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Dendritic cells (DC) are central to the initiation of immune responses, and various approaches

have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of

lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC

are involved in antigen uptake and presentation following vaccination. Human replication-

deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens.

Although the mechanism of AdV attachment and penetration has been extensively studied in

permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study,

we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based

vaccine vectors. We found that, despite lack of expression of Coxsackie B–Adenovirus Receptor

and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-

dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing

antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also

show that combining adenovirus with adjuvant increases the absolute number of intracellular

virus particles per DC but not the number of DC containing intracellular virus. This results in

increased trans-gene expression and antigen presentation. We propose that, in the absence of

Coxsackie B–Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-

migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its

relevance to vaccination strategies and vaccine vector targeting is discussed.

INTRODUCTION

Vaccines based on replication-incompetent adenovirus
(AdV) vectors are safe and highly immunogenic, capable of
inducing a full spectrum of adaptive humoral and cell-
mediated immune responses and of inducing protective
immunity in a number of animal species including man
(Dicks et al., 2015; Green et al., 2015; Taylor et al., 2015).

Human adenovirus 5 (AdV5 and sometimes referred to as

HAdV-C5), a species C adenovirus, is the most commonly

studied adenovirus vector for both gene therapy and vacci-

nation and, thus, it is also the most studied in terms of cell

entry, host responses and gene expression (Smith et al.,

2010). Epithelial cell models have been used to describe the

mechanism of AdV5 entry and trafficking to the nuclear

membrane (Svensson & Persson, 1984; Wolfrum & Greber,

2013). It is generally accepted that the first step in AdV5

entry to its target cell is the binding of the virus’ fibre pro-

tein to CAR (Coxsackie B–Adenovirus Receptor), followed

by the binding of the RGD motif on the penton base to cel-

lular integrins (avb3 and avb5). This promotes virus endo-

cytosis into clathrin-coated vesicles and triggers the first

step of the uncoating program (Burckhardt et al., 2011).

Once inside the cell, the virus exits endosomal vesicles to

the cytosol, where it utilizes microtubule motors to traffic

to the nuclear membrane (Bremner et al., 2009) and deliver

its DNA through the nuclear pore (Puntener et al., 2011).

Although CAR has been shown to be the primary receptor

for AdV5 entry in epithelial cells, CAR is not expressed on

all cells that can be infected with AdV5. For example, infec-

tion of Kupffer cells is mediated by human blood coagula-

tion factor X binding to AdV5 hexon (Alba et al., 2009;

Kalyuzhniy et al., 2008; Waddington et al., 2008) and entry

of AdV5 to human peripheral blood monocyte-derived

dendritic cells (DC) involves CD209 (Adams et al., 2009).
One supplementary figure is available with the online Supplementary
Material.
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Since their identification (Steinman & Cohn, 1973), DC have
become increasingly recognized for their crucial role as initia-
tors and regulators of immune responses. Many studies of
DC biology rely on the isolation of monocytes or macro-
phages from blood or tissues (such as spleen or bone mar-
row) (Rossi & Young, 2005; Steinman, 1991) followed by
maturation with IL-4 and granulocyte-macrophage colony-
stimulating factor or the harvest of tissues followed by isola-
tion of resident DC. The cannulation of lymphatic vessels
provides ex vivo DC derived from relevant anatomical sites
such as the skin that drains sites of vaccination (Hemati et al.,
2009; Hope et al., 2006; Schwartz-Cornil et al., 2006). Due to
the complexity of the surgical procedure to cannulate lym-
phatic vessels, this is most easily performed in large animals,
such as cattle and sheep. We and others have described affer-
ent lymph dendritic cells (ALDC) as being FSChigh MHCII+

DEC205+ CD11c+ CD8a� (Cubillos-Zapata et al., 2011;
Gliddon et al., 2004; Hope et al., 2006). Within this popula-
tion, subpopulations of DC expressing various levels of
SIRPa (CD172a), CD11a, CD26 and CD13 have also been
described (Brooke et al., 1998; Gliddon et al., 2004; Gliddon
& Howard, 2002; Howard et al., 1997). Of these, the SIRPa+

DC population is targeted by various vaccine vectors and
these cells are more efficient at antigen presentation com-
pared to SIRPaneg/low ALDC (Guzman et al., 2012; Hope
et al., 2012).

In the current study, we describe the interaction between
replication-deficient AdV5 with bovine ALDC that drain
the skin. We show that macropinocytosis is the principal
entry mechanism for AdV5 into ALDC and that the kinetics
of virus internalization are much slower than previously
described for epithelial cells. We also show that virus exit
from endosomal compartments does not require an acidic
microenvironment. Furthermore, neutralizing antibodies
do not block internalization of AdV5 but prevent trans-
gene expression. Finally, we demonstrate that emulsification
of AdV5 in oil-in-water adjuvants improves virus internali-
zation into ALDC in vitro, increasing trans-gene expression
and antigen presentation. Defining and manipulating entry
pathways may enhance vaccine vector efficacy through
improved antigen delivery and presentation.

RESULTS

Bovine afferent lymph DC are transduced by

adenovirus-based vectors despite the absence of

known adenovirus receptors

We have previously shown that AdV5 injected subcutane-
ously or intramuscularly above the site of cannulation is
internalized by migrating DC between 4 and 12 h post-inoc-
ulation and that, in vitro, up to 40% of ALDC can be trans-
duced by AdV5 using a multiplicity of infection (MOI) of
100 (Cubillos-Zapata et al., 2011). To define the mechanism
by which AdV5 transduces ALDC (defined as FSChigh

MHCII+ DEC205+ CD11c+ CD8a�; Fig. 1a), we initially
assessed the expression of CAR on bovine cells including
ALDC. CAR was detected by Western blotting in enriched

membrane fractions from 293 and bovine lung (BL) cells
but not membranes from bovine ALDC (Fig. 1b). We then
used the virus overlay protein binding assay (VOPBA) to
confirm binding of AdV5 to bovine CAR. Under denaturing
and non-denaturing conditions, AdV5 bound to enriched
membrane fractions from 293 and BL cells, but not from
ALDC (Fig. 1c and d). To confirm that AdV5 was binding
specifically to CAR, we used a rabbit polyclonal antibody
raised against CAR to block binding of AdV5 to CAR in a
competition VOPBA assay (Fig. 1e). These results indicate
that although AdV5 can use CAR for binding to BL cells,
CAR is not expressed on bovine ALDC and, therefore,
AdV5 utilizes an alternative entry strategy for ALDC that is
CAR independent.

