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Abstract: In this study, sulfone derivatives containing 1,3,4-oxadiazole moieties indicated 

good antibacterial activities against rice bacterial leaf blight caused by the pathogen 

Xanthomonas oryzaepv. pv. oryzae (Xoo). In particular, 2-(methylsulfonyl)-5-(4-fluorobenzyl)-

1,3,4-oxadiazole revealed the best antibacterial activity against Xoo, with a half-maximal 

effective concentration (EC50) of 9.89 μg/mL, which was better than those of the commercial 

agents of bismerthiazole (92.61 μg/mL) and thiodiazole copper (121.82 μg/mL). In vivo 

antibacterial activity tests under greenhouse conditions and field trials demonstrated that  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole was effective in reducing rice 

bacterial leaf blight. Meanwhile, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 

stimulate the increase in superoxide dismutase (SOD) and peroxidase (POD) activities in 

rice, causing marked enhancement of plant resistance against rice bacterial leaf blight. It 

could also improve the chlorophyll content and restrain the increase in the malondialdehyde 

(MDA) content in rice to considerably reduce the amount of damage caused by Xoo. 

Moreover, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, at a concentration of  

20 μg/mL, could inhibit the production of extracellular polysaccharide (EPS) with an inhibition 

ratio of 94.52%, and reduce the gene expression levels of gumB, gumG, gumM, and xanA, 

with inhibition ratios of 94.88%, 68.14%, 86.76%, and 79.21%, respectively. 
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1. Introduction 

Rice is one of the most important staple crops around the world. Unfortunately, grain yield has 

decreased significantly because of rice bacterial leaf blight, which is caused by the pathogen 

Xanthomonas oryzae pv. oryzae (Xoo), the most important and well-known bacterial disease of rice in 

rice-growing regions. Bacterial leaf blight can cause leaf wilting, affect photosynthesis, reduce  

1000-grain weight, and generally result in yield losses by 20%–30% and even 100% under severe 

conditions [1–5]. Although bismerthiazole and streptomycin are the main tools for controlling rice 

bacterial leaf blight in China, Xoo has developed high resistance to both these bactericides [6,7]. 

Therefore, the search for new antibacterial agents remains a difficult task, and such agents are greatly 

needed in the field of agricultural bactericides. 

Sulfone derivatives containing 1,3,4-oxadiazole moieties have a broad spectrum of bioactivities, 

such as antibacterial [8–10], antifungal [11,12], insecticidal [13], herbicidal [14], anticancer [15], and  

anti-HIV-1 [16] properties. Over the past few years, studies on the synthesis and bioactivity of sulfone 

derivatives containing 1,3,4-oxadiazole moieties have attracted considerable attention. We previously 

demonstrated that such sulfone derivatives (Figure 1) display potent antibacterial activities. Specifically,  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (CAS Registry Number: 142225-95-4) showed the 

best antibacterial activity against tobacco and tomato bacterial wilts caused by Ralstonia solanacearum 

(R. solanacearum) with half-maximal effective concentration (EC50) values of 8.29 and 19.77 μg/mL, 

respectively [8]. However, in our previous work, we only reported and discussed the compound’s 

activities in the control of R. solanacearum. The biological effects of these sulfone derivatives containing 

1,3,4-oxadiazole moieties against rice bacterial leaf blight were not reported, and the underlying 

mechanism of these compounds on rice bacterial leaf blight remained unclear. 

N N

O
S

R2

O

O

R1

 

Figure 1. Compounds previously reported against tobacco and tomato bacterial wilts. 

In this study, we found that 1,3,4-oxadiazole-containg sulfone derivatives, which demonstrate potent 

antibacterial activities against R. solanacearum, were highly effective against rice bacterial leaf blight  

in vitro and in vivo. Meanwhile, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole could stimulate 

an increase in superoxide dismutase (SOD) and peroxidase (POD) activities in rice, causing a marked 

enhancement of plant resistance against rice bacterial leaf blight. It could also improve the chlorophyll 
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content and restrain the increase in the malondialdehyde (MDA) content in rice to considerably reduce  

the amount of damage caused by Xoo. Moreover, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 

could obviously inhibit the production of extracellular polysaccharide (EPS) and reduce the gene 

expression levels of gumB, gumG, gumM, and xanA. 

2. Results and Discussion 

2.1. In Vitro Antibacterial Bioassay 

As shown in Table 1, all the tested compounds demonstrated potent antibacterial activities against 

Xoo, with half-maximal effective concentration (EC50) values ranging from 9.89 μg/mL to 63.59 μg/mL, 

which were even better than those of bismerthiazole (92.61 μg/mL) and thiodiazole copper  

(121.82 μg/mL). The antibacterial tests showed that when small electron-with-drawing groups (e.g., -F) 

at the 4-position and a methyl substituted sulfonyl substituent were attached to the oxadiazole  

2,5-positions, the corresponding compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 

presented the best antibacterial activity compared to the rest of the test compounds. Meanwhile, the  

in vitro activity against Xoo of the compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, 

with an EC50 value of 9.89 μg/mL, was better than the activity against tomato bacterial wilt (19.77 μg/mL) 

and slightly below the activity against tobacco bacterial wilt (8.29 μg/mL). 

