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Abstract 

Background: Prostaglandins (PG) are lipid mediators derived from arachidonic acid metabolism. They are involved 
in cellular processes such as inflammation and tissue homeostasis. PG production is not restricted to multicellular 
organisms. Trypanosomatids also synthesize several metabolites of arachidonic acid. Nevertheless, their biological role 
in these early‑branching parasites and their role in host‑parasite interaction are not well elucidated. Prostaglandin  F2α 
synthase (PGF2S) has been observed in the Leishmania braziliensis secreted proteome and in L. donovani extracellular 
vesicles. Furthermore, we previously reported a positive correlation between L. braziliensis PGF2S (LbrPGF2S) expres‑
sion and pathogenicity in mice.

Methods: LbrPGF2S gene expression and PGF2α synthesis in promastigotes were detected and quantified by west‑
ern blotting and EIA assay kit, respectively. To investigate LbrPGF2S localization in amastigotes during bone marrow‑
derived macrophage infection, parasites expressing mCherry‑LbrPGF2S were generated and followed by time‑lapse 
imaging for 48 h post‑infection. PGF2S homolog sequences from Leishmania and humans were analyzed in silico 
using ClustalW on Geneious v6 and EMBOSS Needle.

Results: Leishmania braziliensis promastigotes synthesize prostaglandin  F2α in the presence of arachidonic acid, with 
peak production in the stationary growth phase under heat stress. LbrPGF2S is a cytoplasmic protein enriched in the 
secretory site of the parasite cell body, the flagellar pocket. It is an enzyme constitutively expressed throughout pro‑
mastigote development, but overexpression of LbrPGF2S leads to an increase of infectivity in vitro. The data suggest 
that LbrPGF2S may be released from intracellular amastigotes into the cytoplasm of bone marrow‑derived mac‑
rophages over a 48‑hour infection period, using time‑lapse microscopy and mCherry‑PGF2S (mChPGF2S)‑expressing 
parasites.

Conclusions: LbrPGF2S, a parasite‑derived protein, is targeted to the host cell cytoplasm. The putative transfer of this 
enzyme, involved in pro‑inflammatory lipid mediator synthesis, to the host cell suggests a potential role in host‑para‑
site interaction and may partially explain the increased pathogenicity associated with overexpression of LbrPGF2S in L. 
braziliensis. Our data provide valuable insights to help understand the importance of parasite‑derived lipid mediators 
in pathogenesis.
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Background
Leishmania (Viannia) braziliensis is the most virulent 
agent of localized cutaneous (LCL) and mucocutaneous 
(MCL) leishmaniases in Brazil [1]. Mucosal commitment 
occurs in approximately 5–10% of patients infected with 
L. braziliensis [2] and this clinical form is most often 
diagnosed months or years after the primary clinical 
manifestation of LCL. Otorhinolaryngological examina-
tion of patients from an endemic area in Brazil detected 
the parasite in the nasal mucosae during early infection, 
in the absence of mucosal lesions [3]. The mechanisms 
that facilitate mucosal involvement during L. braziliensis 
infection are poorly understood.

In a previous study, we performed gene expression 
analyses on two pairs of mucosal and cutaneous L. bra-
ziliensis isolates, in which proteomic profile differences 
between isolates were detected [4]. Comparative prot-
eomic analysis revealed a consistently differential pattern 
of prostaglandin  F2α synthase expression (LbrM.31.2410; 
LbrPGF2S), with higher protein abundance in cutaneous 
isolates compared to mucosal isolates [4]. Data deposited 
on TriTrypDB (tritrypdb.org) indicate that LbrPGF2S 
has been identified in the secretome of L. braziliensis and 
exosomes derived from Leishmania donovani. In addition, 
the Tropical Disease Research Targets Database (tdr-
targets.org) indicates that the Leishmania major PGF2S 
(LmPGF2S) homolog has 13 putative antigenic epitopes 
with 77.8% antigenicity. The structure of LmPGF2S pro-
tein has been resolved by crystallization [5] facilitating 
future study for drug design using this protein.