A number of different molecules have been implicated in
AdV attachment to mononuclear phagocytic cells, includ-
ing, MHC, CD80/CD86, CD209 and sialic acid (Chen &
Lee, 2014). We used a combination of chymotrypsin, tryp-
sin and papain to remove surface expression of known AdV
receptors and brefeldin A to prevent their surface expres-
sion during transduction of ALDC. Following this treat-
ment, the viability decreased to between 8 and 12% as
measured by trypan blue exclusion (data not shown).
MHCI (Fig. 2a), MHCII (Fig. 2b), CD80 (Fig. 2c), CD86
(Fig. 2d) and CD209, also known as DC-SIGN (Fig. 2e),
were completely removed by protease treatment and their
reconstitution on the cell’s surface prevented throughout
the course of the experiments. Removal of sialic acid with-
neuraminidase (Fig. 2f) was also complete. In all cases, these
treatments did not result in a decreased transduction effi-
ciency of ALDC by AdV5-GFP (Fig. 2g–l). Blocking the
RGD-binding receptors with the antagonist Cyclo(Ala-Arg-
Gly-Asp-3-Aminomethylbenzoyl) decreased the transduc-
tion efficiency of 293 cells but not ALDC (Fig. 2m and n).
Finally, transduction of both 293 and ALDC was blocked by
incubation in the presence of bovine hyperimmune serum
against AdV5 (Fig. 2o and p). These results indicate that
using the treatments indicated above, transduction of
ALDC by AdV5 is not affected.

Transduction kinetics of ALDC

To investigate the transduction kinetics of ALDC by AdV5,
we utilized biotinylated AdV5-GFP (MOI=100 virus par-
ticles per cell) to infect freshly isolated ALDC and 293 cells.
After 90 min incubation at 4

�

C or 37
�

C, more than 60% of
the biotinylated AdV5-GFP had attached to 293 cells
(Fig. 3a). In contrast, less than 5% of the biotinylated
AdV5-GFP had attached to ALDC at either temperature.
We also blocked attachment of AdV5 to 293 cells at both
temperatures using anti-CAR antibodies and, as expected,
we were able to block 95–98% of the AdV5-bio signal (data
not shown). To confirm that biotinylation of the virus did
not interfere with its ability to transduce cells and express
encoded proteins, we also measured GFP expression in
these cells by flow cytometry (Fig. 3b). A 90 min incubation
of 293 cells with biotinylated AdV5 at +4

�

C or 37
�

C, fol-
lowed by washing off the excess inoculum and subsequent
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overnight incubation, was sufficient to transduce more than
80% of the cells. In contrast, <1% of ALDC expressed GFP
following the same protocol. To determine the minimum
time required for transduction of cells by AdV5, we incu-
bated 293 cells and ALDC with AdV5-GFP at 37

�

C, we
washed off the inoculum at 1 h intervals and we incubated
the cells overnight. Transduction was measured by assessing
the percentage of cells expressing GFP by flow cytometry.
We determined that 1 h incubation was sufficient for AdV5
to transduce and express GFP in 293 cells but that at least
5 h was required for ALDC to be significantly transduced by
the virus (Fig. 3c). To determine the kinetics of trans-gene
expression, we cultured ALDC cells with AdV5-GFP
(MOI=100) at 37

�

C without washing, and we measured
GFP expression at various time points by flow cytometry
(Fig. 3d). GFP-positive 293 cells were evident at 4 h post-
transduction and, by 8 h, most cells were expressing the

trans-gene. In contrast, at least a 12 h incubation period was
required before a significant number of ALDC expressed
GFP (Fig. 3d, P=0.0071% GFP expression in ALDC at 12 h
compared to GFP expression at time 0). Expression of GFP
in ALDC peaked after 24 h in culture. Interestingly, trans-
gene expression in ALDC subsequently decreased and
approached baseline levels by 48 h (Fig. 3d). These results
indicate that the mechanism of AdV5 entry and trans-gene
expression in ALDC is significantly different from that in
CAR-expressing 293 cells.

ALDC actively uptake adenovirus

We then analysed the ability of a number of endocytosis
inhibitors to block AdV5 entry and subsequent transduction.
A fluorometric assay based on the capacity of trypan blue to
quench extracellular but not intracellular fluorescein (Wan
et al., 1993) was modified to determine the effect of various
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Fig. 2. Transduction of ALDC by AdV5-GFP following removal of putative receptors from the cell surface. (a–f) Expression of

putative AdV5 receptors on ALDC 24 h after treatment (dotted histograms) or mock treatment (solid histograms); grey-filled
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biochemical inhibitors on the capacity for ALDC to internal-
ize fluorescein-labelled AdV5 (AdV5-Fluo). Incubation at
4

�

C for 60min followed by quenching with trypan blue
blocked internalization of AdV5-Fluo, and no fluorescence
was detected in either cell type (Fig. 4b). All other treatments
were carried out as described in Methods. In comparison to
DMSO, treatment with the various inhibitors resulted in the

following: treatment with filipin, which blocks caveolae- and
cholesterol-dependent endocytosis, and chlorpromazine,
which inhibits clathrin-dependent endocytosis, reduced
AdV5-Fluo uptake by 293 cells, as expected, but not by
ALDC. In contrast, treatment with both cytochalasin D,
which blocks actin polymerization, and amiloride, which
blocks Na+ channels, reduced the uptake of virus by ALDC

histograms) ALDC or in mock-transduced ALDC (grey-filled histograms). (m and n) Expression of GFP in AdV5-GFP-trans-
duced ALDC and 293 cells in the presence of the RGD antagonist Cyclo(Ala-Arg-Gly-Asp-3-Aminomethylbenzoyl) (dotted
histogram) or control peptide (solid histogram); grey-filled histogram: mock-transduced cells. (o and p) Expression of GFP in

