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The mechanisms controlling the interaction between energy balance and reproduction are the subject of intensive investigations.
The integrated control of these systems is probably a multifaceted phenomenon involving an array of signals governing energy
homeostasis, metabolism, and fertility. Two fuel sensors, PPARs, a superfamily of nuclear receptors and the kinase AMPK, integrate
energy control and lipid and glucose homeostasis. Adiponectin, one of the adipocyte-derived factors mediate its actions through
the AMPK or PPARs pathway. These three molecules are expressed in the ovary, raising questions about the biological actions of
fuel sensors in fertility and the use of these molecules to treat fertility problems. This review will highlight the expression and
putative role of PPARs, AMPK, and adiponectin in the ovary, particularly during folliculogenesis, steroidogenesis, and oocyte
maturation.

Copyright © 2008 Joëlle Dupont et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The levels of various molecules, including metabolites (glu-
cose, fatty acids, amino acids) and hormones (adiponectin,
insulin, leptin, ghrelin, etc.), are modulated by nutrition and
energy supply. Most of these molecules are known to be di-
rectly involved, through a fuel sensor, in the regulation of fer-
tility at each level of the hypothalamo-pituitary-gonad axis
(for review see [1, 2]). For example, mice lacking insulin-
signalling pathway components, such as insulin receptor sub-
strate 2 (IRS-2) or insulin receptor, display female and male
infertility [3, 4].

In humans, a close link between energy status and re-
productive function has been found in some diseases. Poly-
cystic ovary syndrome (PCOS), which is frequently asso-
ciated with insulin resistance, affects 5 to 10% of women
of reproductive age [5]. Women with PCOS present with
ovulation problems, which may be associated with infertil-
ity. The treatment of PCOS patients with insulin-sensitising
agents of various drug families, such as thiazolidinediones
(TZDs) or metformin (a derivative of biguanide), restores

the menstrual cycle [6] and increases ovulation (by improv-
ing follicular growth), fertilization, and pregnancy rates [7].
TZDs bind to the nuclear peroxisome proliferator-activated
receptor gamma (PPARγ) and metformin activates the AMP-
activated protein kinase (AMPK) pathway [8, 9]. In women
with PCOS, plasma adiponectin is also significantly de-
creased independently of obesity [10]. Adiponectin plasma
levels seem to be related to TZDs or Metformin treatment.
Adiponectin is an adipokine known to increase sensitivity
to insulin and vasodilatation (for review [11]). Adiponectin
could also be involved in the regulations of some reproduc-
tive functions [12, 13]. In mammals, and particularly in cat-
tle, dietary fats also influence reproductive function. For ex-
ample, fatty acid supplementation in the diet increases the
total number of follicles and stimulates growth of the pre-
ovulatory follicle [14]. In cows, the availability of fatty acid
precursors is coupled with an increase in sexual steroid levels
and eicosanoid secretion, potentially affecting ovarian and
uterine function and embryo implantation [15]. These phe-
nomena may involve several hormones including insulin,
IGFs, leptin, adiponectin, and some factors such as PPARs
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and AMPK. Indeed, these molecules are known to play a
role in energy control and lipid metabolism. They may hy-
pothetically play a role as fuel sensors in reproductive com-
partments, providing the cells with information about en-
ergy status. However, how metformin and TZDs influence
ovarian function is still under investigation. The functions
of PPARs, AMPK, and adiponectin in the ovary also remain
unclear. In this review, we will describe the expression and
potential implications of these fuel sensors in the ovary.

2. PPARs AND AMPK STRUCTURES
AND IMPLICATIONS

The PPAR family (α, β/δ and γ) integrates energy control
with lipid and glucose metabolism and affects insulin sen-
sitivity [16]. Like PPARs, AMPK plays a key role in regulat-
ing lipid and glucose metabolism in response to metabolic
stress and energy demand [17]. AMPK acts at various steps
and plays a central role in controlling fatty acid, triglyceride,
and cholesterol synthesis, and the oxidation of fatty acids,
through direct phosphorylation and control over gene tran-
scription [17].