The synthesis and functions of prostaglandins (PGs) 
are well characterized mainly in terms of mammalian 
physiology. In mammals, prostaglandin synthases cata-
lyze the production of prostaglandins using arachidonic 
acid (AA) metabolites as substrates. AA is removed from 
membranes by the action of phospholipase A2 and con-
verted into prostaglandin H2  (PGH2) by cyclooxygenases 
(COX-1 or COX-2).  PGH2 is then converted into several 
metabolites, such as  PGD2,  PGE2 and  PGF2α, by prosta-
glandin synthases (e.g. PGF2S) [6]. In mammals,  PGF2α 
is mostly related to ovulation, luteolysis, uterine con-
traction and the onset of labor [7]. However, it has been 
recently reported that PG production is not restricted to 
mammals, occurring in trypanosomatids [6] and other 
protozoan parasites, such as Plasmodium falciparum [8] 
and Entamoeba histolytica [9] [10]. High levels of  PGF2α 
have been detected in Trypanosoma brucei, catalyzed by 
TbPGF2S from  PGH2 [11]. The prostaglandin  F2α syn-
thase activity has been demonstrated for three trypano-
somatids orthologous genes. Roberts and colleagues [12] 
have shown that, in spite of the lack of credible cyclooxy-
genases, these parasites use arachidonic acid as a sub-
strate to produce  PGF2α. Additionally, these and other 

authors demonstrated that some of these kinetoplastid 
aldo-keto reductases metabolize toxic ketoaldehydes, 
playing a role as detoxification agents and possibly acting 
in cellular defense [12, 13]. However, the importance of 
these pathways for parasite biology and host interaction 
remains under-explored.

We have shown a positive correlation between Lbr-
PGF2S ectopic overexpression in L. braziliensis and the 
rate of in vitro infection [4], suggesting that LbrPGF2S 
has a role in parasite virulence. In addition, a study on 
Leishmania infantum chagasi showed that PGF2S is 
highly expressed in metacyclic promastigotes [14]. These 
authors also observed an increase in lipid bodies (sites 
for prostaglandin synthesis in mammalian cells) in mac-
rophages infected with L. infantum. In our study, we 
examined  PGF2α production in L. braziliensis, the expres-
sion profile of LbrPGF2S during promastigote develop-
ment and its localization. Our results are indicative that 
LbrPGF2S might be transferred from intracellular para-
sites into the cytoplasm of mouse macrophages. This 
work, in conjunction with others [4, 14], lend weight to 
the hypothesis that PGs are parasite virulence factors.

Methods
Culture of parasites and infections
Promastigotes of all the Leishmania braziliensis wild 
type strains; BA778 (MHOM/BR/00/BA778), Lb2903 
(MHOM/BR/75/M2903), H3227 (MHOM/BR/94/H3227), 
and transfectant strains Lb2903[mChPGF2S::SSU] and 
Lb2903[mCherry::SSU] were cultured at 26 °C in 1× M199 
medium supplemented with 0.04 M HEPES, 0.1 mM ade-
nine, 50  µg/ml biotin, 0.25% hemin, 20% FSB, 2.5  U/ml 
penicillin, 2.5 mg/ml streptomycin and 5 µg/ml biopterin. 
Transfectants were kept in liquid medium containing 
G418 (4 µg/ml, 4 × LD50).

Sequence alignment analysis
The protein sequences of LbrPGF2S homologs were 
obtained from TriTrypDB (http://tritr ypdb.org/tritr ypdb/). 
Multiple alignments were performed using ClustalW and 
Geneious v6 [15] (Biomatters Ltd, Auckland, New Zea-
land). Global alignment and quantification of identity/simi-
larity were performed using the online version of Needle 
EMBOSS Needle (ebi.ac.uk/Tools/psa/emboss_needle). 
To compare the protein 3D structure available in the PDB 
(http://www.rcsb.org/pdb/) for PGF2S from L. major (pdb 
4g5d) and AKR1C3 (pdb 4yvv), RCSB’s online Compari-
son Tool and jFatCat_rigid alignment algorithm were used. 
Alignments were visualized in Geneious v6.