AdV5-GFP-transduced ALDC and 293 in the presence of AdV5 hyperimmune bovine sera (dotted histograms) or normal
bovine serum (solid histograms) or mock transduced (grey-filled histograms). Plots are representative of cells from six different
animals analysed in duplicate.
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(Fig. 4a and b). Treatment with methyl-b-cyclodextrin,
which blocks cholesterol-dependent phagocytosis, did not
have an effect on virus uptake in either cell type. Treatment
with endocytosis inhibitors at the concentrations observed
did not significantly increase the number of dead cells during
the course of the assay (data not shown). These data indicate
that actin polymerization and Na+/H+ exchange are required
for AdV5 uptake by ALDC.

Transient association of hAdV5 with early

endosome markers

Following clathrin-mediated endocytosis of AdV5 in 293
cells, virus can be detected within clathrin-coated vesicles
(Ashbourne Excoffon et al., 2003). These early endosomes

are characterized by the presence of Rab5 and EEA1
(Christoforidis et al., 1999). To determine whether entry of

AdV5 into ALDC was associated with early endosomes, we

cultured purified ALDC with AF568-labelled AdV5 for 1–6 h

and analysed them by confocal microscopy. AdV5 could not

be detected on the surface of ALDC until 3 h after addition of

virus, when it was found to be associated with dendrites or
cell membranes (Fig. 5a). An hour later, a greater number of

virions were associated with the dendrites/cell membrane and

virions were also observed within the cytoplasm (Fig. 5b). By

5 h post-infection, a proportion of virions were localized in

proximity to the nucleus (Fig. 5c). We then stained AdV5-

infected ALDC with EEA1-specific antibodies to determine

localization of AdV5 with early endosomes. Although co-
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localization of AdV5-AF568 with EEA1 was observed at 4 h
post-infection (Fig. 6a), co-localization events were rare, sug-
gesting that virus exit from the phagosome/endosome occurs
quickly after entry or that the majority of AdV are not associ-
ated with early endosomes. We then tracked the localization
of AdV5-AF568 within ALDC using two different AF488-
labelled tracers: dextran is used to track fluid-phase pinocyto-
sis and albumin is known to enter cells using a mannose
receptor endocytosis pathway. We observed co-localization of
AdV568 with dextran-AF488 but not with albumin-AF488
(Fig. 6c and d), suggesting that AdV5 entry into ALDC is via
fluid-phase macropinocytosis.

Exit of AdV5 into the cytosol of ALDC is not

pH mediated

Following uptake, a key step in AdV5 infection is the exit of
virus or virus aggregates from phagosomes/endosomes into
the cytoplasm (Meier et al., 2005). To define the mecha-
nisms associated with AdV5 exit in ALDC, we treated cells
with inhibitors of the intracellular acidic microenvironment
such as bafilomycin, NH4Cl or chloroquine, 60min prior to
the addition of AdV5-GFP. Cells were then cultured for 4 h

and GFP expression was measured by flow cytometry. None
of the treatments significantly reduced the proportion of
ALDC or 293 cells expressing GFP (Fig. 7a). To confirm the
presence of acidic endosomes within ALDC, we utilized
fluorescein-labelled dextran and fluorescein-labelled AdV5.
The fluorescence of fluorescein is optimal at pH 7.5 and
rapidly decreases under acidic conditions. Under normal
culture conditions, the mean fluorescence intensity (MFI)
of fluorescein-labelled dextran within ALDC decreases after
4 h incubation (Fig. 7b), confirming the presence of dextran
within endosomes and their subsequent acidification. In
contrast, fluorescein-labelled AdV5 within ALDC did not
show a decrease in fluorescence after 4 h incubation
(Fig. 7b). As expected, normalization of intracellular pH
with 10 mM NH4Cl, pH 7.5, inhibited the reduction of
fluorescence in dextran-loaded ALDC. To confirm these
results, we measured the relative fluorescence of fluorescein
at varying pH and generated a standard curve (Fig. 7c).
ALDC were incubated with fluorescein-labelled AdV5 or
dextran and fluorescence was measured by real-time fluo-
rometry. Fig. 7(d) shows that the fluorescence of dextran in
ALDC decreases over time as the fluorescein becomes

(a)

(c)

(b)

Fig. 5. Entry of AdV5 into ALDC. ALDC were cultured at 37 �C in the presence of AF568-labelled AdV5 (MOI=100). Cells were

fixed and analysed by confocal microscopy at 3 h (a), 4 h (b) or 5 h (c) post-infection. Blue: DAPI; green: Phalloidin-AF488 (for F-
actin); red: AdV5-AF568. Representative samples of cells from five different animals. The scale bar represents 20 µm.
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protonated, but the fluorescence of AdV5 remains the same
suggesting that acidic endosomes are not involved in adeno-
virus uncoating in ALDC.

Neutralizing antibodies do not prevent virus entry

into ALDC

An important hurdle to successful vaccination with viral vec-
tors is the presence of neutralizing antibodies that can limit
the efficacy of the vaccine. Most neutralizing antibodies are

raised against the fibre protein of AdV and thus block virus

attachment to its receptor (normally CAR). In light of our

results, we sought to investigate the effect of neutralizing anti-

bodies on AdV5 entry into ALDC. We incubated AdV5-568

with normal bovine sera, hyperimmune bovine sera to AdV5

or mouse monoclonal anti-hexon antibodies. Virus–antibody

complexes were then added to cultures of ALDC and virus

entry was assessed by confocal microscopy, 4–6 h post-infec-

tion. Interestingly, the mean number of intracellular AdV5
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tran-AF488 (green) or albumin-AF488 (green) for 4 h and fixed. The early endosome marker (EEA1) was detected using
monospecific antibodies and AF488 secondary antibodies (green) as described in Methods, and the samples were analysed
by confocal microscopy. (a) Co-localization of AdV5 and EEA1; (b) AdV5 and dextran; (c) AdV5 and albumin. Blue: DAPI; yel-
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was significantly higher (P=0.0027) in the presence of bovine
hyperimmune sera or mouse anti-hexon antibodies compared
to normal bovine sera (Fig. S1a, available in the online Sup-
plementary Material). However, even after 6 h in culture, virus
complexed with antibody did not migrate to the nuclear
membrane but it remained in the mid-cytoplasm (Fig. S1b)
whereas AdV5, incubated with normal bovine sera, migrated
and was located proximal to the nuclear membrane as
expected (Fig. S1c). These data show that the presence of neu-
tralizing antibodies does not prevent attachment of the virus
to the cell but rather blocks a process downstream of virus
penetration.