PPARs and AMPK have similar effects and close links
have been found between these molecules. Indeed, it is gen-
erally assumed that TZDs activate PPARγ and AMPK inde-
pendently [18–20]. The inhibition of AMPK expression by
siRNA abolishes the inhibitory effects of rosiglitazone and
15d-PGJ2 (two PPARγ ligands, see below) on iNOS expres-
sion and activity [21]. The mitochondria may house a path-
way common to PPARγ and AMPK. Indeed, both metformin
and TZDs cause a rapid increase in cellular ADP : ATP
ratio, probably by inhibiting the respiratory chain, lead-
ing to the phosphorylation and activation of AMPK [22].
PPARs and AMPK also participate in the molecular action
of adiponectin, an adipocytokine involved in the insulin sen-
sitivity of tissues [7].

2.1. Structure and mechanisms of action of PPARs

The PPARs are transcription factors that share a common
structure with steroid hormone receptors: the N-terminal
A/B domain responsible for ligand-independent transactiva-
tion function, the C domain containing the DNA-binding
domain, the D domain involved in the receptor dimeriza-
tion, and the C-terminal E/F domain containing the ligand
binding domain (for review [23]). The members of the nu-
clear PPAR (α, β/δ, and γ) family bind to specific regions of
DNA in heterodimers with the retinoid X receptors (RXRs)
[24]. These DNA sequences are known as PPREs (peroxi-
some proliferator response elements). The transcription is
activated subsequent to heterodimerisation of PPAR and
retinoid receptors (RXR). Furthermore, PPARs are able to
indirectly regulate gene expression through transrepression
mechanisms by linking some cofactors (reviewed in [23]). In
this review, we focus on the PPARα and PPARγ isoforms.

The stimulation of PPARγ by TZDs modifies the tran-
scription and/or the activity of several key regulators of en-
ergy homeostasis, including several glucose regulators (glu-
cose transporters, insulin receptor, IRS, etc.), which it stimu-

lates (for review see [25, 26]). PPARs regulate the transcrip-
tion of a number of target genes involved in ovarian func-
tions such as steroidogenesis, ovulation, oocyte maturation,
and maintenance of the corpus luteum (cyclooxygenase-2
(COX-2), nitric oxide synthase (NOS), several proteases,
including matrix metalloprotease-9, plasminogen activa-
tor, and vascular endothelial growth factor (VEGF), re-
viewed in [23]). PPARγ activity is governed by binding
to small lipophilic ligands, such as polyunsaturated fatty
acids and eicosanoids derived from the diet or metabolic
pathways (e.g., the prostaglandin D2 metabolite 15-deoxy-
12, 14-prostanglandin J2 (PGJ2)) [27]. PPARγ is also ac-
tivated by synthetic compounds called thiazolidinediones
(TZDs), a class of insulin-sensitising agents. PPARγ may also
be regulated by AMPK. Indeed, AMPK can phosphorylate
PPARγ, repressing both the ligand-dependent and ligand-
independent transactivating functions of this receptor [28].

PPARα is another isoform of PPAR expressed in the
ovary. It regulates genes responsible for the uptake into
cells and beta-oxidation of fatty acids [29]. Hypolipi-
daemic fibrate drugs, phthalate esters (plasticisers, herbi-
cides), and long-chain polyunsaturated fatty acids and their
lipooxygenase-derived metabolites (e.g., leukotriene) have
been described as agonists of PPARα [30–32]. In vivo, fi-
brates are currently administrated alone or in combination
with statins to patients with increased cardiovascular risk to
impede the progression of atherosclerotic lesions. Insulin in-
creases the transcriptional activity of PPARα by activating the
MAPK pathway [33]. New therapeutics agents, such as gli-
tazar, may activate both PPARα and PPARγ [34].

2.2. Structure and mechanisms of action of AMPK

Unlike PPARs, AMPK is a kinase comprised of three sub-
units: a catalytic subunit alpha and two regulatory subunits,
beta and gamma [35]. The alpha subunit contains the cat-
alytic core and binds, via its C-terminal tail, to the beta
subunit, which serves as a docking subunit for the alpha
and gamma subunits. AMPK is activated by a change in
the AMP : ATP ratio within the cell and therefore acts as
an efficient sensor of cellular energy state. This change in
AMP : ATP ratio may result from exercise [36], hypoxia
[37], hormones [38, 39], or the effects of pharmacological
drugs, such as 5-aminoimidazole-4-carboxamide-riboside-
5-phosphate (AICAR) [40]. Binding to AMP activates AMPK
allosterically and induces phosphorylation of the threonine
172 residue of the α subunit by upstream kinases, including
the tumour suppressor LKB1 [41, 42].

