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Alzheimer’s disease (AD) is the most common form of dementia, causing progressive
cognitive decline. Radiomic features obtained from structural magnetic resonance
imaging (sMRI) have shown a great potential in predicting this disease. However,
radiomic features based on the whole brain segmented regions have not been explored
yet. In our study, we collected sMRI data that include 80 patients with AD and 80 healthy
controls (HCs). For each patient, the T1 weighted image (T1WI) images were segmented
into 106 subregions, and radiomic features were extracted from each subregion.
Then, we analyzed the radiomic features of specific brain subregions that were most
related to AD. Based on the selective radiomic features from specific brain subregions,
we built an integrated model using the best machine learning algorithms, and the
diagnostic accuracy was evaluated. The subregions most relevant to AD included the
hippocampus, the inferior parietal lobe, the precuneus, and the lateral occipital gyrus.
These subregions exhibited several important radiomic features that include shape, gray
level size zone matrix (GLSZM), and gray level dependence matrix (GLDM), among
others. Based on the comparison among different algorithms, we constructed the
best model using the Logistic regression (LR) algorithm, which reached an accuracy
of 0.962. Conclusively, we constructed an excellent model based on radiomic features
from several specific AD-related subregions, which could give a potential biomarker for
predicting AD.

Keywords: Alzheimer’s disease, magnetic resonance imaging, radiomics, machine learning, structural MRI (sMRI)

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, characterized by episodic memory
decline. Its incidence is rising as the population ages and there are approximately 50 million people
suffering from AD worldwide at present, which imposes a heavy burden on the society (Nichols
et al., 2019; Breijyeh and Karaman, 2020). Due to the lack of sensitive diagnoses and effective
treatments, it is of great theoretical significance and of potential clinical value to establish reliable
radiologic biomarkers for early detection of AD by using new technologies, which can improve the
prognosis of the disease.

Neuroimaging studies in AD have revealed the relationship between AD and structural atrophy
in the temporal lobe, the entorhinal cortex, the hippocampus, and the limbic system, which reflects
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the different stages of the disease and predicts the progress of
AD (Sørensen et al., 2016; Wolk et al., 2017; Li et al., 2018).
Previous studies used the analysis based on manually labeled
regions of interest (ROI) to explore the subtle structural atrophy
leading to AD (Last et al., 2020). In recent years, machine
learning provides an automated and objective classification
framework that includes feature extraction, algorithm selection,
predictive model building, model validation, and so on. In the
AD classification field, machine learning has attracted increasing
attention by using the multimodal quantify patterns of atrophy
together with different algorithms in recent years (Tang et al.,
2015). For the radiomic feature extraction, brain atrophy was
most often quantified via volume, texture, and geometric shape
measures from structural magnetic resonance imaging (sMRI),
which has achieved promising results.

For instance, one study combined hippocampal volume
information and machine learning, suggesting that the
volumetric reduction in the hippocampus was an important
indicator of early AD (Uysal and Ozturk, 2020). Texture analysis
had been successfully employed to search for imaging biomarkers
for AD (De Oliveira et al., 2011; Anandh et al., 2015; Chincarini
et al., 2016). Several studies had confirmed hippocampal texture
abnormalities in AD and early stages of AD, indicating that
texture might predict early cognitive impairment (Sørensen
et al., 2016). Recently, Feng et al. employed the radiomic features
of hippocampal subregions using a support vector machine
(SVM) model to distinguish AD from healthy control (HC)
and showed good performance (Feng et al., 2018). Besides the
hippocampus, one study analyzed the texture features of the
corpus callosum and the thalamus, suggesting that these regions
could be used for the early diagnosis of AD (De Oliveira et al.,
2011). Another study used the random forest (RF) classifier to
identify the subcortical regions and found that the radiomic
features from the hippocampus and amygdala regions have the
greatest discriminative ability, which could differentiate AD
from HC with the best performance (Chaddad et al., 2018). For
geometric shape measures, a recent study used the geometric
shape of the corpus callosum and multilayer perceptron (MLP)
classifier to differentiate AD from HC, in which the classifier
showed a high accuracy value (Dadsena et al., 2019).

As listed above, the research of AD prediction based on
structural radiologic features and machine learning has made
promising progress. However, most studies have explored a single
structure or local features. Few studies have focused on the
analysis of the whole brain subregions, which might be restricted
by the manual annotation method. However, it is extremely
important to analyze the whole brain radiomic features using a
machine learning method, because it can facilitate an objective
and comprehensive evaluation of brain atrophy patterns, which
may provide more effective and sensitive markers for the early
diagnosis of AD.

