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Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are
involved in many leukocyte functions. An excessive or inappropriate ROS production can
lead to oxidative stress and tissue damage. On the other hand, an absence of ROS
production due to a lack of a functional NADPH oxidase is associated with recurrent
infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH
oxidasemust be tightly regulated. The NOX2 complex bears bothmembrane and cytosolic
subunits. The membrane subunits constitute the flavocytochrome b558, consisting of
gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting
cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte
stimulation, the cytosolic subunits and the small GTPase Rac assemble with the
flavocytochrome b558 in order to make a functional complex. Depending on the
stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at
the plasma membrane. Many studies have explored NOX2 activation; however, how this
activation is sustained and regulated is still not completely clear. Here we review the
multiple roles of NOX2 in neutrophil functions, with a focus on description of its
components and their assembly mechanisms. We then explain the role of energy
metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular,
we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through
neutrophil activation and the level of released ROS, and 2) the role of membrane
phosphoinositides in controlling the duration of NOX2 activity.

Keywords: NADPH oxidase (NOX2), phagocytose, phosphoinositides, metabolism, neutrophil

INTRODUCTION: NADPH OXIDASE ROLES IN NEUTROPHIL
FUNCTIONS

The first discovered role of ROS produced by NOX2 was pathogen killing. Upon phagocytosis the
NADPH oxidase is activated and produces superoxide anions, O2

.-, inside the phagosome as soon as
the phagosome has formed (Tlili et al., 2011). Inside the phagosome, O2

.- dismutates into hydrogen
peroxide, H2O2. In neutrophils, the granules release myeloperoxidase (MPO) which catalyzes the
formation of hypochlorous acid (HOCl) from chloride ions and H2O2. Several millimolars of O2

.- are
produced in the phagosome. Neither the ROS chemistry nor the mechanism of toxicity of this species
within the peculiar environment of the phagosome have been well defined (Winterbourn et al., 2016).

Evidence for the involvement of ROS in pathogen killing comes largely from people who lack a
functional NADPH oxidase as in the chronic granulomatous disease (CGD). In this genetic disease,
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people are faced with chronic and persistent infections.
Neutrophils isolated from these patients are defective in killing
bacteria and fungi (Klebanoff, 2005). Moreover, recent data
indicate that CGD neutrophils have an increased cytokine
production and secretion of the chemoattractant leukotriene
B4 when they are challenged with fungus particles (Song et al.,
2020a; Yoo et al., 2021). This increased cytokine and leukotriene
B4 production probably contributes to the aberrant inflammation
observed in CGD patients. The production of H2O2, thanks to
NADPH oxidase activation, modulates the signaling pathways
involved in cytokine production although their specific targets
have not been identified (Yoo et al., 2021). Among the potential
targets, the activity of NF-κB, which is involved in inflammatory
mediator transcription, has been shown to undergo a redox
regulation (Trevelin et al., 2020).

NADPH oxidase activation is triggered by phagocytosis but
also by soluble stimuli. Long-lasting NADPH oxidase activity has
been observed in vitro in adherent neutrophils stimulated by
cytokines or bacterial chemotactic peptides such as N-formyl-
methionyl-leucyl-phenylalanine (fMLP) (Fumagalli et al., 2013;
McMillan et al., 2014; Song et al., 2020b). Following stimulus of
this type, NOX2 assembles at the plasma membrane and
produces ROS in the extracellular medium.

This ROS production then regulates the migration of neutrophils
(Trevelin et al., 2020). Kuiper et al. showed that upon stimulation by
a fMLP gradient, the ROS produced inhibit the activity of the lipid
phosphatase PTEN (Phosphatase and TENsin homolog) at the cell
front (Kuiper et al., 2011). The inhibition occurs through oxidation
of cysteine 124 in the catalytic site (Lee et al., 2002). PTEN inhibition
prevents the phosphatidylinositol 3,4,5-trisphosphate (PIP3)
dephosphorylation at the cell front. This PIP3 accumulation is a
key event for the activation of signaling molecules involved in
neutrophil polarization and chemotaxis (Wang, 2009).
Furthermore, ROS induce actin glutathionylation which is
necessary for chemotaxis in vitro and for the recruitment of
neutrophils to the site of infection in vivo (Sakai et al., 2012).