AMPK phosphorylates target proteins (including
PPARγ) involved in a number of metabolic pathways,
including lipid and cholesterol metabolism (adipocytes,
liver, and muscle), glucose transport, glycogen, and protein
metabolism (see review [35, 41]).

2.3. Involvement of PPARs and AMPK in the
adiponectin action

AMPK and PPARα are both activated by adiponectin [11, 43]
(Figure 1). Adiponectin (also known as apM1, AdipoQ,
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Figure 1: Schema illustrating the putative functional interactions between PPARs, AMPK, and adiponectin. PPARγ is activated by binding
with PGJ2 or TZDs and PPARα with fibrates or WY 14 463. They control gene transcription, and, in particular, PPARγ ligands increase
adiponectin expression [49]. Metformin and TZDs activate AMPK probably via the respiratory chain in mitochondria [22], and AICAR
stimulates AMPK. AMPK controls protein activity by phosphorylation (e.g., inhibits PPARγ by phosphorylation [35]). Adiponectin activates
AdipoR1 and AdipoR2 receptors which act on metabolism via AMPK (AdipoR1) or PPARα (AdipoR2) [43].

Gbp28, and Acrp30) is an adipocyte-derived factor [44, 45].
It is present as a multimer at high concentrations in the cir-
culation (5 to 25 μg/ml in human [46]). In obese and type
2 diabetic humans, plasma adiponectin is strongly reduced
suggesting that circulating adiponectin may be related to the
development of insulin resistance [11]. Two adiponectin re-
ceptors (AdipoR1 and AdipoR2) have been identified in dif-
ferent tissues of various species. They each contain seven
transmembrane domains, but are structurally and function-
ally different from G protein-coupled receptors. Adiponectin
plays an important role in insulin sensitisation in mammals
(inhibition of gluconeogenesis and stimulation of fatty acid
oxidation) by activating AMPK [47] and PPARα proteins in
skeletal muscle, liver, and adipocytes [43]. Thus, both TZDs
and adiponectin have been shown to activate AMPK. More-
over, the promoter of the adiponectin gene contains a PPRE
[48] and TZDs increase the production and plasma concen-
tration of adiponectin [49]. TZDs have weaker antidiabetic
effects in ob/ob mice lacking adiponectin gene than in ob/ob
mice with adiponectin, and the activation of AMPK by TZDs
is also attenuated in these mice, suggesting that adiponectin
is required for the activation of AMPK by TZDs [50].

In porcine granulosa cells, adiponectin treatment in-
duces the expression of genes associated with periovula-
tory remodeling of the ovarian follicle (cyclooxygenase-2,
prostaglandin E synthase, and vascular endothelial growth
factor [51]). Some of these genes are also activated by PPARγ.
Furthermore, adiponectin receptors, PPARs, and AMPK are
expressed in reproductive tissues, including the ovary.

3. EXPRESSION OF PPARs AND AMPK IN THE OVARY

3.1. Expression of PPARs in the ovary

All the PPAR isoforms are expressed in the ovary. The PPARα
and PPARβ/δ isoforms are expressed primarily in the theca
and stroma tissues [52], reviewed by [23], (see Table 1).
The deletion of PPARα has no apparent effect on the fer-
tility of mice, whereas PPARβ/δ-null mice present placental
malformations leading to embryo death during early preg-
nancy [53–55]. PPARγ is expressed strongly in granulosa
cells, and less strongly in the theca cells and corpus lu-
teum, in the ovaries of rodents and ruminants (see Table 1)
[52, 56, 57]. PPARγ is detected early in folliculogenesis (at
the primary/secondary follicle stage) [58], and its expression
increases until the large follicle stage and then decreases af-
ter the LH surge [58]. In mice, the absence of PPARγ in the
ovaries results in lower levels of fertility [59]. No effect on fol-
liculogenesis or ovulation rate has been observed, but fewer
embryos implant, probably due to lower levels of proges-
terone production by the corpus luteum [59].