Oil-in-water adjuvants increase virus uptake and

enhance antigen expression

Various approaches have been proposed to improve target-
ing of AdV vectors to DC, including modification of the

virus fibre protein to increase virus binding and penetration
to DC. Previous observations by us and others (Cubillos-
Zapata et al., 2011; Ganne et al., 1994) indicate that the use
of oil-in-water emulsions as adjuvants to deliver AdV5-
based vaccines significantly increases the magnitude of
immune responses to the trans-gene in vivo. To identify the
effect of adjuvanted vector on ALDC, we prepared AF568-
labelled AdV5-GFP in an oil-in-water emulsion or com-
bined it with the adjuvant without mixing, and we incu-
bated ALDC with the preparations. ALDC incubated with
emulsified virus contained a significantly greater number of
intracellular virions compared to cells incubated with virus
in adjuvant without mixing or in PBS (P=0.0248; Fig. 8a–
c). The MFI of GFP was greater (Fig. 8d) and expression
was more sustained (Fig. 8e) in ALDC incubated with
emulsified virus than in cells incubated with the virus in
adjuvant without mixing or in PBS. However, the
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percentage of cells expressing the trans-gene did not change
(Fig. 8e). To confirm the effect of adjuvanted vector on
antigen presentation, we prepared AdV5 expressing myco-
bacterial antigen 85A [Ag85A (Cubillos-Zapata et al.,
2011)] in adjuvant with or without mixing and incubated it
with ALDC. These ALDC were then cultured with CD4+ T
cells obtained from MHC-matched, BCG-vaccinated cattle.

Ag85A-specific responses were significantly higher when
AdV5-Ag85A was mixed with adjuvant compared to AdV5-
Ag85A without mixing or without adjuvant (P=0.0076).
The number of IFN-g producing cells was minimal when T
cells were cultured with ALDC exposed to AdV5-GFP with
or without adjuvant or to adjuvant alone (Fig. 8f). These
data show that, in the absence of genetic modification of
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the virus fibre, increased transduction efficiencies can be
achieved by the use of water-in-oil adjuvants.

DISCUSSION

We have previously shown that, in contrast to monocyte-
derived DC, ALDC can be readily transduced by replication-
deficient AdV5 (Cubillos-Zapata et al., 2011), achieving up to
50% transduction of ALDC in vitro and up to 12% in vivo.
ALDC can be separated into two main subpopulations,
CD172a+ and CD172a�; only the former can be transduced
by AdV5 vectors both in vitro and in vivo (Cubillos-Zapata
et al., 2011). In the current study, we aimed to characterize the
mechanism of AdV5 uptake by ALDC further.

Since its discovery as a primary receptor for AdV5 (Bergelson
et al., 1997), it has been widely accepted that CAR is involved
in AdV5 attachment to target cells. However, a number of
other cell surface molecules, such as CD40, MHCII, CD46
and Fc receptors, have been identified, which appear to play
an important role in AdV5 attachment [reviewed in Zhang &
Bergelson (2005)]. We could not prevent the transduction of
ALDC by AdV5 following proteolytic cleavage of surface pro-
teins or by using RGD blocking peptides. Although there is
evidence that DC-SIGN is involved in attachment of AdV5 to
human monocyte-derived DC (Adams et al., 2009), we could
not replicate these results using bovine ALDC. This may be
due to differences in the interaction of AdV5 between human
and bovine DC or to differences between monocyte-derived
DC and ALDC. Apart from an antibody against CD64
(FcgR), antibodies against bovine FcgR are not available;
thus, it is possible for these receptors to be involved in AdV5
entry into bovine ALDC. VOPBA has been used to identify
the binding of dengue virus (Jindadamrongwech & Smith,
2004), pseudorabies virus (Karger & Mettenleiter, 1996) and
respiratory syncytial virus (Tayyari et al., 2011) to cell recep-
tors. We used this assay under denaturing and
non-denaturing conditions to determine whether a protein
receptor for AdV5 on membrane-enriched fractions from
ALDC could be identified. Although binding of virus to a
protein present in enriched membrane fractions from 293
and BL cells could be detected, we could not identify binding
of AdV5 to membrane proteins derived from ALDC (Fig. 1).
It is possible that our inability to identify an AdV5 receptor
on ALDC is due to the stringency of the assay’s conditions or
the sensitivity of our assays. New technologies developed to
identify protein–protein interaction, such as fluorescence res-
onance energy transfer or high-affinity co-immunoprecipita-
tion followed by highly sensitive mass spectrometry, may help
identify receptors involved in AdV attachment in the future.

Using biotinylated AdV5, we showed that the virus does not
bind to the surface of ALDC as it does to the surface of 293
cells, suggesting that internalization of AdV5 by bovine
ALDC is mediated by CAR-independent macropinocytosis,
and similar pathways have been described for internaliza-
tion other viruses such as influenza (de Vries et al., 2011)
and vaccinia (Sandgren et al., 2010) by DC. Alternatively, it
is possible for AdV5 to use low-affinity receptors present on

the surface of ALDC as observed in other systems, such as
CD46 (Sirena et al., 2004), aMb2 and aLb2 (Huang et al.,
1996) integrins. It is possible that labelling the virus with
sulfo-NHS conjugates (biotin, AF569 or fluorescein)
changes the way the virus enters the cells. We have tried to
address this possibility by using non-labelled virus as con-
trol and GFP as readout of transduction when at all
possible.