NADPH oxidase activity has also been shown to be involved in
neutrophil apoptosis (Dupre-Crochet et al., 2013) and, more
recently, in the formation of neutrophil extracellular traps
(NETs) which consist of decondensed chromatin associated
with granule proteins such as MPO and neutrophil elastase.
The release of NETs can be fatal to neutrophils since they
eventually explode to release these NETs. The involvement of
ROS in NETs formation seems to depend on the stimulus (Kenny
et al., 2017). NETs avert the dissemination of the pathogen;
however, produced in excess or in an inappropriate context,
NETs may in fact contribute to the disease process (Sollberger
et al., 2018). Recently NETs have been described in COVID
infections, where they have been shown to contribute to tissue
injury and immunothrombosis (Veras et al., 2020; Ackermann
et al., 2021).

Moreover, an excessive NADPH oxidase activation can be
detrimental for the surrounding tissues. Excess ROS production
by neutrophils has been involved in auto-immune diseases
(Glennon-Alty et al., 2018) and chronic inflammatory disease
states, such as periodontal disease or chronic obstructive
pulmonary disease (COPD) (Jasper et al., 2019; Zeng et al.,

2019). In COPD, activated neutrophils are recruited to the
lungs of the patients. ROS produced by the NADPH oxidase
contribute to the oxidative stress, which leads to increased
inflammation, cellular senescence, altered organelle functions
especially mitochondria functions and DNA damage (Barnes,
2022). These pathophysiological effects of oxidative stress in
COPD has been described in recent reviews (Manevski et al.,
2020; Barnes, 2022).

Below, we discuss the NADPH oxidase components and their
assembly mechanism, and then review the role of energy
metabolism and phosphoinositides in regulating the NADPH
oxidase activity.

NADPH Oxidase Components and
Assembly
The phagocyte NADPH oxidase is made of two membrane
subunits, gp91phox/Nox2 and p22phox, three cytosolic
subunits, p40phox, p47phox, p67phox, and the small GTPase
Rac. The membrane-bound NADPH oxidase subunits are
located at the plasma membrane and also in the endocytic
compartments in macrophages and neutrophils (Casbon
et al., 2009; Joly et al., 2020). In these latter cells however
most of the membrane subunits of the NADPH oxidase
reside in granules (Borregaard et al., 1983; Lominadze et al.,
2005). During phagocytosis, granules and endocytic
compartments fuse with the phagosome providing it with
membrane subunits as well as lytic enzymes. Nox2 is a
91 kDa glycoprotein responsible for NOX2 catalytic activity.
It transfers electrons from cytosolic NADPH to O2 producing
superoxide anions (Vermot et al., 2021). The p22phox subunit
stabilizes Nox2 at the plasma membrane and enables
Nox2 heme acquisition (DeLeo et al., 2000). In its
C-terminus, p22phox bears a proline-rich region (PRR), which
interacts with p47phox SH3 (SRC Homology 3) domains and
may also interact with the same domain in p40phox (Tamura
et al., 2007). In the resting state, the cytosolic subunits p47phox,
p67phox and p40phox form a heterotrimeric complex. p67phox

binds to the PRR domain of p47phox via its SH3 domain.
p40phox-p67phox interaction involves the PB1 (Phox and
Bem1) domains of both proteins (Vermot et al., 2021).