3.2. Expression of AMPK and adiponectin in the ovary

AMPK expression has been studied in the ovaries of vari-
ous species, including rat [60, 65], mouse [61], cow [62],
pig [63], and chicken [64]. RT-PCR has shown the mRNAs
of all the AMPK subunits to be present in granulosa cells,
the corpus luteum, oocyte, and cumulus-oocyte-complexes
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Table 1: Location of PPARs, AMPK, and adiponectin in ovary.

Species Location mRNA or Protein References

PPARα Rat Theca and stroma [52]

PPARβ/δ Rat Throughout the ovary [52]

PPARγ
Mouse, rat, pig, sheep,
cow, and human

Granulosa, corpus, luteum,
porcine theca and granulosa
cells oocytes

Reviewed by [23]

AMPK
Rat, cow, chicken, pig,
mouse

Granulosa cells, oocyte, corpus
luteum (weaker in rat theca
cells for AMPK α1)

mRNA and protein [60–64]

Adiponectin Rat, chicken, pig
Theca cells, oocyte, and corpus
luteum, Follicular liquid

mRNA (chicken) mRNA and
protein (rat)

[12, 13, 51]

Adiponectin
receptor I

Rat, chicken, pig
Granulosa and theca cells,
oocyte and corpus luteum
(rat)

mRNA (chicken) mRNA and
protein (rat)

[12, 13, 51]

Adiponectin
receptor II

Rat, chicken, pig
Granulosa cells, oocyte and
corpus luteum (rat)

mRNA (chicken) mRNA and
protein (rat)

[12, 13, 51]

in rodent and bovine ovaries (Table 1) [60, 62]. We have
shown, by immunohistochemical analyses, that the AMPK α-
subunit, like PPARγ, is more strongly expressed in granulosa
cells than in theca cells in rats and cows [60, 62]. In cows, lev-
els of AMPKα- and β-subunits were similar in small and large
follicles. In hens, the activation of AMPK by its phosphoryla-
tion on the Thr172 residue increased during follicle develop-
ment [64]. In mice, the absence of the catalytic AMPK alpha
2 subunit does not affect female fertility [66]. Until now, no
data are available on the reproductive functions of the trans-
genic or knockout mice for the other subunits of AMPK.

In chicken ovary, adiponectin mRNA is more abundant
in theca cells than in granulosa cells (Table 1) [13]. In porcine
ovary, adiponectin is detected at similar concentrations in
the follicular fluid and serum [51]. Both receptors are ex-
pressed in ovarian follicles. In chicken, the adiponectin type I
receptor (AdipoRI) is twice as abundant in granulosa cells as
in theca cells, and the type II receptor (AdipoR2) is expressed
equally strongly in granulosa and thecal cells (Table 1) [13].
Studies in mice have shown that AdipoR1 may be more
tightly linked to AMPK pathway activation, whereas Adi-
poR2 seems to be associated with PPARα activation [43].
However, mice lacking adiponectin [67], AdipoR1, AdipoR2,
or both receptors [43] are fertile, which suggests that this sig-
nalling is not absolutely essential for ovarian function. How-
ever, it may be required for ovulation in other species or may
simply be an additional component for fine-tuning ovarian
function.

4. FUNCTION OF PPARs, AMPK, AND
ADIPONECTIN IN THE OVARY

4.1. Regulation of steroidogenesis by PPARγ, PPARα,
AMPK, and adiponectin

TZDs modulate cell proliferation and steroidogenesis in
granulosa cells in vitro (reviewed by [23]). Sex steroid secre-
tion (progesterone, oestradiol) may be inhibited by TZDs in

sows and in women undergoing in vitro fertilization [56, 68]
or stimulated (progesterone and oestradiol), as in rats and
ewes [52, 57]). The effects of TZDs depend on the species
and the status of granulosa cell differentiation (follicular
phase, before or after the gonadotropin surge in human gran-
ulosa cells). TZDs could regulate their target genes at the
transcriptional level (reviewed by [23, 68]). However, sev-
eral studies have suggested that TZDs could also exert their
effects by modifying the activity of steroidogenic enzymes
(3-beta-hydroxysteroid-dehydrogenase (3-βHSD) and aro-
matase) [56, 69]. Indeed, the concentrations of Cyp11a1 and
3-βHSD mRNA in porcine granulosa cells and the levels of
the corresponding proteins in ovine granulosa cells are not
affected by TZD treatment [56, 57]. Moreover, TZDs in-
crease the release of pregnenolone, a substrate of 3β-HSD,
from porcine granulosa cells into the medium, whereas pro-
gesterone production decreases [56]. Ligands for PPARα are
also known to alter ovarian steroidogenesis. For example,
in vivo. fenofibrate, through PPARα-dependent mechanism,
inhibits aromatase cytochrome P450 expression and activity
in the ovary of mouse [70]. Another PPARα synthetic ligand,
Wy-14 463, suppresses also aromatase transcript levels and
oestradiol production in cultured rat granulosa cells [71].