SDS‑PAGE and immunoblotting analysis
Promastigotes (1  ×  107) were harvested from the cul-
ture on days 2, 3, 4, 5, 6, 7 and 8, and resuspended in 

http://tritrypdb.org/tritrypdb/
http://www.rcsb.org/pdb/
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Laemmli sample buffer (500  mM Tris-HCl pH 6.8; 20% 
glycerol; 0.001% bromophenol blue; 2% SDS; 0.28  M 
β-mercaptoetanol). To evaluate promastigote secretion, 
50  ml of a 7-day-old culture supernatant was collected, 
filtered through 0.22 µm syringe filters and the pro-
teins precipitated with 10% TCA. Protein extracts were 
homogenized, denatured at 95  °C for 5  min and loaded 
on a 12.5% acrylamide gel. Western blotting assays were 
then performed according to Alves-Ferreira et al. [4].

Overexpression target construction and transfection
The LbrPGF2S CDS (coding DNA sequence) was ampli-
fied from the genomic DNA (gDNA) of L. (V.) braziliensis 
strain MHOM/BR/75/M2904 using primers LbrPGF2S-
nostart-BglII-For (5ʹ-TCA AGA TCT GCT GGG GCC 
GCT GGG GCC ATC AAC GTT GGT AAG ACC G -3ʹ) 
and LbrPGF2S-BamHI-Rev (5ʹ-TCA GGA TCC TCA 
GAA CTG CGC CTC ATC A -3ʹ). The PCR products were 
digested with BglII and BamHI enzymes and cloned into 
the pmCherry-C1 (Addgene, Cambridge, MA, USA) plas-
mid digested with same enzymes. The mCherry-PGF2S 
plasmid was then digested with PmeI and NdeI enzymes. 
Promastigotes were transfected with mCherry-PGFS or 
mCherry linear fragments by electroporation [16]. Trans-
fectant colonies were extracted from M199-agar medium 
in the presence of the G418 antibiotic (Sigma-Aldrich, St. 
Louis, MO, USA). The G418  LD50 was determined for the 
Lb2903 strain, and at four-fold  LD50 drug concentration 
(4 µg/ml). Parasites overexpressing LbrPGF2S ectopically 
were produced and kept as described in [4].

Bone marrow‑derived macrophage (BMDM) production 
and in vitro infection
BMDMs were produced following the protocol described 
elsewhere [17]. The macrophages were infected with late-
stationary-phase Leishmania promastigotes (MOI 10:1). 
For prostaglandin receptor (FP) inhibition, infected mac-
rophages were treated with prostaglandin  F2α dimethyl 
amide (Cayman Chemical, Michigan, USA), an FP recep-
tor antagonist, for up to 24 h or 48 h.

Immunofluorescence
Promastigotes (in early logarithmic phase) were harvested 
by centrifugation at 2500× rpm for 10 min, washed in PBS 
and fixed in 2% paraformaldehyde for 10 min. The fixed 
cells were centrifuged, suspended in 1 M glycine solution 

and attached to coverslips. Permeabilization was performed 
using 0.3% Triton X-100 for 10 min and blocking with 2% 
BSA in PBS for 1 h. We have previously generated an anti-
LbrPGF2S chicken IgY antibody by immunizing chickens 
with His-LbrPGF2S heterologously expressed in Escheri-
chia coli [4]. The parasites were then incubated in anti-Lbr-
PGF2S and anti-tubulin (Millipore, Massachusetts, USA) 
antibodies at 1:10,000 in 1% BSA-PBS for 1 h and washed 
three times in PBS-T. Secondary anti-chicken conjugated 
CF488A (Sigma-Aldrich) or anti-mouse conjugated Alexa 
555 was added at 1:1000 dilution, supplemented with 60 
µM DAPI. Coverslips were washed in PBS-T and MilliQ 
water and then mounted with ProLong Gold Antifade Rea-
gent (Invitrogen, California, USA). Images were acquired 
on a Zeiss LSM 510 confocal microscope.