A 3D model of the complex has recently been proposed based
on biophysical studies and structural data: the complex has an
elongated shape; the non-structured C-ter of p47phox constitutes a
flexible region that may facilitate interaction with the membrane
subunits (Ziegler et al., 2019). p47phox and p40phox also contain a
PX (PhoX homology) domain that interacts with anionic
phospholipids of the membrane (see paragraph 2.3 below)
(Ellson et al., 2001; Kanai et al., 2001; Karathanassis et al.,
2002). However, in the resting state, p47phox, like p40phox, is in
an auto-inhibitory conformation, preventing the formation of the
complex (Ago et al., 1999; Karathanassis et al., 2002; Honbou
et al., 2007).

NADPH oxidase can be activated by signalling pathways
triggered by soluble stimuli such as fMLP or by pathogen
phagocytosis. The phagocytosis is promoted by opsonins i.e.,
immunoglobulins G and complement molecules (C3b and C3bi)
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that cover the pathogen following antibody production and
activation of the complement. Certain agents can potentiate
the activation of NOX2. NOX2 is then in a “primed” state and
the NOX2 activity is higher after an activation by a second
stimulus such as those mentioned above. Such priming agents
include some cytokines, chemo-attractants and Toll-like receptor
agonists (El-Benna et al., 2016). EL-Benna et al. describe these
priming events in detail in the preceding review.

Upon neutrophil stimulation, p47phox specific serines are
phosphorylated by different kinases (MAPK, PKC ...)
(Belambri et al., 2018) and these phosphorylations unfold
p47phox. P47phox can then interact with p22phox and anionic
phospholipids at the plasma membrane thus mediating the
recruitment of p67phox and p40phox. Concomitantly, Rac2,
highly expressed in neutrophils, dissociates from a GDP
dissociation inhibitor (GDI) and exchanges its GDP with GTP.
The GTP-bound Rac2 associates with the membrane via its
polybasic domain and prenyl group, and binds to p67phox

(Bokoch and Diebold, 2002). Rac2-p67phox interaction favours
the binding of p67phox to Nox2 and may participate together with
p67phox, in regulating the electron flow from NADPH to oxygen,
leading to superoxide anion production (Nisimoto et al., 1999;
Bokoch and Diebold, 2002).

Different studies, including our own, have observed the
dynamics of the cytosolic subunits during phagocytosis using
time-lapse confocal video-microscopy (Li et al., 2009; Matute
et al., 2009; Tlili et al., 2012; Faure et al., 2013; Song et al., 2017).
The following model can be proposed: the complex assembly
occurs as soon as the phagocytosis starts, then p47phox and
Rac2 leave the phagosome within a few minutes, whereas
p40phox and p67phox stay until the end of ROS production
(Figure 2A, see paragraph 2.3).

Because of their major roles in neutrophil functions, ROS
production and NADPH oxidase activity are highly regulated in
space and time. This regulation has been extensively studied and
depends on the subunit expression (Nunes et al., 2013), the
phosphorylation of NOX2 subunits (Belambri et al., 2018), the
trafficking of the subunits to the phagosomal or plasma
membrane and ion fluxes (Nunes et al., 2013).

In the following section, we will focus on the role of energy
metabolism and phosphoinositides in regulating NADPH
oxidase activity.

Interconnection of Neutrophil Energy
Metabolism and NADPH Oxidase Activity
NADPH oxidase activation is dependent on cytoskeleton
modifications (Bengtsson et al., 1991), on phosphorylation of
cytosolic factors, especially p47phox, and membrane cytochrome
b558 (Nox2 and p22phox) (El Benna et al., 1997; Bouin et al., 1998;
Regier et al., 1999; Raad et al., 2009), and on NADPH availability.
All these processes require energy.

In physiological conditions, neutrophil cell metabolism
depends essentially on glucose and on the glycolytic pathway
for ATP production and energy supply (Borregaard and Herlin,
1982; Anderson et al., 1991; Maianski et al., 2004). Treatment of
neutrophils with a glycolysis inhibitor completely abolished

phorbol myristate acetate (PMA)-induced NOX2 activity
(Chacko et al., 2013).