Professional phagocytic cells such as DC have the capacity
to take up small and large particles using a variety of mecha-
nisms such as macropinocytosis and micropinocytosis
(Platt et al., 2010; Savina & Amigorena, 2007). Using bio-
chemical inhibitors of endocytosis, we found that cytochala-
sin D was able to block AdV5 uptake indicating that AdV5
internalization by ALDC is an actin-mediated process
(Cooper, 1987) and that skin-migrating DC utilize their
capacity as professional phagocytic cells to survey peripheral
sites acquiring foreign antigens such as vaccine vectors,
as well as processing these antigens prior to and on arrival
to local draining lymph nodes. Interestingly, dynasore had
no effect on endocytosis of AdV5 indicating that this pro-
cess is clathrin independent (Chen et al., 2009) and there-
fore does not require the binding of RGD to cellular
integrins. This suggestion is supported by the finding that
RGD blocking peptides did not inhibit AdV5 internalization
by bovine ALDC (Fig. 2).

We then looked at events following virus internalization
and, using confocal microscopy, we observed occasional co-
localization of AdV5 particles with the early endosome
marker EEA1, but not with the late endosome marker
LAMP1 (data not shown), supporting previous evidence of
AdV5 exit from early endosomes to the cytosol (Svensson &
Persson, 1984). Although it has been previously proposed
that AdV5 exits early endosomal compartments following
intra-endosome acidification [see Greber et al. (1993) and
reviewed in Smith et al. (2010)], we could not block virus
transduction of ALDC using a number of lysosomotropic
agents. Additionally, the fluorescence intensity of AdV5-
fluorescein remained constant in ALDC over time whereas
the fluorescence intensity of fluorescein-labelled dextran
declined as fluorescein became protonated (Fig. 7b and d).
Our data indicate that acidification of endosomes is not
required for transduction of ALDC by AdV5, and this
has been shown to be the case in other systems (Otero &
Carrasco, 1987; Rodriguez & Everitt, 1996; Svensson &
Persson, 1984), and although Suomalainen et al. found in
epithelial cells that virus penetration is independent of low
endosomal pH, it could still be inhibited by ammonium
chloride; thus, it is possible that AdV5 exit to the cytosol
requires acidification of endosomes in some cells but not
others. This raises the question of how AdV5 exits endoso-
mal compartments in ALDC. It has been proposed that viral
(Suomalainen et al., 2013) or cellular proteases degrade
early endosomes (Wiethoff et al., 2005), or perhaps a yet
unknown mechanism is involved in this process and
requires further investigation.
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The presence of naturally acquired neutralizing antibodies
against AdV5 is one of the major obstacles in the deploy-
ment of effective recombinant AdV5 vaccine vectors (Ahi
et al., 2011). Antibodies bound to neutralizing epitopes on
the virus surface normally prevent virus binding to the cell’s
receptors (Roy et al., 2005; Sumida et al., 2005). However,
we observed that AdV hyperimmune bovine sera enhanced
the uptake of AdV5 by ALDC, perhaps through the use of
Fc receptors while blocking trans-gene expression. We
could not test the effect of blocking Fc receptors due to the
lack of available reagents to use in bovine cells. In the pres-
ence of AdV5-specific antibody, the AF568-labelled virions
were not translocated to the nuclear membrane but
remained in the cytoplasm and the signal was eventually
lost (data not shown). A similar phenomenon has been
described previously in HeLa cells (Smith et al., 2008), in
which TRIM21 binds to antibody–AdV5 complexes and tar-
gets the complexes for proteasomal degradation (Mallery
et al., 2010). The role of TRIM21 in AdV5 degradation
remains to be investigated in DC.

Various approaches have been proposed to improve targeting

of AdV vectors to DC, including modification of the virus

fibre protein to increase virus binding and penetration to DC.

In light of our current results and previous studies that have
shown that AdV5 emulsified in an oil-in-water adjuvant and

injected over the site of cannulation provides longer trans-

gene expression and improved immunogenicity compared to

non-adjuvanted virus (Cubillos-Zapata et al., 2011), we

sought to understand the mechanism of improved immuno-

genicity in the absence of clear virus fibre–receptor interac-

tions. Cells transduced with adjuvanted virus contained more

intracellular virions and trans-gene expression was stronger
and longer lasting than in cells transduced with virus in the

presence of adjuvant but without emulsification, or in PBS. In

presentation assays, antigen-specific IFN-g T-cell responses

were higher when adjuvanted virus was used. This suggests

that the oil-in-water emulsion provides a biological medium

which is used by the DC to take up larger amounts of solute;

in this case, AdV5. This in turn translates into greater num-

bers of intracellular virions that have the capacity to translo-
cate to the nucleus more effectively and for longer periods of

time, or that the virions may be protected from intracellular

degradation for a longer period of time when taken up in an

adjuvant emulsion. This results in stronger trans-gene expres-

sion and thus antigen presentation. In addition, the adjuvant

emulsion may activate TLRs which provide signals for the DC

to be more effective at activating T cells. However, our con-

trols suggest that this may not be the case since in vitro
responses to AdV5-Ag85 in PBS are not significantly higher

than responses to AdV5-Ag85 in adjuvant but without mixing

(Fig. 8f). Further studies are required to understand the rela-

tionship between biochemical adjuvants and DC. Ultimately,

genetic modification of fibre protein will only be useful if a

clear cellular receptor is identified in the target cell; therefore,

alternative approaches, such as oil-in-water emulsions, may

be the most appropriate to improve AdV-based gene delivery.