AMPK, like PPARγ and PPARα, may influence ovarian
function by modifying the synthesis of progesterone and
oestradiol. Studies based on AICAR and the adenovirus-
mediated expression of dominant negative AMPK have
demonstrated that AMPK reduces progesterone production,
but not oestradiol production, in rat granulosa cells [60].
This decrease is associated with a decrease in 3β-HSD mRNA
and protein levels and a decrease in MAPK ERK1/2 phos-
phorylation [60]. Furthermore, the activation of AMPK by
metformin decreases basal and FSH-induced progesterone
secretion by decreasing the levels of proteins involved in
steroidogenesis: (3βHSD, CYP11a1, STAR) [65]. In granu-
losa cells from humans and cows, metformin strongly de-
creases the secretion of progesterone and oestradiol [62, 72].
In bovine granulosa cells, this effect is mediated by AMPK
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Figure 2: Schema illustrating the effects of (a) metformin- or AICAR-induced AMPK activation, (b) adiponectin, and (c) TZDs or PPAR
alpha ligands on the rat granulosa cell steroidogenesis. (a) Metformin or AICAR treatment decreases MAPK ERK1/2 phosphorylation and
progesterone secretion through AMPK activation [60, 65]. Metformin decreases also oestradiol secretion through an independent AMPK
pathway [60]. (b) Adiponectin treatment increases IGF-1-induced IGF-1R β-subunit tyrosine phosphorylation and MAPK ERK1/2 phos-
phorylation and progesterone secretion [12]. (c) The PPARα ligand, Wy-14 463, inhibits oestradiol secretion whereas TZDs or PGJ2 increases
progesterone secretion and inhibits estradiol secretion in eCG-primed immature rats or increases estradiol secretion in gonadotropin-
primed immature rat [23, 52]. 3βHSD: 3β-hydroxysteroiddehydrogenase, STAR: Steroidogenic acute regulatory protein, CYP11a1: P450
sidechain cleavage, Adipo R1/2: Adiponectin receptor type I and II, MAPK ERK1/2: Mitogen Activated protein kinase Extracellular Regu-
lated kinase, 1/2, PGJ2: prostaglandine J2.

activation, and leads to a decrease in MAPK activation. In
human granulosa cells, metformin also decreases androgen
synthesis, by directly inhibiting Cyp17 activity [73]. Thus,
AMPK activation decreases steroidogenesis in the granulosa
cells of various species. The effects of AMPK on steroid se-
cretion, like those of PPARγ, depend on the species and
the stimulator of AMPK (AICAR versus metformin). Sev-
eral results suggest that metformin-induced AMPK activa-
tion could act through transcriptional mechanism. Further
investigations are needed to determine the molecular mech-
anism of metformin.

Women treated for in vitro fertilization (IVF) present
an increase in serum adiponectin concentration after the
administration of human chorionic gonadotropin, this in-
crease being correlated with progesterone levels [74]. In cul-
tured porcine granulosa cells, adiponectin modulates the
expression of genes encoding proteins involved in steroid
production, increasing the abundance of transcripts for the
steroidogenic acute regulatory protein, and decreasing the
abundance of cytochrome P450 aromatase transcripts [51].
The MAPK pathway, rather than protein kinase A or AMPK,
mediates the adiponectin signal in ovarian granulosa cells,
by ERK1/2 phosphorylation [51]. Surprisingly, adiponectin
alone does not affect steroid production in rat granulosa cells

[12]. However, it approximately doubled the IGF-1-induced
secretion of progesterone. These effects may be due to an in-
crease in IGF-1 receptor beta subunit tyrosine phosphoryla-
tion and ERK1/2 phosphorylation [12]. A schema illustrating
the effects of PPARα and γ, AMPK and adiponectin activa-
tion on the steroidogenesis of rat granulosa cells is shown in
Figure 2.

