab results that were most predictive of sep-
sis were identified. Threshold for the general linear model for 
predicting septic shock was selected to maximize sensitivity 
and specificity. All variables considered were discrete variables 
as described earlier in the “Methods” section. A de novo predic-
tive model was built based on lab values that were identified 
through this method. The possible discrete values for the lab 
values were “not measured,” “normal,” and “abnormal.” A deci-
sion tree was built manually to enhance the interpretation of 
the regression model.

Results and Discussion
Patient cohorts and novel predictive model for septic 
shock

A total of 872 septic shock patients and 8293 control patients 
were identified from the MIMIC-III database. Septic shock 
patients were identified using the algorithm for digital diagno-
sis as described in the “Methods” section. The control cohort 
only contains patients who did not have a digital diagnosis of 
septic shock during their stay at the ICU. Details of the patient 
populations are shown in Tables 1 and 2. As shown in Table 2, 
the patient cohorts have differences in the demographic char-
acteristics. For example, there is a difference in age distribution 
of patients in the 2 cohorts. It is already known that patient age 
increases the risk of sepsis.37 In line with this expectation, from 
Table 2, we can see that the control population tends to be 
younger. Diagnosis of septic shock is associated with signifi-
cantly higher mortality rates while in the ICU (relative risk of 
death in septic shock patients = 2.09) as has been documented 
in previous studies.2,38

For 533 patients (391 control cohort patients and 142 septic 
shock cohort patients), data were available at least 24 to 
30 hours prior to diagnosis of septic shock. Other patients did 
not contain any data earlier than 24 hours prior to diagnosis of 
septic shock. This cohort of 533 patients (24-hour cohort) was 
used to infer Bayesian cause-and-effect networks. The data set 
consisted of interpretations of 48 lab tests, 126 ICD-9 diagno-
sis code groups, 4 procedure code groups, patient sex, patient 
age, death during ICU stay, and digital diagnosis status of sep-
tic shock. In the 24-hour cohort, a large proportion of the 
patients that died during the ICU stay had a digital diagnosis 
of septic shock (43%) comparable with published accounts of 
causes of ICU mortality.39,40

Figure 2 shows the complete cause-and-effect network and 
some sample subnetworks. The network after filtering out low-
frequency edges consisted of 181 nodes connected by 353 
edges. When 2 data features are connected by an edge in the 
network, it should be interpreted as the upstream feature 
(demographics, diagnosis, procedure, or lab result) probabilisti-
cally leading to the downstream feature (new diagnosis, proce-
dure being performed, or specific lab test status) in a patient. 
For example, from the inset in Figure 2, it can be inferred that 
patient age trends with high chances of diagnosis of “coronary 
atherosclerosis and other heart disease.” This inference is in 
line with the knowledge that the risk of atherosclerosis and 
heart disease goes up with age. As a second example from the 
inset panel, “disorders of lipid metabolism” (which includes 
codes for high cholesterol levels) is linked to “coronary athero-
sclerosis and heart disease” as expected. A subnetwork around 
septic shock is shown in Figure 2 (right panel). Several diagno-
sis code groups and lab tests are linked to septic shock.

The final regression model that was selected from the 
selected subnetwork (from Figure 2) is shown in Figure 3. 
Figure 3 also shows details of the predictive model that was 
built and its performance characteristics. The model attempts 
to classify patients in high- or low-risk categories for sepsis 
based on the status of several lab tests. The lab tests in the pre-
dictive model (hemoglobin levels, blood pH, and whole blood 
potassium levels) were assigned values of not measured and 
measured (normal or abnormal). A tree representation of the 

Table 1. Patient cohort for sepsis was identified based on definition as 
described in Figure 1.

PATIENT 
COhORT

NO. OF PATIENTS

COMPLETE DATA SET 24-hR wINDOw

All 46 520 533

Septic shock 872 (1.87%) 142 (26.6%)

Control 8293 391

A matching but larger control cohort was defined. All analyses were performed 
on the basis of data per admission.
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Table 2. A χ2 test was performed to compare the patient characteristics between the control and septic shock populations.

PATIENT 
ChARACTERISTICS

TYPE COMPLETE COhORT 24-hR COhORT

CONTROL SEPTIC ShOCk CONTROL SEPTIC ShOCk

Gender M 3919 (44.68%) 459 (54.71%) 211 (53.96%) 79 (55.63%)

F 4853 (55.32%) 380 (45.29%) 180 (46.04%) 63 (44.37%)

Age, y <18 1200 (13.68%) 28 (3.34%) 0 (0%) 0 (0%)

18-30 380 (4.33%) 17 (2.03%) 17 (4.35%) 4 (2.82%)

31-50 1350 (15.39%) 102 (12.16%) 78 (19.95%) 23 (16.2%)

51-60 1291 (14.72%) 142 (16.92%) 65 (16.62%) 23 (16.2%)

61-70 1595 (18.18%) 141 (16.81%) 66 (16.88%) 20 (14.08%)

71-80 1521 (17.34%) 173 (20.62%) 81 (20.72%) 36 (25.35%)