Since different brain subregions can be affected by AD in a
distinct manner, it is very essential to investigate the radiomic
features of whole brain structures. In this study, by using a
machine learning method, we first explored radiomic features of
whole brain in different subregions between AD and HC and
identified key subregions, which showed significant differences

between the two groups. Second, we constructed classification
models based on the radiomic features of selected subregions
and different algorithms. Finally, by calculating the classification
accuracy and evaluating the model performances, we identified
the best model to predict AD. Based on the pathology of AD
and previous studies, we hypothesized that this classification was
driven by a distributed atrophy pattern of several subregions
and mainly includes the hippocampus and other limbic systems,
which might be affected early in the disease course. We expected
that the model based on radiomic features of specific subregions
can be applied as a valuable radiologic biomarker for the early
diagnosis of AD.

MATERIALS AND METHODS

Patient Information
In total, 160 right-handed subjects had participated in the study,
i.e., 80 patients with AD and 80 healthy controls (HCs). This
study was carried out in accordance with the recommendations
of the Medical Research Ethics Committee of Aerospace
Center Hospital. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the Medical Research Ethics Committee of
Aerospace Center Hospital. The AD subjects were recruited
randomly from patients who had consulted the memory clinic
at Aerospace Center Hospital for memory complaints. The
HCs were recruited from the local community by recruitment
advertisements. All the participants were required to complete
the regular form, which includes age, gender, education, clinical
history, family genetic history, previous examination results, and
other clinical information.

All participants underwent a complete physical examination,
neurological examination, and neuropsychological assessment.
The neuropsychological examinations included the Mini-Mental
State Examination (MMSE), the Clinical Dementia Rating (CDR)
score, and other examinations. The patients with AD fulfilled the
new research criteria for possible or probable AD (Dubois et al.,
2007, 2010).

The HC fulfilled the following criteria: (a) no abnormal
findings in routine brain Magnetic Resonance Imaging (MRI);
(b) no findings of stroke, depression, or epilepsy, and other
neurological or psychiatric disorders; (c) no visual loss or hearing
loss and other neurological deficiencies; (d) no complaints about
cognitive and memory; and (e) CDR score of 0.

The excluded criteria were as follows: participants with
contraindications for MRI were excluded. For example, the
subjects who have a cardiac defibrillator, a pacemaker, vascular
clips, or a mechanical heart valve cannot take part in
the examination; in addition, subjects with neurological or
psychiatric diseases or with a history of cerebrovascular attacks
or other degenerative disorders were excluded.

Structural Magnetic Resonance Imaging
Data Acquisition
Magnetic Resonance Imaging examinations were performed at
the department of radiology using a 3.0T Siemens Skyra MR
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FIGURE 1 | A research map. This study is mainly divided into four parts. The first part is data collection and preprocessing, the second part is whole-brain structure
segmentation, the third part is radiomic analysis, and the fourth part is model construction and evaluation.

FIGURE 2 | The construction and evaluation of the machine learning model in this study. Because this study adopts a variety of normalization methods and machine
learning models, their combination is shown in this figure.

System (Siemens, Germany) with a 20-channel head coil. Sagittal
T1-weighted structural images were acquired for each subject
using a magnetization-prepared rapid gradient echo (MPRAGE)

sequence. Three-dimensional (3D) MPRAGE sagittal images
were obtained with following parameters: Time of Repetition
(TR)/Time of Echo (TE)/Time of Inversion (TI)/Flip Angle
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(FA) = 1900 ms/2.2 ms/900 ms/9◦, image matrix = 256 × 256,
slice number = 176, and thickness = 1 mm. The obtained 3D
images had a resolution of 1 mm × 1 mm × 1 mm.

Segmentation and Evaluation of
Subregions
The whole brain subregions of each patient were extracted
automatically by the given deep learning model first. The
model was trained by the United Imaging platform.1 The
training process and the reference method of the model
were similar to the previously published research (Desikan
et al., 2006). The results of automatic segmentation included
22 temporal lobe structures, 20 frontal lobe structures, 12
parietal lobe structures, 8 occipital lobe structures, 8 cingulate
gyrus structures, 2 insular structures, 12 subcortical gray
matter structures, cerebral white matter structures, ventricles,
the cerebellum, and other structures, with a total of 106
subregions. In particular, left and right structures were identified
as different individuals. Once the automatic segmentation
was done by the deep learning model, the result would be
evaluated by two senior radiologists with more than 5 years of
experience in radiologic diagnosis. In the segmentation results
of 106 subregions of 160 patients in this study, two senior
radiologists had no different opinions on the accuracy of the
segmentation results.