In conclusion, here we describe the interaction of a replica-
tion-deficient AdV vector with skin-migrating bovine DC,
which are collected by cannulation of lymphatic vessels and
are not subject to culture under laboratory conditions. We
present evidence of the phagocytic action of these DC.
Upon encountering virus, ALDC actively phagocytose the
virus particles, perhaps using an unknown low-affinity
receptor and which takes between 3 and 4 h before virus
particles can be observed intracellularly. Following entry,
the virus quickly exits endosomal compartments via an
unknown mechanism or is never associated with acidic
endosomes, travelling to the nuclear membrane and thus
initiating trans-gene transcription and translation. Neutral-
izing antibodies not only prevent virus entry into DC but
enhance it while inhibiting translocation to the nucleus.
Our data will be useful in understanding DC–vaccine inter-
actions and will help further development and improve-
ment of viral vectors. Defining and manipulating entry
pathways may enhance vaccine vector efficacy through
improved antigen presentation.

METHODS

Pseudoafferent lymphatic cannulation. MHC-defined (Ellis et al.,
1996, 1998), conventionally reared, 6-month-old Friesian Holstein calves
(Bos taurus) from The Pirbright Institute (Pirbright) herd were used for
these studies. Cannulations were performed essentially as described previ-
ously (Hope et al., 2006). Lymph was collected into sterile plastic bottles
containing heparin (10 U ml�1), penicillin (100 U ml�1) and streptomy-
cin (100 µg ml�1). The lymph collected was either used fresh or centri-
fuged (300 g, 8 min) and resuspended in heat-inactivated foetal calf
serum (FCS; Autogen Bioclear) containing 10% DMSO, and the cells
were stored in liquid nitrogen prior to use. Mononuclear cells were iso-
lated from afferent lymph by density gradient centrifugation over Histo-
paque 1083 (Sigma). Mycobacterium bovis Ag85A-specific T cells were
obtained from MHC-defined cattle vaccinated subcutaneously with
106 c.f.u. of BCG Pasteur. All T cells used were collected 3 weeks post-vac-
cination at the peak of the response. All animal experiments were
approved by the Pirbright’s ethics committee and carried out according
to the UKAnimal (Scientific Procedures) Act 1986.

Cell lines and primary cells. HeLa cells and 293 were obtained and
maintained by the Microbiological Services Department (Pirbright) in tis-
sue culture media in the absence of antibiotics. CHO cells expressing
human recombinant CAR were provided by Dr M. Cottingham, Jenner
Institute, University of Oxford, UK. Bovine ALDC (FSChigh MHCII+

DEC205+ CD11c+ CD8a�) were separated from other lymph-migrating
cells using a FACSAria II (Becton Dickinson) and purities were confirmed
by flow cytometry using FACSDiva v6 (Becton Dickinson). Peripheral
blood CD14+ monocytes, CD4+ and CD8+ T cells were magnetically sep-
arated using anti-human CD14 (Miltenyi Biotech), CC30 and CC63
monoclonal antibodies (Guzman et al., 2008), respectively, and MACS
technology (Miltenyi Biotech) following the manufacturer’s instructions.
Typically, the purity of the resulting dendritic and T-cell subsets was over
97% as determined by flow cytometry as described above.

BL cells were isolated from Holstein cattle at the time of slaughter and
were provided by Pirbright’s Microbiological Services Department
(Chanter et al., 1986).

Monoclonal antibodies and flow cytometry. Fluorochrome-
labelled mouse anti-bovine monoclonal antibodies used in this study
have been described in detail previously (Brooke et al., 1998; Howard
et al., 1991, 1997; Howard & Naessens, 1993; Sallusto et al., 1995). These
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were CC98-APC (anti-DEC205), CC14-PE (anti-CD1b), CC149-PerCP/
Cy5.5 (anti-SIRPa), IL-A16-AlexaFluor 680/PE (anti-CD11c), IL-A21-
PE (anti-MHCII), IL-A88-FITC (anti-MHCI), IL-A156-PE (anti-CD40),
N32/52-3-PE (anti-CD80) IL-A159-PE (anti-CD86), CC30-APC/Cy5.5
(anti-CD4), CC63-APC/Cy7 (anti-CD8), IL-A111-AlexaFluor 610/PE
(anti-CD25) and CC302-PE (anti-IFN-g). Isotype- and concentration-
matched anti-turkey rhinotracheitis virus monoclonal antibodies were
used as controls (Hope et al., 2006; Whelan et al., 2003). Dead cells were
excluded using the 405 nm excitable dye Live/Dead Aqua or propidium
iodide (Invitrogen) following the manufacturer’s instructions. The cells
were acquired using an LSRFortessa (Becton Dickinson) and staining was
analysed using FCS Express v4 (DeNovo Software). ALDC were distin-
guished from other cells on the basis of their high forward scatter (FSC),
expression of MHCII, CD11c and high-intensity expression of DEC205
and lack of CD8a (Gliddon et al., 2004; Hope et al., 2006). Only live, sin-
gle events were used for analysis.

Viruses. E1- and E3-deleted recombinant AdV5 expressing GFP or
mycobacterial antigen 85A (Ag85A) was generated by the Jenner Insti-
tute Viral Vector Core Facility, University of Oxford, UK, as described
previously (Cubillos-Zapata et al., 2011).

For some assays, aliquots of 1�1011 virus particles of AdV5 were labelled
with NHS-AlexaFluor568, NHS-biotin or NHS-fluorescein (Invitrogen)
following the manufacturer’s instructions and labelled virus was dialysed
twice against PBS. The virus was then titrated in 293 cells and GFP
expression was measured by flow cytometry. In some cases, the titre was
found to be 1 log lower after labelling and the infectious doses were
adjusted as required.

Generation of bovine hyperimmune sera to AdV5. Three 6-
month-old Holstein-Friesian calves were inoculated intramuscularly
with 1�109 virus particles of purified AdV5 three times at 6-week inter-
vals. The hyperimmune sera used were collected 6 weeks after the last
immunization, pooled and tested in a virus neutralization assay (Sumida
et al., 2005).