To acquire time lapse images of in vitro infection, 
bone marrow derived macrophages were infected with 
Lb2903[mChPGF2S::SSU] and Lb2903[mCherry::SSU] 
parasites for 2 h. The cultures were then washed three 
times with PBS and complete RPMI medium (RPMI-1640, 
20% FCS) was added. The culture was kept in the BioSta-
tion IMQ (Nikon, Tokio, Japan) incubation chamber at 33 
°C and 5%  CO2 for up to 48 h. The images were captured 
using a fluorescent field (587 nm excitation and 610 nm 
emission) and bright field to produce 18 min videos. The 
images were converted to TIFF format and both images 
and video processed using ImageJ (Fiji, LOCI, Madison, 
EUA) and GIMP (GNU Image Manipulation Program).

Dosage of prostaglandin  F2α
Prostaglandin  F2α was measured in the supernatant (fil-
tered through 0.22 µm syringe filters) of the L. braziliensis 
culture on growth days 3 and 7 using the immunoenzy-
matic EIA assay  PGF2α KIT (Cayman Chemical, Michi-
gan, USA), according to manufacturer’s instructions.

Results
PGF2S ortholog sequences are highly conserved 
among Leishmania spp.
Firstly, we confirmed high sequence homology between 
prostaglandin  F2α synthase genes in Leishmania spp. 
by performing a multiple sequence alignment for Lbr-
PGF2S (LbrM.31.2410) orthologs across different Leish-
mania genomes available in TriTrypDB (tritrypdb.org) 
(Fig. 1a). We then compared the protein sequence (Fig. 1b) 
and the 3D structure (Fig.  1c) of LbrPGF2S and the best 

(See figure on next page.)
Fig. 1 Comparative analysis of the LbrPGF2S amino acid sequence. a Multiple sequence alignment of putative PGF2S proteins from L. braziliensis 
(LbrM.31.2410), L. major (LmjF.31.2150), L. mexicana (LmxM.30.2150), L. infantum (LinJ.31.2210) and L. tarentolae (LtaP.31.2590). b Sequence alignment 
of L. braziliensis PGF2S and human putative ortholog (AKR1C3, NP_003730.4, gi|24497583) using the ClustalW algorithm. Aldo/keto reductase 
domains are shown in red and the blue square indicates a I247V mutation. c 3D sequence alignments of protein sequences of LmjPGF2S (PBD ID 
4G5D, in grey) and human ortholog AKR1C3 (PDB ID 4YVV in blue), using RCSB PDB’s online comparison tool (rcsb.org/pdb)
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characterized human PGF2S, AKR1C3 (NP_003730.4), 
and found 51.4% similarity and 34.3% identity. Addition-
ally, in silico analysis of protein domains revealed the pres-
ence of two aldo/keto reductase domains (IPR18170) and 
a putative secretion cleavage signal near the C-terminus in 
the Leishmania PGF2S, suggesting that the protein might 
undergo proteolysis for subsequent export (Fig. 1b). A third 
aldo/keto reductase domain was detected in the C-termi-
nal region of AKR1C3, but not in LbrPGF2S, probably due 
to I247V mutation in this enzyme. PGF2S orthologs in L. 
major (LmjF.31.2150), L. mexicana (LmxM.30.2150), L. 
infantum (LinJ.31.2210) and L. tarentolae (LtaP.31.2590) 
carry the predicted third Aldo-Keto domain present in 
the protein sequences from other organisms. In contrast, 
PGF2S from Leishmania braziliensis (LbrM.31.2410) and 
all the other Leishmania strains from the subgenus Viannia 
(deposited on TriTrypDB) lost the third domain, all of them 
carry a valine in the isoleucine position, which differs from 
the strains of the subgenus Leishmania.

Evaluation of LbrPGF2S expression and  PGF2α production 
in promastigotes
To evaluate whether LbrPGF2S protein levels are modu-
lated during axenic promastigote differentiation, whole 
cell extracts were fractionated by SDS-PAGE, and Lbr-
PGF2S analyzed by immunoblotting. No significant 
changes in PGF2S abundance were observed from day 1 to 
day 8 (from log to stationary phase, enriched for procyclic 
and metacyclic forms, respectively), indicating that Lbr-
PGF2S is constitutively expressed in promastigotes during 
in vitro growth (Fig. 2a). We then analyzed the presence 
of LbrPGF2S in the supernatant of stationary promastig-
ote culture (day 7 post-inoculum). Promastigotes were 
removed by centrifugation and supernatants filtered 
through a 0.22 μm syringe filter, excluding parasites but 
not vesicles, such as exosomes. LbrPGF2S was detected 
by immunoblotting in both parasite lysates and culture 
supernatant (Fig. 2b). Indirect immunofluorescence using 
anti-LbrPGF2S antibody revealed cytoplasmic distribu-
tion of LbrPGF2S with a noticeably stronger signal near 
the flagellar pocket (Fig.  2c), a secretory organelle in 