Radiomics Feature Extraction and Model
Construction
All preprocessing steps were performed using The United
Imaging platform. Briefly, the radiomic features were extracted
at first. Second, the features that were most consistent across
different radiomics were selected to ensure robustness. Then,
the dimension of extracted features was reduced using the
Select K Best (K-Best) algorithm and traditional least absolute
shrinkage and the selection operator (LASSO) algorithm, in
which the two algorithms were used in series. Finally, the relevant
parameters of these selected features would be used to build
a machine learning model in order to successfully predict AD
and HCs. These selected radiomic features of the most relevant
subregions would be used in training sets and test sets in the
form of 10-fold cross verification. The overall process is shown
in Figure 1.

Model Validation
Before these data were used for model training, we used a variety
of data normalization methods, such as Box-Cox transformer, L1
normalization, L2 normalization, max Absolute value scaler, min-
max scaler, quantile transformer, YeoJohnson transformer, and Z
score scaler. In this way, we tried to ensure the accuracy of the
results. Then, we used a variety of common algorithms to predict
AD and HCs, such as Adaptive Boosting (AdaBoost), Bagging
Decision Tree (BDT), Gaussian Process (GP), Gradient Boosting
Decision Tree (GBDT), K-Nearest Neighbor (KNN) algorithm,

1http://urp.united-imaging.com:8080/

Logistic regression (LR), Partial Least Squares Discriminant
Analysis (PLSDA), Quadratic Discriminant Analysis (QDA),
RF, Stochastic Gradient Descent (SGD), SVM, and Extreme
Gradient Boosting (XGBoost). The specific arrangement and
combination ways are shown in Figure 2. The area under
the curve (AUC) value, F1 score, recall rate, precision,
sensitivity, specificity, and accuracy of each combination were
evaluated separately.

Statistical Analysis
Statistical analyses were performed using SPSS software 22.0
(IBM, Armonk, NY, United States). For numerical data in AD and
HC groups, a Wilcoxon test was used to evaluate the differences
between AD and HC groups. For categorical data, such as gender,
a Fisher’s exact test was used to evaluate differences between
AD and HC groups. Statistical significance was considered as
p < 0.05.

RESULTS

Basic Characteristics of the Patients
In total, 80 patients with AD and 80 HCs with high-resolution
sMRI data were collected retrospectively, adjusted for age, sex,
MMSE, and CDR, among others. The detail is shown in Table 1.
There were no significant differences in age and sex between
AD and HCs. There were significant differences in MMSE
between the two groups.

Automatic Segmentation Results of
Whole Brain Subregions
As the result, concrete 106 subregions included temporal lobe
structures (the hippocampus, the para hippocampal gyrus, the
amygdala, the entorhinal gyrus, the fusiform, the temporal
pole, the superior temporal gyrus, the middle temporal gyrus,
the inferior temporal gyrus, and the transverse temporal
gyrus), frontal lobe structures (the precentral cortex, the
superior frontal gyrus, the frontal middle rostral, the frontal
middle caudal, the frontal pole, the lateral orbitofrontal lobe,
the medial orbitofrontal lobe, the pars opercularis, the pars
orbitalis, and the pars triangularis), the parietal lobe structures
(the postcentral cortex, the paracentral cortex, the superior
parietal lobule, vinferior parietal lobule, the precuneus, and
the supramarginal gyrus), the occipital lobe structures (the
cuneus gyrus, the lingual gyrus, the pericalcarine gyrus, and
the lateral occipital gyrus), the cingulate gyrus (the anterior
cingulate gyrus, the middle cingulate gyrus, the posterior
cingulate gyrus, and the cingulate gyrus of isthmus), the
insular lobe structures, the subcortical gray matter structures
(the caudate, the putamen, the pallidum, the thalamus, the
nucleus accumbens, and the claustrum), the cerebral white
matter, ventricles (lateral ventricle, 3rd ventricle, 4th ventricle,
and cerebrospinal fluid), the cerebellum (the cerebellum cortex
and the cerebellum white matter), and other structures (the
choroid plexus, the inferior horn of lateral ventricle, the
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TABLE 1 | Clinical characteristics of AD patients and HC.

AD(N = 80) HC(N = 80) p-value

Age, median(min–max) 65(46–88) 64.5(48–83) *9.54 × 10−1

Sex, male/female 42/38 40/40 **9.87 × 10−1

MMSE, median(min-max) 15(0–25) 28(12–30) *7.26 × 10−5

CDR 0.5–3 0 /

*Wilcoxon rank test; **Fisher exact test.
AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; HC, healthy control;
MMSE, Mini-Mental State Examination.

brainstem, the optic chiasm, and the corpus callosum). The
specific segmentation results of 106 brain areas are shown in
Figure 3.