Table 1. Antibacterial activities against Xanthomonas oryzae pv. oryzae of the title compounds. 

Compds. Toxic Regression Equation R EC50 (μg/mL) 

2-(Methylsulfonyl)-5-phenyl-1,3,4-oxadiazole y = 2.16x + 2.18 0.98 20.07 ± 1.21 

2-(Ethylsulfonyl)-5-phenyl-1,3,4-oxadiazole y = 1.52x + 2.77 0.98 29.00 ± 1.25 

2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole y = 4.13x + 0.89 0.95 9.89 ± 1.52 

2-(Ethylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole y = 3.28x + 1.61 0.96 10.80 ± 1.43 

2-(Methylsulfonyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole y = 1.72x + 2.64 0.99 23.21 ± 0.98 

2-(Ethylsulfonyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole y = 1.60x + 2.25 0.99 52.61 ± 1.08 

2-(Methylsulfonyl)-5-(2,4-dichlorophenyl)-1,3,4-oxadiazole y = 1.04x + 3.21 0.99 52.14 ± 1.05 

2-(Ethylsulfonyl)-5-(2,4-dichlorophenyl)-1,3,4-oxadiazole y = 1.43x + 2.42 0.97 63.95 ± 1.05 

Bismerthiazole y = 1.50x + 2.05 0.98 92.61 ± 2.15 

Thiodiazole copper y = 1.54x + 1.79 0.98 121.82 ± 3.59 

2.2. In Vivo Antibacterial Bioassay 

The results are listed in Table 2. At 15th day after spraying, 2-(methylsulfonyl)-5-(4-fluorophenyl)-

1,3,4-oxadiazole had potent curative activity of 38.17% against rice bacterial leaf blight at 200 μg/mL, 

which was better than those of bismerthiazole (30.21%) and thiodiazole copper (29.51%). At 28th day 

after spraying, the protective activity of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole against 

rice bacterial leaf blight at 200 μg/mL was 41.82%, which was superior to those of bismerthiazole 

(37.51%) and thiodiazole copper (25.58%). 
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Table 2. Control efficiency of the testing compounds against rice bacterial leaf blight under 

greenhouse conditions at the concentration of 200 μg/mL. 

Compds. 

15 Days after Spraying  28 Days after Spraying  

Disease 

Index (%) 

Curative 

Activity (%) c 

Disease Index 

(%) 

Protection 

Activity (%) c 

2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 57.63 ± 3.51 38.17 ± 2.15 A 54.79 ± 2.78 41.82 ± 2.45 A 

Bismerthiazole a 65.05 ± 2.26 30.21 ± 3.43 B 58.85 ± 3.12 37.51 ± 2.54 C 

Thiodiazole copper b 65.70 ± 2.73 29.51 ± 4.76 C 70.08 ± 3.67 25.58 ± 2.42 B 

Untreated blank control 93.21 ± 1.79 0  94.17 ± 2.55 0 

a: 20% WP; b: 3% WP; c: Statistical analysis was conducted via the ANOVA method at a condition of equal 

variances assumed (p > 0.05) and equal variances not assumed (p < 0.05). Different capital letters indicate the 

values of control efficiency with significant difference among different treatment groups at p < 0.05. 

2.3. Field Trial against Rice Bacterial Leaf Blight 

The results are summarized in Table 3. At 15th day after the third spraying, the control efficiency of  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole at 150 g ai/ha against rice bacterial leaf blight 

was 81.34%, which was better than those of bismerthiazole (76.19%) and zhongshengmycin (71.87%). 

Table 3. Field trials of the testing compounds against rice bacterial leaf blight. 

Compds. 
Dosage  

(g ai/ha) d 

15 Days after the Third Spraying 

Disease Index (%) Control Efficiency (%) e 

2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole a 150 2.03 ± 1.22 81.34 ± 2.76 A 

Bismerthiazole b 375 2.59 ± 1.54 76.19 ± 3.54 C 

Zhongshengmycin c 45 3.06 ± 1.86 71.87 ± 4.33 B 

Untreated blank control 0 10.88 ± 2.32 0 

a: 20% SC; b:20% WP; c: 3% WP; d: Active ingredient; e: Statistical analysis was conducted via the ANOVA 

method at a condition of equal variances assumed (p > 0.05) and equal variances not assumed (p < 0.05). 