81-89 1047 (11.94%) 171 (20.38%) 52 (13.3%) 33 (23.24%)

90+ 388 (4.42%) 65 (7.75%) 32 (8.18%) 3 (2.11%)

Length of stay, d 0 95 (1.08%) 116 (13.83%) 0 (0%) 0 (0%)

1-5 3584 (40.86%) 546 (65.08%) 141 (36.06%) 75 (52.82%)

6-10 2521 (28.74%) 101 (12.04%) 135 (34.53%) 37 (26.06%)

11-15 1063 (12.12%) 33 (3.93%) 51 (13.04%) 11 (7.75%)

16+ 33 (0.38%) 2 (0.24%) 64 (16.37%) 19 (13.38%)

Died during ICU stay Yes 687 (7.83%) 835 (99.52%) 29 (7.42%) 142 (100%)

No 8085 (92.17%) 4 (0.48%) 362 (92.58%) 0 (0%)

Abbreviation: ICU, intensive care unit.
The null hypothesis that both control and sepsis populations are similar was rejected for all 4 characteristics (P < .01). Septic shock patients tend to be older, have a 
higher proportion of men, and have higher death rates during ICU stay.

Figure 2. The left panel shows the complete summary network from bAIcis. A zoomed-in view of a portion of the complete network including age has 

been superimposed on the complete network. The right panel shows the first- and second-degree neighbors of septic shock. key for nodes in network: 

purple ellipse—patient demographics, orange diamond—outcomes (death during intensive care unit stay, septic shock), green rectangle—diagnosis and 

procedure codes, blue rectangle—lab tests.
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regression model is also shown in Figure 3 to enable easy inter-
pretation of the model.

Comparison With current tools for evaluation for 
septic shock
We attempted to improve current scoring systems such as 
SOFA by building regression models. The “enhanced” models 
were defined as follows: “Progression to septic shock” − Scoring 
method (One of SOFA, qSOFA, SIRS, MEWS) + “lab values 
from de-novo predictive model.” The “score-only” models only 
used one of SOFA, qSOFA, SIRS, or MEWS. Performance of 
the “score-only” models and the “enhanced” models on the 
MIMIC-III database is shown in Table 3. Only patients for 
whom both the score calculation was possible and lab data were 
available for 24-hour time point were included in this analysis. 
Cohorts for each score were created separately based on data 
availability. It was observed that while the SOFA score was 
more complex due to the large number of clinical measures 
needed, the data were more readily available (279 patients in 
cohort). Cohorts for other scores were smaller due to larger 
degree of missingness of relevant data.

Discussion
While several definitions of sepsis (sepsis 1, sepsis 2, and sepsis 
3) are in use, they define different patient populations with 

differing clinical trajectories. Sepsis 1 and sepsis 2 have been 
shown in several studies to have poor sensitivity and hence have 
lower mortality rates41-43 when compared with sepsis 3. While, 
in theory, any definition of sepsis can be used in the develop-
ment of predictive algorithm, the intended end point of this 
work was to develop a screening algorithm for septic shock. 
Sepsis 3 was chosen as a basis of this work due to greater speci-
ficity and higher mortality rates in this population depending 
on patient’s responsiveness to fluids, need for vasopressor use, 
and lactate levels. Using training data with higher specificity is 
likely to result in an algorithm with better clinical utility as a 
screening tool for sepsis—identify a small, high-risk patient 
subpopulation.

It has been shown in several studies that even small delays 
in diagnosis of sepsis can lead to significant impacts on out-
comes44-46 in the form of high mortality rates. Therefore, we 
attempted to build an algorithm to predict patients at risk of 
progression into septic shock 24 hours ahead of time. Data cor-
responding to patient status between 24 and 30 hours prior to 
diagnosis of septic shock were used to create predictive model 
for septic shock. Many prior attempts have been made to 
develop such algorithms and early warning has ranged from 4 
to 24 hours prior to diagnosis of sepsis.11-17 Effective compari-
son of various algorithms, though, possible will involve major 
efforts and are outside of the scope of the work presented here. 

Figure 3. (A) This panel shows the details of the regression model for predicting patients’ risk of progressing into septic shock 24 hours prior to diagnosis 

of septic shock. (B) Two different model cutoffs were selected for assessing model performance. (C) Receiver operating characteristic curve for model. 

Orange dashed line—0.15 cutoff, green dashed line—0.23 cutoff. The AUC curve was built by interpolating between points measured in the data set as 

predictive data was discrete. (D) This panel shows a decision tree that represents the regression model used to identify patients at high risk of sepsis. 

Two different thresholds were selected to allow for different false-negative and true-positive rates. The thresholds are 0.23(*) and 0.15(+). Predictions are 

made to classify patients as “high” risk and “low” risk. For each prediction, the following information is presented: (number predicted/actual numbers 

based on assessed septic shock risk). AUC indicates area under the curve; NPV, negative predictive value; PPV, positive predictive value.
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Complexity in comparing algorithms arises from multiple 
causes—variations in definitions of sepsis, reproducibility of 
methods, differences in evaluation of model performance, and 
data sets used.