Identification of Subregions Related to
Alzheimer’s Disease
Each subregion was extracted from 104 radiomic features and for
a person, there would be, in total, 11,024 features with all 106
brain areas, which would be discussed in detail in the next section.
We used two methods of dimensionality reduction in series, the
Select K Best and LASSO. In the first step, we applied Select K
Best to the 11,024 different features of subregions and screened
the 3,660 specific features of subregions that may be related to AD
(shown in Figure 4, only the top 10 features). Then, we applied
LASSO to further screen the remained 3,660 specific radiomic

features of subregions. After this, only 5 different radiomic
features of 4 specific regions remained (shown in Figure 4). In
the whole process of radiomic feature analysis, the rad scores of
the training set and test set are shown in Figure 5.

As the above figures showed, there were several subregions
related to AD. The most related subregions were the
hippocampus, the inferior parietal lobule, the precuneus,
and the lateral occipital gyrus.

Identification of Important Radiomic
Features
As mentioned above, some specific subregions played an
important role in the prediction of AD. At the same time,
different radiomic features of specific subregions also played
different roles in the prediction of AD. In the dimension
reduction process of Select K Best, we selected the relevant
features of top 100 for further analysis. The low-order radiomic
features we used include the following categories: first order
statistics, shape-based features, gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), GLSZM,
neighboring gray tone difference matrix (NGTDM), and GLDM.
The result is shown in Figure 6. Furthermore, after LASSO
screening analysis, we noticed that only 5 remained were the
most important features in predicting AD and NCs, such as first
order statistics, GLSZM (i.e., two different subtypes), shape, and
GLDM, which are mentioned in Figure 5.

FIGURE 3 | The label of main brain regions in structural MRI (sMRI) after automatic segmentation. Specially, the symmetrical structure is divided into left and right
and has different labels. Only the structure on the left is marked above.
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FIGURE 4 | The combination of statistically significant brain regions and radiomic features in the two-step dimensionality reduction process. In the first step, Select K
Best, more than 10 radiomic features, are screened out; only the top 10 are listed in this figure.

The Evaluation and Comparison of
Different Algorithms
We compared the performances of different algorithms for
predicting AD. Table 2 summarizes the AUC, F1 score,
recall rate, precision, sensitivity, specificity, and accuracy of
the train set and test set using different algorithms. Each
normalization method was listed at the model’s best performance.
Especially, since we used the method of K-fold cross-validation,
we got the above indicators for each training set and
test set. Here, we use k-mean to reflect the average level
of these models.

As listed above, the best of all is an LR model with the Box-
Cox transformer, which has an accuracy of 0.962 in the test
set, followed by KNN of 0.950 and SVM of 0.950. The receiver
operator curves (ROCs) of each model are listed in Figure 7.

DISCUSSION

For classifying AD and HC subjects, clinical evaluation (i.e.,
CDR and MMSE score) or imaging volume features were

commonly used, which were not very accurate (Hu et al., 2016;
Deters et al., 2017). Nomograms based on gene expression
signatures, cerebral spinal fluid (CSF), and pathological features
are not yet ready to be used in daily practice. Radiomic features
extracted from MR scans provide a noninvasive means to predict
AD (Wen et al., 2020; Yun et al., 2020; Feng et al., 2021).

In this study, we segmented the whole brain subregions of
the enrolled cases and extracted the radiomic features of each
segmented subregion. Then, we comprehensively analyzed all the
radiomic features of the whole brain subregions and identified
the subregions and radiomic features most related to AD. Using
the relevant areas and radiomic parameters obtained, we built
a variety of machine learning models, such as LR, SVM, and
RF. Then, we evaluated the diagnostic efficiency of each model.
Finally, we found the best model for predicting AD. In this study,
the subregions most relevant to AD included the hippocampus,
the inferior parietal lobe, the precuneus, and the lateral occipital
gyrus. The radiomic features extracted from these subregions had
the greatest differences between subjects with AD and HCs.

Among the four most relevant subregions found in our
study, the relationship between the hippocampus and AD had
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FIGURE 5 | The rad score in radiomics feature selection.