trypanosomatids. To confirm that axenic L. braziliensis 
promastigotes produce  PGF2α, the levels of  PGF2α in the 
culture supernatant were quantified at growth days 3 and 
7 using an immunoenzymatic assay. Prior to evaluation, 
the cells were kept at either 26 °C or 37 °C for 4 h in the 
presence or absence of arachidonic acid (AA). Under all 
the conditions tested, we observed an increment in  PGF2α 
levels in the supernatant when AA was added. The effect 
was particularly evident in samples kept at 37 °C (Fig. 2d).

Next, to investigate LbrPGF2S expression in amas-
tigotes, mouse bone marrow-derived macrophages 
(BMDM) were used for in vitro infection with wild type 
(WT) L. braziliensis late-stationary phase promastigotes 
and transfectants overexpressing LbrPGF2S ectopically 
(Lb[pXLbrPGF2S]). After 48 h of infection, LbrPGF2S 
was detected in WT intracellular amastigotes and at 
higher levels in macrophages infected with the overex-
pressing parasites (Fig. 3).

Detection of LbrPGF2S in host cell cytoplasm
To robustly demonstrate the localization of LbrPGF2S 
in amastigotes and infected host macrophages in real 
time during in vitro infection, we generated L. brazil-
iensis lines expressing LbrPGF2S fused with fluorescent 
protein mCherry (mChPGF2S). These constructs over-
come the problem associated with cross-reaction of the 
LbrPGF2S antibody with macrophage molecules. Plas-
mids pSSU-Neo-mCherry (control) and pSSU-Neo-mCh-
PGF2S were used to generate lines Lb2903[mCherry::SSU] 
and Lb2903[mChPGF2S::SSU] (hereinafter referred as 
Lb[mCherry] and Lb[mChPGF2S], respectively) (Addi-
tional file 1: Figure S1a). Correct integration of mCherry 
constructs in the ribosomal locus was confirmed by 
PCR (Additional file  1: Figure S1b). We then confirmed 
the presence of both the SSU-integrated mChPGF2S 
(~61kDa) and the endogenous LbrPGF2S (~31 kDa) using 
anti-LbrPGF2S antibody (Additional file 1: Figure S1c).

Similarly to parasites overexpressing wild type Lbr-
PGF2S ectopically [4], Lb[mChPGF2S] stationary phase 
promastigotes infected BMDMs more effectively than 
Lb[mCherry], the control parasites (Additional file  2: 

Fig. 2 LbrPGF2S expression and secretion in L. braziliensis promastigotes. a Evaluation of LbrPGF2S protein levels in L. braziliensis promastigotes 
grown in axenic culture for 8 days using polyclonal anti‑LbrPGF2S. Anti‑Tubulin antibody was used for protein loading control. b Secretion of 
LbrPGF2S by promastigotes in the axenic medium. Immunoblots were used to detect LbrPGF2S in logarithmic (L) and stationary (St) phase 
promastigotes, 3 and 7 days of culture, respectively, or in the supernatant of the stationary phase culture (S) using anti‑LbrPGF2S. Parasite‑free M199 
medium (M) was used as a negative control. Blots were stained with Ponceau S (lower panel) for protein loading control. c Immunofluorescence 
imaging used to detect LbrPGF2S in wild type promastigotes (at stationary phase). LbrPGF2S (CF488A, green); tubulin (Alexa555, red); DNA was 
stained with DAPI (blue). An image of a single promastigote is shown bottom right; a strong fluorescence signal appears at the flagellar pocket 
(white arrow). Ab control: parasites submitted to the same labelling protocol without primary antibodies. d Dosage of prostaglandin  F2a synthesized 
by promastigotes in the presence (+) or absence (−) of 66 µM arachidonic acid (AA), measured by EIA assay. Quantification was performed with 
promastigotes at day 3 (logarithmic phase) or 7 (stationary phase), at 26 °C or 37 °C, as indicated below the x‑axis. Data are means ± standard 
deviation from three replicates. Scale-bars: c, 5 µm

(See figure on next page.)