One potential clinical application of a screening tool for 
septic shock is that it is used to identify a small subset of 
patients at very high risk. It should be feasible to closely moni-
tor these patients or potentially start early intervention prior to 
confirmed diagnosis of septic shock. These high-risk patients 
can be provided antimicrobial treatments and fluids as they are 
known to be the most effective therapies for septic shock.47-49 
Early administration of antibiotics and fluids has been shown 
to provide most benefit measured through mortality rates.50-53 
Use of antimicrobial treatments and fluid resuscitation is rela-
tively benign, whereas the outcomes can be lethal if treatment 
is delayed. Given that earlier detection of sepsis is known to 
result in better outcomes, therefore, use of algorithm can facili-
tate better allocation of resources to identify patients with sep-
sis early in the course of the disease. Despite the small number 
of patients who develop septic shock, this algorithm has mod-
erately high positive predictive value and high negative predic-
tive value as shown in Figure 3. Additional work is necessary to 
validate the algorithm using a larger or more diverse patient 
population.

A few different scoring metrics have been created for clini-
cal use to track sepsis in patients in ICU. One of the most well-
known scores to assess sepsis is the sepsis-related organ failure 
assessment (SOFA) score. It was introduced in 1996 by Vincent 

et al.54 A variant of the SOFA score, qSOFA, is primarily used 
for mortality prediction but not to clinical track sepsis. 
Modified early warning score has been used as a tool for screen-
ing for sepsis and to identify patients at risk of clinical deterio-
ration.55 Systemic inflammatory response syndrome33,56 scores 
are also used to assess patient sepsis status.

From these results shown in Table 3, we observe that while 
calculation of qSOFA is based only on a few measures and 
therefore is easy to estimate in the clinic, the model perfor-
mance in risk stratification of patients is weak as has been 
observed in several earlier studies.57-59 Only about half the 
patients at high or low risk of developing septic shock are clas-
sified correctly. The qSOFA has been observed to be a better 
predictor of in-hospital mortality but poorly predictive of 
severe sepsis.60 Based on results of this analysis, we concur with 
earlier studies that qSOFA score is a poor predictor of severe 
sepsis or septic shock. The performance of qSOFA could be 
improved by adding variables from the de novo sepsis predic-
tion algorithm. The SOFA score while having good model per-
formance in correctly classifying risk is based on many more 
variables and hence is more difficult to calculate in the clinical 
setting. Based on the implementation of SIRS and MEWS 
scores, they are observed to have strong performance in identi-
fying patients who are at low risk of septic shock but do not 
identify a large majority of patients at high risk of septic shock. 
Some previous work has shown that SIRS and SOFA scores 
have low sensitivity59 validating our observations. The SOFA 
score could not be significantly improved by augmenting with 

Table 3. Performance of “score-only” and “enhanced” models.

MODEL SAMPLE 
SIzE

MATCh BY NEGATIVE 
PREDICTIVE 
VALUE

POSITIVE 
PREDICTIVE 
VALUE

SENSITIVITY SPECIFICITY

qSOFA 46 — 0.55 0.54 0.55 0.54

Augmented qSOFA model Sensitivity 0.61 0.64 0.56 0.68

Specificity 0.66 0.61 0.73 0.54

SOFA 279 — 0.85 0.68 0.12 0.99

Augmented SOFA model Sensitivity 0.85 0.72 0.12 0.99

Specificity 0.86 0.69 0.13 0.99

SIRS 57 — 0.99 0.21 0.95 0.51

Augmented SIRS model Sensitivity 0.99 0.27 0.95 0.64

Specificity 0.99 0.21 0.95 0.51

MEWS 29 — 0.97 0.21 0.85 0.63

Augmented MEwS model Sensitivity 0.98 0.24 0.85 0.70

Specificity 0.98 0.21 0.89 0.63

Abbreviations: MEwS, modified early warning score; qSOFA, quick sequential organ failure assessment; SIRS, systemic inflammatory response syndrome; SOFA, 
sequential organ failure assessment.
Youden index was used for threshold selection in the “score-only” models. Threshold for the “enhanced” models were calculated by fixing either sensitivity or specificity to 
that of corresponding “score-only” models. The values in italics were optimal threshold using Youden’s index.



8 Biomedical Informatics Insights 

the de novo model, whereas the specificity could be improved 
in the augmented models for SIRS and MEWS.

Conclusions
In this article, we present an algorithm for screening patients at 
high risk of septic shock and a number of novel risk factors for 
sepsis that were discovered using data-driven approaches and 
advanced statistical analysis techniques. The screening tool 
built as part of this work should be further developed for clini-
cal use where it will be used to screen for patients in need of 
close monitoring due to their increased risk of developing sep-
tic shock. This algorithm was developed on data from one hos-
pital system. Therefore, additional work needs to be done to 
validate and refine the risk stratification model presented here 
on a larger multicenter data set.

The novel risk factors are laboratory measurements and are 
accessible in the hospital setting. The incorporation of the new 
data into the currently used sepsis prediction models provides a 
modest improvement of the prediction accuracy. However, 
even a slight improvement in patient selection could poten-
tially have an enormous financial impact and save patient lives.
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