FIGURE 6 | The different proportions of radiomic characteristics in the process of predicting ad with radiomic characteristics in the low-order dimension.

been confirmed by many studies. The reduction of hippocampal
volume had been well studied in individuals with AD (Stricker
et al., 2012). Hippocampal atrophy was one of the core markers
of AD in the revised national Alzheimer’s association diagnostic
criteria (Albert et al., 2011; Catani et al., 2013). In addition
to volume reduction, abnormal metabolic levels, interruption
of brain activity, and microstructure characteristics in the
hippocampus had also been well reported (Catani et al., 2013).
The discriminative ability of radiomic features from hippocampal
regions, found by our analysis, was consistent with recent studies
(Sørensen et al., 2016, 2017). For example, the hippocampal
texture was shown to be a strong biomarker for differentiating
HCs from patients with AD or mild cognitive impairment (MCI)
(Feng et al., 2018). Pathologically, a previous study has confirmed
that hippocampal shape alterations were associated with regional
Aβ load in normal elderly individuals (Schroeder et al., 2017).
We could speculate that the radiomic feature changes of the
hippocampus might result from AD pathological changes, such

as Aβ deposition, which might be taken as a potential biomarker
to differentiate between patients with AD and HCs.

The inferior parietal lobule had begun to show promise as
an important locus in AD in recent years (Greene et al., 2010).
For example, several studies had shown AD-related alterations
of the inferior parietal lobule, such as gray matter atrophy
(Desikan et al., 2009; Jacobs et al., 2011), metabolic dysfunction
(Walhovd et al., 2010), disrupted spontaneous brain functional
activity and connectivity (Wang et al., 2015), and pathological
changes (Nelson et al., 2009). These findings had important
implications for the underlying neurobiology of AD. Compared
to previous studies, our analysis investigated the link between AD
and radiomic features of inferior parietal lobule regions, which
added a piece of new evidence for the mechanism of AD. In
addition, our study might contribute to the early detection of
AD to some extent.

As for the precuneus, its atrophy played a special role in
early-onset AD (Karas et al., 2007). Many neuroimaging studies
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FIGURE 7 | The performance of different machine learning models used in this study in the form of receiver operator curve (ROC).

had demonstrated the structural and functional abnormalities of
precuneus regions in AD, such as cortical thinning (Dickerson
and Sperling, 2009), amyloid deposition (Buckner et al., 2009),
decreased intrinsic brain activity (He et al., 2007; Wang et al.,
2011), and disrupted functional connectivity of the region
(Greicius et al., 2004). A previous fMRI study demonstrated
reduced precuneus deactivation during object naming in patients
with mild cognitive impairment, AD, and frontotemporal lobar
degeneration (Frings et al., 2010). At the molecular level,
precuneus amyloid burden was also associated with reduced
cholinergic activity in AD (Ikonomovic et al., 2011), which might
contribute to the cognitive decline. Our result on the link between
AD and radiomic features in precuneus regions was consistent
with the previous study, indicating the crucial role of precuneus
in the early diagnosis of AD.

Finally, our study found that there is a specific relationship
between the lateral occipital gyrus and AD. The machine learning
model, which contained the lateral occipital gyrus, had higher
diagnostic efficiency than the one without the lateral occipital
gyrus constructed by radiomic features. The occipital gyrus is
located in the primary visual cortex and plays a critical role
in visual cognition. By using the fMRI method (Sala-Llonch
et al., 2015), it was reported that the occipital gyrus presented
higher activity during the task of visuo-perceptual working

memory. Using diffusion tensor imaging (DTI) and tractography,
a previous study demonstrated that the structural disconnection
in the ventral occipital temporal cortex contributed to the
deficit in facial recognition (Thomas et al., 2009). Visual
cognition deficits were consistently reported to accompany the
development of AD (Cronin-Golomb, 1995; Bokde et al., 2006).
In our study, the potential relationship between the lateral
occipital gyrus and AD put forward a possible new direction
for the study of AD. The model constructed by integrating
the most relevant structural areas provides a new idea for the
prediction of AD.

However, there are still several issues that need further
consideration in our study. First, in the current study, we
mainly focused on structural analysis. Further studies that
simultaneously combine the sMRI and other data, such as fMRI
and clinical laboratory examination, might obtain a powerful
and high-quality biomarker for clinical application. We plan to
analyze the relationship between the radiomic features and the
cognitive performances in the future to achieve early diagnosis
and monitor the progress of the disease. Second, recent studies
had paid more attention to individuals at high risk for AD, such as
amnestic mild cognitive impairments, and ApoE-4 allele carriers.
Exploring these populations would provide valuable biomarkers
for the early diagnosis of AD. Finally, a longitudinal study with
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a large multicenter sample size is needed to confirm the stability
and reliability of the model.

CONCLUSION

In conclusion, our study specifically focused on the potential
relationship between AD and the whole brain subregions based
on sMRI. The machine learning model constructed with the
radiomic features of the hippocampus, the inferior parietal
lobe, the precuneus, and the lateral occipital gyrus could be
used as a potential sMRI marker for predicting AD and had
outstanding performance.
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