Furthermore, 6-phosphofructo-2-kinase (PFK2), an enzyme
involved in glycolysis regulation, has been identified in the active
NOX2 complex isolated from neutrophils stimulated with PMA.
Inhibition of PFK2 expression leads to a decrease in
NOX2 activity, indicating spatial and functional interactions
between enzymes involved in energy metabolism and the
phagocyte NOX2 complex (Baillet et al., 2017).

However, the story is not so simple! Neutrophils were
considered for decades as a homogeneous cell population with
a short half-life and a nearly absence of transcriptional activity
(Mantovani et al., 2011). However, recent studies reported
heterogeneity of neutrophil phenotypes and revealed the
highly-developed plasticity of these cells in response to various
physiological and pathological conditions (Silvestre-Roig et al.,
2019; Yang et al., 2019). This heterogeneity is especially evident in
their functions and their capacity to produce reactive oxygen
species via NOX2 activation.

When NOX2 is activated, electrons are transferred from the
donor, NADPH, to the acceptor, O2 then leading to the release of
superoxide anions. This process called “oxidative burst” is
extremely fast and requires a large amount of NADPH, the
NOX2 cofactor. NADPH availability appears to be a key
element in spatial and temporal NOX2 activation. NADPH
concentration has been shown to oscillate in a wave-like
manner in resting neutrophils. In stimulated neutrophils, the
amplitude and/or frequency of NADPH oscillations increase
according to the nature of the stimulus (Petty, 2001). Changes
in stimulus-induced NADPH oscillations have been correlated
with abnormality of NOX2-derived ROS production in
neutrophils from patients suffering from chronic inflammatory
disorders. This observation suggests a link between NADPH
concentration and NOX2 activity (Petty, 2001).

The main source of NADPH in neutrophils is the glucose-
dependent pentose phosphate pathway (PPP). Activation of
neutrophils with various stimuli leads to an increase in PPP
metabolites (Britt et al., 2022). In the PPP oxidative phase, the
enzymes glucose-6-phosphate dehydrogenase (G6PD) and 6-
phosphogluconate dehydrogenase (6 PGDH) catalyse the two
steps leading to NADPH generation (Curi et al., 2020).
Activity of G6PD and 6 PGDH is involved in NOX2 activity
regulation. Patients with severe G6PD deficiency are more
susceptible to infections and present dysfunctions in
neutrophil microbicidal mechanisms (Gray et al., 1973).
Moreover, G6PD deficiency may result in an absence of ROS
production by PMA-stimulated neutrophils (Tsai et al., 1998). At
the molecular level, G6PD and 6 PGDH form a supramolecular
complex mainly localized at the periphery of neutrophils. This
localization facilitates the interaction with the G6PD substrate
i.e., glucose-6-phosphate, produced at the plasmamembrane, and
thus the production of NADPH (Kindzelskii et al., 2004).
Interestingly, in neutrophils from pregnant women, the
complex G6PD/6 PGDH is relocalized to the microtubule-
organizing-center, modifying the site of NADPH release. This
difference correlates with the decrease in NOX2-derived ROS
production observed in neutrophils from pregnant women
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(Kindzelskii et al., 2004). Excitingly, proteomic analysis of the
constitutively active NOX2 complex isolated from neutrophils
has revealed the association of 6 PGDH with the active
NOX2 complex and the role of 6 PGDH in the modulation of
ROS production via NADPH availability (Baillet et al., 2011).

Cellular micro-compartmentation, coupling energy metabolism
to ROS production, provides an additional level of NADPH oxidase
activity regulation (Figure 1).