Page 6 of 11Alves‑Ferreira et al. Parasites Vectors            (2020) 13:9 

Figure S2). To investigate the impact of the PGF2α path-
way on the L. braziliensis in vitro infection we performed 
an inhibition assay by treating infected BMDM with 
an FP receptor antagonist for 24 h (prostaglandin F2α 
dimethyl amide). FP inhibition decreases the percentage 

of infected macrophages with L. braziliensis wild type 
(Strain H3227) (a 10-fold decrease at 10 µg/ml) and the 
number of amastigotes per cell (a 18.5-fold decrease at 10 
µg/ml) (Additional file 3: Figure S3).
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To investigate LbrPGF2S distribution, macrophages 
were infected with late stationary phase promastigotes 
from Lb[mCherry] and Lb[mChPGF2S] parasites, fol-
lowed by time-lapse imaging for 48 h. Fluorescence of 
mChPGF2S was detected mainly inside intracellular pro-
mastigotes in the early stages of infection. Surprisingly, 
at ~18 h post-infection (pi), mChPGF2S was observed 
in the macrophage cytoplasm and subsequently found 
dispersed. Note that at this time the parasites had not 
fully differentiated into amastigotes, although most gene 
expression changes take place in this initial phase of dif-
ferentiation [18]. This staining pattern was not observed 
in control Lb[mCherry] intracellular parasites (Fig.  4, 
Additional file  4: Video S1, Additional file  5: Video S2, 
Additional file  6: Video S3, Additional file  7: Video S4). 

The distribution of mChPGF2S fluorescence through-
out the host cell cytoplasm was more clearly observed in 
macrophages with a higher number of intracellular para-
sites (Fig. 5a, Additional file 8: Video S5, Additional file 9: 
Video S6). Nevertheless, even macrophages infected with 
only two mChPGF2S parasites exhibited dispersion of 
the fluorescence around the entire cell body, while fluo-
rescence in macrophages infected with mCherry para-
sites was restricted to the vacuole region (promastigotes 
and amastigotes) (Fig. 5b).

Discussion
This study shows that LbrPGF2S, which might contrib-
ute to Leishmania virulence profiles in the mammalian 
host [4], is found in host macrophage cytoplasm infected 

Fig. 3 LbrPGF2S detection in L. braziliensis‑infected macrophages. Immunofluorescence imaging of uninfected bone marrow‑derived 
macrophages (BMDM, top row), macrophages infected with wild type promastigotes (middle row) and LbrPGF2S‑overexpressing transfectants (OE, 
BA778[pXLbrPGF2S]) (bottom row), for 48 h. DNA was stained with DAPI (blue); LbrPGF2S (CF488A, green); tubulin (Alexa555, red). Scale-bars: 5 μm
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with L. braziliensis, suggesting direct interaction with 
the host cell. In addition, LbrPGF2S expression was also 
detected in L. braziliensis promastigotes in axenic culture 
throughout promastigote growth and in the superna-
tant. The protein might be secreted through the flagellar 
pocket, as indicated by the strong signal detected under 
immunofluorescence. These results corroborate and 
extend previous studies that have identified PGF2S in the 
secreted proteome of L. braziliensis [19].

Although  PGF2α synthesis by recombinant LbrPGFS 
was not measured herein, other researchers have shown 
that PGF2S homologs in L. major, L. tropica, L. donovani, 
L. infantum, T. cruzi and T. brucei catalyze  PGF2α synthe-
sis in vitro [6, 12]. Since we detected the production of 
 PGF2α by promastigotes in axenic culture, we suggest that 
LbrPGF2S has the same catalytic function. To the best of 
our knowledge, we are the first, however, to observe that 
LbrPGF2S is expressed in amastigotes and localized in 
the host cell cytoplasm infected with Leishmania. Other 
authors have shown that vesicles released by Leishmania 
during in vitro or in vivo infection interfere with host cell 
response [20]. Recently, it has been shown that promastig-
otes secret exosomes into the midgut lumen of the sand 
fly vector and these extracellular vesicles are regurgitated 
with parasites into the skin during blood meal, modulating 