4.2. Regulation of granulosa cell proliferation

In addition to their effects on steroidogenesis, TZDs decrease
the proliferation of granulosa cells in sheep (PPARγ, [57]).
These data are in good agreement with those obtained in
bovine lutein cells since an aurintricarboxylic acid-mediated
decrease of PPARγ is accompanied by a progression of the
cell cycle [75]. In our knowledge, there are no data on the
effects of PPARα ligands on granulosa cell proliferation. In
contrast, AMPK and adiponectin are not essential for granu-
losa cell proliferation in rat [12, 60].

4.3. Regulation of oocyte maturation

PPARγ, AMPK, and adiponectin are all expressed in mam-
malian oocytes [12, 23, 60, 76]. However, AMPK has been
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studied in more detail than PPARγ, PPARα, and adiponectin.
PPARγ may regulate the expression of genes involved in the
meiotic maturation of oocytes (e.g., nitric oxide synthase
(NOS)) [23]. Wood et al. recently identified putative bind-
ing sites for PPARγ/RXR in the proximal promoters of sev-
eral genes differentially expressed in oocytes from women
with PCOS and known to play a role in the meiotic cell cycle
[77]. All these results suggest that PPARγ/RXR may be active
in the oocyte. The two adiponectin receptors, AdipoR1 and
AdipoR2, are also expressed in rat oocytes, and AMPK activ-
ity has also been detected in oocytes of several species (see
above), suggesting that adiponectin may play a role through
AMPK in determining oocyte quality (cited by [78]). In ad-
dition, women with PCOS showing impairment in the final
maturation of oocytes and in ovulation, present lower circu-
lating concentrations of adiponectin [10, 79].

In vivo, the oocyte remains at the immature stage or
germinal vesicle stage (GV, i.e., prophase of meiosis I) un-
til the preovulatory LH surge [79]. However, if cumulus-
oocyte complexes (COCs) are removed from the follicles and
cultured in vitro, oocytes may spontaneously resume meio-
sis [80, 81]. During nuclear maturation, immature oocytes
undergo germinal vesicle breakdown (GVBD) and proceed
through metaphase II of meiosis. The pharmacological ac-
tivation of AMPK, by AICAR injection, in mouse oocytes
leads to the induction of oocyte maturation in arrested
cumulus-enclosed oocytes [82]. Metabolic stresses (oxida-
tive or osmotic) known to activate AMPK accelerate meio-
sis in oocytes in which meiosis was previously arrested by
cAMP analogues [83]. However, the data for mice con-
flict with those obtained with porcine and bovine oocytes
[84, 85]. Indeed, in these two latter species, AICAR and met-
formin significantly increase phosphorylation/activation of
AMPK and the percentage of COCs arrested at the GV stage.
Thus, AMPK activation has opposite effects in the control
of oocyte maturation in cows, sows and mice. This could be
explained by the important differences that exist in the reg-
ulation of oocyte meiotic resumption between rodent and
nonrodent animals such as for example the time taken for
oocytes to undergo meiotic resumption (2 to 3 hours of in
vitro maturation in rodent, 20 hours in pig, and 22 hours in
bovine species). Interestingly, in women with PCOS treated
with metformin, the number of mature oocytes retrieved
and oocytes fertilized has been shown to increase after go-
nadotropin stimulation for IVF [86]. However, recent data
indicate that clomiphene is superior to metformin in achiev-
ing live birth in infertile women with PCOS [87].

5. CONCLUSION

The nuclear PPARs and the fuel sensor AMPK are expressed
in the ovary of various species. Several studies have shown
that they modulate ovarian cell proliferation and steroido-
genesis and could be involved in oocyte maturation. Both
PPARα and AMPK mediate the effects of hormones involved
in lipid and glucose metabolism, including adiponectin.
Thus, PPARs, AMPK, and adiponectin may be key signals
regulating the amount of energy required for the growth
of follicles, oocytes, and embryos. Further investigations are

necessary to assess the exact importance and mechanisms of
action of these molecules in some ovarian dysfunctions in-
cluding for example PCOS syndrome.
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