Different capital letters indicate the values of control efficiency with significant difference among different 

treatment groups at p < 0.05. 

2.4. Determination of SOD and POD Activities 

SOD, a key enzyme that resists biological oxidation in plant, catalyzes the reduction of superoxide 

anions (O2
−) to hydrogen peroxide (H2O2). The diminished capacity for O2

− removal causes a decreased 

ability of progeria cells to minimize oxidative damage may be a key factor in the disease. It plays a 

critical role in the defense of cells against the toxic effects of oxygen radicals [17]. 

POD constitutes a class of enzymes extensively distributed in plants and it has been shown that POD 

plays an active role in metabolism. An important function attributed to POD in plants concerns lignin 

synthesis. In many cases, particularly for plant-microbe interactions, this has been suggested as 

defense responses of plants to the stress [18]. 

As shown in Figure 2, SOD and POD activities in rice were enhanced by 2-(methylsulfonyl)-5-(4-

fluorophenyl)-1,3,4-oxadiazole at all sampling times, and the contents changed approximately in a  

Λ-shape manner and peaked on the 5th day with a rate of increase of 62.67% and 50.65%, respectively. 
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Nevertheless, SOD and POD activities showed a declining tendency as time progressed from 5th day to  

7th day. The value during this period was observed to be higher than the one inoculated by Xoo and  

treated with water. These results showed that 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazolecould 

improve the disease resistance of plants, which rely on inducible defense responses in the form of 

enzymes that are activated for controlling rice bacterial leaf blight.  

 

Figure 2. The changes of SOD (a) and POD (b) activities (The data presented are the  

mean ± SD). T1: Xoo + Compound 2-(methyl sulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole; 

T2: Xoo + Bismerthiazol; T3: Xoo; T4: Untreated blank control.  

2.5. Determination of Chlorophyll Content in Rice 

Photosynthesis is a special, and the most basic, life process of green plants providing themselves 

necessary growth and energy [19]. Chlorophyll is the photosynthetic organelle of green plants whose 

content is closely related to photosynthesis, extent of bacterial infection in plants leading to proliferation 

and destruction of the plant chloroplasts and factors retarding the synthesis of chlorophyll causing leaf 

chlorosis [20]. 

As shown in Figure 3, after rice leaves were inoculated with Xoo, the chlorophyll content decreased 

during days 1–7 and reached the lowest value on the 7th day. However, the chlorophyll content of rice 

leaves treated with 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole was higher than those of 

leaves inoculated with Xoo and treated by bismerthiazole, but lower than those of leaves treated with 

water during days 1–7. Figure 3 also shows that Xoo infection of rice lowered the chlorophyll content, 

but rice treated by 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole showed an enhancement in 

chlorophyll content. This finding indicated that 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 

may destroy Xoo in rice, thereby enhancing the host’s resistance to disease. However, the chlorophyll 

content of rice treated with 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole in each treatment 

period was found to be lower than that in the healthy control, indicating that 2-(methyl- sulfonyl)-5-(4-

fluorophenyl)-1,3,4-oxadiazole may not completely suppress Xoo-induced chloroplast damage. 
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Figure 3. The changes of chlorophyll content in rice (The data presented are the mean ± SD). 

T1: Xoo + Compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole; T2: Xoo + 

Bismerthiazole; T3: Xoo; T4: Untreated blank control.  

2.6. Determination of MDA Content in Rice 

Increasing appreciation of the causative role of oxidative injury in many disease states places great 

importance on the reliable assessment of lipid peroxidation. MDA is one of several low-molecular-weight 

end products formed via the decomposition of certain primary and secondary lipid peroxidation products [21]. 

As shown in Figure 4, the MDA content in rice was increased in different treatment groups at all 

sampling times. It reached the highest value at 7th day, and it increased to 6.39 μM/L after treatment 

with 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole. This value was higher than that in rice 

treated with water (6.39 μM/L) but lower than the one inoculated with Xoo (7.30 μM/L) and the one 

treated with bismerthiazole (7.17 μM/L) during 1–7 days. The MDA content demonstrated that  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole could restrain the increase in the MDA content 

in rice, thereby enhancing the host’s resistance to the disease. 

 

Figure 4. The changes of MDA content in rice (The data presented are the mean ± SD).  

T1: Xoo + Compound 2-(methyl sulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole; T2: Xoo + 

Bismerthiazol; T3: Xoo; T4: Untreated blank control.  

2.7. Biofilm Formation 

2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole was hypothesized to be involved in biofilm 

formation. As shown in Figure 5, less biofilm was observed for the treatment of 2-(methylsulfonyl)-5-
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(4-fluorophenyl)-1,3,4-oxadiazole than the blank control. The absorbance of crystal violet in the  

biofilm-staining assay for the blank control (optical density at 570 nm (OD570), 0.300) was 1.5 times 

greater than that of the treatment group (OD570, 0.204).Three replicates were used for quantitative 

measurements of biofilm. 