Phosphoinositide Dynamics and NADPH
Oxidase Regulation
Metabolism contributes to the regulation of NOX2 activity whose
assembly is dependent on the subunit interaction. However, not
only protein-protein binding is important for NADPH oxidase
activity, but also protein-lipid binding. P47phox and p40phox have a
PX domain. The PX domain of p47phox has two binding pockets:

one prefers phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and
the other binds phosphatidic acid and phosphatidylserine, whereas
the PX domain of p40phox binds PI3P (Ellson et al., 2001; Kanai
et al., 2001; Karathanassis et al., 2002; Stahelin et al., 2003). The
phosphoinositide composition of the inner leaflet of the membrane
during neutrophil activation is crucial to sustain NADPH oxidase
activity. The understanding of the importance of the p40phox-PX
for ROS production came from the discovery of a CGD patient
with a mutation of a critical residue for PI3P binding in the PX
domain (Matute et al., 2009). Neutrophils of this patient presented
a substantial defect in intracellular ROS production during
phagocytosis of Aspergillus fumigatus hyphae or serum
opsonized fungus particles but not upon activation of
neutrophils by soluble stimuli (Matute et al., 2009; Bagaitkar
et al., 2012). Neutrophils of mice bearing a PX mutation in
p40phox also had a reduced ROS production upon phagocytosis
although this depends on the stimulus (Ellson et al., 2006;

FIGURE 1 | Interconnecting cell metabolism and NOX2 activity in neutrophils. (A). In resting neutrophils, energy metabolism depends essentially on glucose and on
the glycolytic pathway for ATP production and energy supply. NOX2 is dissociated and inactive. (B). Upon cell stimulation (PMA, opsonized bacteria, fMLP), the oxidative
phase of the PPP is activated, leading to an increase in NADPH concentration, a limiting cofactor for NOX2 complex activity. Micro-compartmentation coupling enzymes
involved in the energy metabolism (G6PD and 6 PGDH) and NOX2 complex represent an additional level of NADPH oxidase activity regulation (G6P: Glucose-6-
Phosphate; 6 PG: 6-PhosphoGluconate; R5P: Ribulose-5-Phosphate)Parts of this figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by
Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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Anderson et al., 2010). In p40phox, the PX domain is masked by an
intramolecular interaction (Honbou et al., 2007) which is removed
in the presence of H2O2 and when p40phox is targeted to the
membrane (Ueyama et al., 2011). Thus, it may be only when the
p40phox/p67phox/p47phox complex is at the membrane that p40phox

can bind to PI3P.
The NADPH oxidase complex assembles at the phagosomal

cup. At this time PI (3,4)P2 and PIP3 accumulate in the inner leaflet
of the phagosomal cup. This accumulation is transient and
followed by the rise of PI3P in the inner leaflet 1 min after the
phagosome sealing. PI3P can be generated through
dephosphorylation of PI(3,4)P2 and by phosphorylation of
phosphatidylinositol by the class III phosphoinositide 3-kinase
(PI3K) (Vieira et al., 2001; Valenta et al., 2020; Montaño-Rendón
et al., 2021). Using the PX of p40phox tagged with GFP as a PI3P
biosensor, we observed that PI3P lasted around 15min at the
phagosome of opsonized fungus particles in neutrophil-like
PLB-985 cells. Expressing fluorescent protein fusion of p40phox

and p67phox in these cells allowed us to prove that the timing of
their disappearance at the level of the phagosome correlated with
that of PI3P. Moreover, we showed that the protein Rubicon, a
negative regulator of Class III PI3K (Sun et al., 2011), and the PI3P
phosphatase Myotubular Myopathy 1 (MTM1) (Cao et al., 2008;

Amoasii et al., 2013), were present at the phagosome. Knocking
down these two proteins increased the time that the PI3P
biosensor, p40phox and p67phox remained present at the
phagosomal membrane and also ROS production inside the
phagosome. In contrast, overexpression of MTM1 at the
phagosome prevented the accumulation of PI3P, p40phox and
p67phox and ROS production. Thus, the disappearance of PI3P
from the phagosomal membrane controls the disassembly of the
NADPH oxidase complex and thus the ROS production inside the
phagosome (Song et al., 2017) (Figure 2A).