the immune response to Leishmania infection. Interest-
ingly, the PGF2S protein was found among the 124 pro-
teins identified by proteomic analysis in vesicles from L. 
infantum-infected midguts [21]. Although other experi-
ments are needed to confirm LbrPGF2S secretion, our 
results are indicative of the transfer of the enzyme into 
the cytoplasm of infected macrophages. Other proteins 
secreted to the host cell cytoplasm, such as gp63, were 
shown to modulate phagocytic cell response [22, 23]. The 
process by which PGF2S reaches the cytoplasm of the 
host cell remains unknown, but we have shown that inhi-
bition of the prostaglandin receptor affected negatively 
the infection profile of BMDM in vitro.

Although most studies on  PGF2α are related to mam-
malian female reproduction [7, 24], their role in leuko-
cyte migration has been shown, with high potential to 
act as a neutrophil chemoattractant in vitro [25] and in 
vivo [26]. In addition, AKR1C3 is abundant in keratino-
cytes in the suprabasal layer of the epidermis and regu-
lates the synthesis of  PGF2α in the presence of calcium, 
contributing to the pro-inflammatory response in vitro 
[27]. Although we have shown that LbrPGF2S and 
AKR1C3 protein sequences share 51.4% similarity and 
34.3% identity, modelling using the Research Collabora-
tory for Structural Bioinformatics (RCSB) PDB suggests 

Fig. 4 Parasite‑derived mChPGF2S accesses the host cell cytoplasm. Time‑lapse images were captured from mouse bone marrow‑derived 
macrophages infected with Lb[mCherry] and Lb[mChPGF2S] promastigotes, as indicated in the figure. Cyan was used as a pseudocolor; numbers at 
the bottom right of each panel indicate hour:minutes after infection. See videos in Additional files 4, 5, 6, 7, 8, 9. Scale-bar: 5 µm
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that the protein structures of LbrPGF2S and AKR1C3 
are quite similar, sharing at least two aldo/keto reduc-
tase domains and indicating that both proteins may 
retain the core function of  PGF2α production. Thus, the 

work of other researchers using different Leishmania 
species [6, 14] and our own data suggest that the  PGF2α 
signaling pathway could be involved in Leishmania 
pathogenicity.

Fig. 5 Detection of mChPGF2S in highly‑infected macrophages. a Detection of mCherry fluorescence in the host cell cytoplasm. Time‑lapse 
images of macrophages infected with more than three mChPGF2S parasites. Cyan was used as pseudocolor; numbers at the bottom right of 
each panel indicate hour:minutes after infection. b Close image analysis of mCherry and mChPGF2S localized fluorescence intensity in infected 
macrophages. Numbers at the top of each image indicate hour:minutes after infection. c Overall intracellular fluorescence in infected macrophages 
was quantified using FIJI (ImageJ) software up to 30 h pi. Scale-bars: a, 10 µm
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Conclusions
To the best of our knowledge, this is the first study to 
report that L. braziliensis promastigotes and amastig-
otes can express LbrPGF2S and that it is possibly found 
in the infected host cell cytoplasm. Based on our results 
and those in the literature, we propose that the produc-
tion of PGF2S improves the fitness of the parasite and 
might play a role in the mammalian host-parasite inter-
action. LbrPGF2S could be a new Leishmania virulence 
factor and is, therefore, a potentially attractive target 
for drug discovery or vaccine development.
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of mCherry or mChPGF2S into the ribosomal locus. b Primers NEOend‑
for and SSUdown‑rev were used to confirm the expected integration. 
Lbr[mCherry]: mCh 1 and 2; Lbr[mChPGF2S]: PG 1 and 2. Negative controls: 
Lb2903 and H3227 gDNA and a PCR without DNA (C‑). Positive controls: 
Lmj SSU‑NEO transfectant (C+). c Immunoblotting using anti‑LbrPGF2S 
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replicates. *P < 0.05, **P < 0.01 (ANOVA).
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