Infection of afferent lymph cells. Migrating cells from the afferent
lymph were cultured [IMDM containing 10% FCS and 10�5M 2-b-
mercaptoethanol (Sigma-Aldrich)] with the recombinant viruses using
optimal MOI values, as described previously (Cubillos-Zapata et al.,
2011). In some assays, transferrin-AF568 (Sigma) and dextran-fluores-
cein (Invitrogen) were used as tracing markers. In neutralization assays,
AdV5 was incubated with 1 µg of anti-hexon antibody raised in goats
(Millipore) or with bovine pre-immune or hyperimmune sera raised
against human AdV5 generated by immunizing calves with 1�109 virus
particles of AdV5 as described above.

Detection of known adenovirus receptors and removal from

cell surface. To analyse the expression of known adenovirus receptors
on ALDC and BL cells, we used the following antibodies in flow
cytometry: N-17 (goat anti-CAR, Santa Cruz Biotechnology), N32/52-3
(anti-CD80), IL-A159 (anti-CD86), IL-A88 (anti-MHCI), IL-A21
(anti-MHCII), T320.11 (anti-heparin/heparin sulphate, Merck), 2-2B
(anti-sialic acid, Merck), CC30 (anti-CD4), CC63 (anti-CD8), 344519
(anti-CD46, R&D Systems), CCG24 (anti-FcgRII), KD1 (anti-FcgRIII,
Abcam), C-20 (anti-DC-SIGN, Santa Cruz Biotechnology), LM609 (anti-
avb3, Chemicon), monoclonal antibody 2000 (anti-avb1, Chemicon) and
10D5 (anti-avb6, Millipore). All antibodies were obtained from Pirbright
except where noted. Antibodies were added to cells (1 µg 10�6 cells) and
incubated at 4

�

C for 60min. After three washes with PBS, the cells were
stained with AF647-labelled goat-, rabbit- or mouse-specific secondary
antibodies (Serotec) and the cells were analysed by flow cytometry as
described above.

Digestion of cell surface proteins was achieved using a mixture of pro-
teolytic enzymes (Wald et al., 2001) consisting of 2 U of trypsin, 1 U of

papain and 2 U of chymotrypsin (Merck). We treated 106 cells with the
enzyme mix in a volume of 100 µl for 30min at 37

�

C; the cells were
then washed twice in cold PBS and resuspended in culture media con-
taining a final concentration of 5 µg ml�1 of brefeldin A (Sigma).

Virus attachment assay by ELISA. BL cells, ALDC, CD14+ mono-
cytes or 293 cells were cultured on 96-well plates. Antibodies against
known AdV5 receptors were added to the cells at 1 µg 10�6 cells; in
some cases, the following chemical agents known to block AdV5 entry
were also added: 10 U of sodium heparin (Sigma), 1 U of trypsin
(Sigma) or 10 mM RGD antagonist Cyclo(Ala-Arg-Gly-Asp-3-Amino-
methylbenzoyl) (Sigma). After 1 h of incubation at 37

�

C, the cells were
washed in cold PBS, and biotinylated AdV5 (MOI=100 virus
particles per cell) was added for 90min on ice or at 37

�

C. The cells were
then washed three times with ice-cold PBS and fixed with 3% parafor-
maldehyde. After blocking with 1% BSA in PBS, streptavidin-HRP
(Sigma, 1 : 500) was added and the plates were incubated for 60min at
room temperature. The plates were washed with PBS-Tween and the
plates were developed with TMB Turbo (Pierce). Reactions were
stopped with 1M H2SO4 and optical densities were measured using a
FluorostarOptima (BMG Labtech).

VOPBA and Western blot. VOPBA was carried out essentially as
described by Cao et al. (1998) with a few modifications. Subcellular frac-
tions from 1�106 293, BL and ALDC were enriched using the ProteoEx-
tract subcellular fractionation kit (Merk Millipore) following the
manufacturer’s instructions. Total cell protein and membrane fractions
were separated by PAGE on 4–10% denaturing and non-denaturing
TGX stain-free gels (Bio-Rad) and transferred onto Immun-Blot PVDF
membranes (Bio-Rad). The membranes were blocked with 5% (w/v)
dry milk-PBS overnight, rinsed with PBS and probed with AdV5 (1�108

virus particles in 10 ml of milk-PBS) for 90min. The membranes were
then washed three times with PBS and incubated with 10 µg of biotiny-
lated goat anti-AdV5 (Serotec) in 10 ml of milk-PBS for 60min. The
membranes were washed three times and incubated with 10 µg of strep-
tavidin-conjugated HRP (Dako) in 10 ml of milk-PBS for 60min. After
extensive washing, we developed the membranes with Immun-Star
WesternC substrate (Bio-Rad) and visualized them using a Chemi-
DocMP digital imager (Bio-Rad). For competition VOPBA and before
the addition of AdV5, 10 µg of rabbit anti-CAR pAb (Abcam) was added
to the membranes and incubated for 90min at room temperature. After
washing three times with PBS, we probed the membranes with AdV5
and the assay was carried out as described above.

For detection of CAR byWestern blot, membrane fractions separated by
PAGE were transferred onto PVDF membranes, blocked with milk-PBS
and probed with 10 µg of rabbit anti-CAR pAb or 1 µg of anti-b actin
mouse monoclonal antibody (Abcam) in 10 ml of milk-PBS. After
washing with PBS containing 1% Tween 20 (PBS-T), we incubated the
membranes with 1 µg of anti-goat or anti-mouse antibody conjugated to
HRP (Dako) in 10 ml of milk-PBS for 60min. After extensive washing
with PBS-T, we developed the membranes as described above.

Biochemical inhibitors. The following inhibitors and final concentra-
tions were used to block endocytosis: cytochalasin D [1 µM, actin-
dependent (Sakr et al., 2001)]; filipin [5 µg ml�1 caveolae-dependent
(Rothberg et al., 1992)]; chlorpromazine [10 µg ml�1, prevents clathrin-
coated pit formation (Wang et al., 1993)]; methyl-b-cyclodextrin
[10 mM, cholesterol-dependent (Vieth et al., 2010)]; amiloride [1 mM,
Na+ blocker (West et al., 1989) and therefore blocks macropinocytosis
(Sallusto et al., 1995)]; ciliobrevin [10 µM, inhibitor of motor cytoplas-
matic dynein (Firestone et al., 2012); and dynasore [8 mM, inhibitor of
dynamin- and clathrin-dependent endocytosis (Macia et al., 2006)].