The NADPH oxidase also assembles at the plasma membrane
and produces ROS in the extracellular medium. This ROS
production is involved in neutrophil migration and may have
other physiological consequences. However, this can also be
detrimental contributing to thrombus formation (Gutmann
et al., 2020). A long-lasting NADPH oxidase activation at the
plasma membrane has been observed, in vitro, in β2 integrin
dependent adherent neutrophils stimulated or not by fMLP or
TNF (Fumagalli et al., 2013; Houslay et al., 2016; Song et al.,
2020b). Integrins, in their active conformation, stimulated
different intracellular pathways including the production of
PI(3,4)P2 and PIP3 by class I PI3K (Mócsai et al., 2015). Class
I PI3K works as a heterodimer possessing p110 catalytic subunits

FIGURE 2 | Regulation of the NADPH oxidase by phosphoinositides. (A). Upon phagocytosis of serum opsonized fungus particles, PI(3,4)P2 and PIP3 accumulate
in the inner leaflet of the phagosomal membrane. At the same time, the cytosolic subunits (p67phox, p47phox and p40phox) and the small GTPases Rac2 associate with the
membrane subunits (Nox2 and p22phox). Soon after phagosome closure, p47phox and Rac2 leave the phagosome. The detachment of p47phox is concomitant to the
decrease in the level of PI(3,4)P2 and the accumulation of PI3P in the cytosolic leaflet of the early phagosome. The binding of p40phox to PI3P sustains the NADPH
oxidase activity. The disappearance of PI3P induces the disassembly of the complex. (B). Integrin dependent adherent neutrophils, stimulated or not by fMLP, produce
ROS via NADPH oxidase activation. Class I PI3Ks are also activated and are necessary to sustain NADPH oxidase activation. Inhibition of Class I PI3Ks, especially the β
isoform, deactivate the NADPH oxidase by triggering its disassembly. Class I PI3K products maintain the cytosolic subunits at the plasmamembrane probably via the PX
domain of p47phox (created with “BioRender.com”).

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 9457495

Paclet et al. NADPH Oxidase Regulation in Neutrophils

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


and regulatory subunits. Two subclasses, IA and IB, can be
distinguished. Subclass IA comprises three types of catalytic
subunits (p110α, p110β, p110δ) that share several regulatory
subunits: p85, p50 and p55 (Balla, 2013).

The pharmacological inhibition of class I PI3K in adherent
neutrophils, and especially p110β, halted integrin mediated ROS
production. Expression of tagged p47phox, p40phox and p67phox in
neutrophil-like PLB-985 cells allowed us to observe, by total
internal reflexion fluorescence video-microscopy and after
class I PI3K inhibition, the release of these subunits from the
plasma membrane. Our results suggest that this mechanism
involves the PX domain of p47phox, which binds PI (3,4)P2
(Figure 2B). This is coherent with the fact that mutation in
some critical residues involved in PI(3,4)P2 binding only slightly
modified ROS production at the phagosome but drastically
affected that at the plasma membrane following fMLP
activation (Li et al., 2010; Olsson et al., 2017). Thus, Class I
PI3K products may be important for the deactivation of the
NADPH oxidase at the plasma membrane whereas PI3P would
act on the timing of NADPH oxidase activation at the phagosome
(Figure 2).

CONCLUDING REMARKS

A fine-tuned regulation of the NADPH oxidase is necessary.
Polymorphism in the NADPH oxidase genes leading to low ROS
production has recently been associated with autoimmune
diseases such as systemic lupus erythematosus (Olsson et al.,
2017). In contrast, excess activation of neutrophils and NADPH

oxidase dependent ROS production contribute to several
chronic inflammatory diseases. Inhibitors of class I PI3K
isoforms are currently in clinical testing or approved for
drug use (Miller et al., 2019) and thus may be interesting
targets in order to reduce the duration of NADPH activity at
the plasma membrane. Modulating cellular metabolism by
regulating the PPP pathway could be a way to moderate or,
on the contrary, to increase NOX2-dependent ROS
production. Furthermore, it may be of great interest to
selectively target NOX2 at the plasma membrane versus
phagosomal membrane.
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