The following lysosomotropic agents were used to block acidification of
endosomal compartments: bafilomycin [1 µM, inhibitor of vacuolar-
type H+-ATPase (Yoshimori et al., 1991)]; NH4Cl [a weak base
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(Sonawane et al., 2002) and diluted in PBS]; and chloroquine [10 µM,
inhibits endosomal maturation (Mellman et al., 1986)].

All inhibitors were diluted in DMSO, except where noted. DMSO was
used as diluent control and PBS was used as a negative control. All
chemicals were obtained from Sigma-Aldrich. Cells (1�106 final) were
plated in triplicate in culture media in 96 U-bottomed plates, and the
biochemical inhibitors were added to the final concentrations described
above in a final volume of 100 µl and mixed thoroughly. After 1 h of
incubation at 37

�

C, virus internalization assays were performed as
described below.

Virus internalization assay. To differentiate between attachment and
entry, we modified a fluorometry phagocytosis assay (Wan et al., 1993)
based on the capacity of trypan blue to quench extracellular fluorescein.
AdV5 was labelled with NHS-fluorescein (Pierce) following the manu-
facturer’s instructions. ALDC or 293 cells were cultured in 96-well plates
with the labelled virus (MOI=100 virus particles per cell) for 6 h or
60min, respectively, at 37

�

C or at 4
�

C in the presence of the biochemi-
cal inhibitors described above. All inhibitors prepared in DMSO were
diluted in culture media and 10% DMSO in culture media was used as
negative control. After the required incubation period, trypan blue
(0.5% final; Sigma) and Live/Dead Aqua (Invitrogen) were added and
the cells were analysed by flow cytometry; 25 000 live/single events were
used to generate statistical analyses.

Confocal microscopy. FACS purified DC (FSChigh MHCII+

DEC205+ CD11c+ CD8a�) were cultured on collagen-treated coverslips
(Sigma) in the presence (MOI=10) or absence of labelled AdV5. The
cells were fixed with 3% paraformaldehyde for 20min, washed twice
with PBS and permeabilized with 0.1% Triton X-100 in PBS. Anti-
EEA1 polyclonal antibody raised in rabbits (1 µg ml�1 final concentra-
tion; Abcam) was used to visualize early endosomal compartments; the
tracer molecules dextran and albumin (both at 0.5 µg ml�1 final concen-
tration) conjugated to AF488 were used for co-localization assays; rabbit
anti-FMDV was used as a negative control (final dilution of 1 : 750).
Goat anti-rabbit-AF488 (1 µg ml�1; Invitrogen) was used as secondary
antibody and all samples were counterstained with DAPI (100 nM; Invi-
trogen) following the manufacturer’s instructions. Where indicated,
Phalloidin-AF488 (0.2 U per slide; Invitrogen) was used to identify actin
filaments. Cells were mounted onto microscope slides using VectaShield
(Vector Laboratories) and observed using a 65� lens mounted on a
Leica SP5 confocal microscope. The Leica LAS AF software was used to
take sequential, three-dimensional stack images in the Z-plane acquiring
stacks of 80–120 optical sections from infected cells as optimized by the
software. The number of intracellular virions, three-dimensional images
and co-localization data sets were analysed using Bitplane Imaris 6.4.2
image analysis software (Bitplane) with surface smoothing of 0.05 nm
for nuclei (blue) and 0.02 nm for AdV (red) and endosomes (green).

pH-dependent fluorometry. Dextran-fluorescein (Invitrogen) was
used to measure intracellular pH essentially as described previously
(Downey et al., 1999). Calibration of the fluorescence ratio versus pH
was performed for each experiment by equilibrating the cells in isotonic
K+-rich medium buffered to varying pH values (between 5.0 and 7.5) in
the presence of the K+/H+ ionophore nigericin (5 mM; Sigma). Calibra-
tion curves were constructed by plotting the extracellular pH, which was
assumed to be identical with the cytosolic pH under these conditions,
against the corresponding fluorescence ratio. AdV5 (MOI=100) or dex-
tran (25 µg ml�1) labelled with fluorescein was added to ALDC or 293
cells cultured in triplicate in 96-well plates (Costar). Real time fluoro-
metry was measured every 30min using an Infinite M200 (Tecan) and
the results were analysed using Magellan for Windows (Tecan).

Generation of oil-in-water emulsions. AdV5 recombinants
expressing GFP or Ag85A were mixed with the adjuvant Montanide ISA
206V (SEPPIC) to form oil-in-water emulsions following the

manufacturer’s instructions. Briefly, 1�109 virus particles in a volume
of 250 µl were mixed with an equal volume of adjuvant and vigorously
mixed for 2min. Two negative controls were also prepared, one contain-
ing AdV5 and adjuvant but without mixing and the other one with PBS
mixed with ISA 206V and emulsified as described above. The emulsions
containing 100 virus particles per cell were added to 96-well
U-bottomed tissue culture plates containing 1�105 ALDC in 100 µl of
media and mixed by pipetting until the solution looked homogenous. In
the case of the control containing AdV5 and adjuvant without mixing,
the solutions were mixed only once and clear hydrophobic/hydrophilic
globules observed macroscopically. The infection was allowed to con-
tinue as described in the text and was washed twice with PBS before
analysis.

Antigen presentation assays. Ag85A-specific IFN-g producing lym-
phocytes were analysed using ELISpot assays as described previously
(Guzman et al., 2012; Hope et al., 2012) utilizing purified CD4+ T cells
fromMHC-matched, BCG-vaccinated animals (Thom et al., 2012).

Statistical analysis. Calculation of descriptive statistics (geometric
statistics, standard error of the means and standard deviations), two-way
parametric ANOVA including multiple comparisons, Bonferroni multi-
ple comparison tests and graphs were generated using GraphPad Prism
for Windows v6.01 (GraphPad).
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