 

Figure 5. Effect on the biofilm formation. A: Untreated blank control; B: Xoo + Compound 

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole. 

2.8. Quantitative Determination of EPS Production 

EPS, high-molecular weight compounds secreted by microorganisms into their environment, establish 

the functional and structural integrity of biofilms. EPS are considered the fundamental component  

that determines the physiochemical properties of a biofilm. EPS can protect pathogenic bacteria and 

contribute to their pathogenicity. A previous study reported that EPS, one pathogenic factor of Xoo, 

can lead to wilting of rice leaves and reduce EPS production to decrease the pathogenicity. 

As shown in Figure 6, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, at the concentrations 

of 2.5, 5, 10, and 20 μg/mL, could obviously inhibit the EPS production of Xoo, with inhibition  

rates of 12.76%, 34.29%, 56.47%, and 94.52%, respectively. These results demonstrated that  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazolecould reduce EPS production to lower the 

pathogenic ability of Xoo. 

 

Figure 6. Inhibition rate of EPS of Xoo (The data presented are the mean ± SD).  

T1: Xoo + Compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole; T2: Untreated 

blank control. 



Molecules 2015, 20 11667 

 

 

2.9. EPS Gene Expression Level in Xoo 

The biosynthetic pathway by which EPS is produced involves three steps: the first step is the 

conversion of simple sugars to nucleotidyl derivative precursors; the second step is the assembly of 

pentasaccharide subunits attached to an inner-membrane polyprenol phosphate carrier, with addition of 

acetyl and pyruvate groups; and the third step is the polymerization of the pentasaccharide repeating 

units and secretion of EPS [22]. XanA coding for phosphoglucomutase/phosphomannomutase, which 

can be glucose-6-phosphate into glucose-1-phosphate in the first step of EPS biosynthesis [23].  

The genes encoding the proteins related to the last two steps of EPS biosynthesis are encoded by the 

gum gene cluster [24]. GumM (the protein of gumM) plays an important role in the process of the 

biosynthesis of the pentasaccharide, GumG (the protein of gumG) is partly responsible for modification 

of the pentasaccharide, and GumB (the protein of gumB) is a key role in the process of EPS 

polymerization and transport [25]. 

In this study, the expression levels of four EPS genes (gumB, gumG, gumM, and xanA) in Xoo were 

determined by RT-qPCR. As evident from Figure 7, all four genes of Xoo treated with 2-(methyl- 

sulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, showed lower expression levels than the untreated 

blank control. Meanwhile, Table 4 shows that the expression of xanA was lowest at 20 μg/mL, with the 

inhibition rate of 79.21%, which implied that compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-

oxadiazole may hindered the biosynthesis of phosphoglucomutase/phosphomannomutase in Xoo, and 

then reduced glucose-6-phosphate into glucose-1-phosphate in the first step of EPS biosynthesis.  

 

Figure 7. Expression of EPS gene of Xoo (The data presented are the mean ± SD).  

T1: Untreated blank control; T2: gumB; T3: gumG; T4: gumM; T5: xanA. 

The expression of gumM was lowest at 20 μg/mL, with the inhibition rate of 86.76%, which suggested 

that compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole may impeded the biosynthesis of 

the pentasaccharide of Xoo. Meanwhile, Table 4 showed that the expression of gumG was lowest at  

20 μg/mL, with the inhibition rate of 68.14%, which suggested that compound 2-(methylsulfonyl)-5-

(4-fluorophenyl)-1,3,4-oxadiazole possibly receded the modification of the pentasaccharide of Xoo. 

The expression of gumB was lowest at 20 μg/mL, with the inhibition rate of 94.88%, which meant that 

compound 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole could destroy the process of EPS 

polymerization and transport of Xoo. 
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Table 4. Inhibition rates of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole on EPS 

gene expression at 20 μg/mL. 

Genes Inhibition Rate (%) 

gumB 94.88 ± 0.39 
gumG 68.14 ± 1.15 
gumM 86.76 ± 0.28 
xanA 79.21 ± 1.14 

3. Experimental Section 

3.1. Bacterial Strains and Culture Conditions 

PXO99A strain of Xoo was grown at 28 ± 1 °C in nutrient broth (NB) medium in conical flasks or 

on nutrient agar (NA) medium in Petri dishes [6]. NA medium was prepared with 1 g of yeast extract, 

3 g of beef extract, 5 g of polypeptone, 10 g of sucrose, and 15 g of agar powder per 1000 mL of distilled 

water, pH 7.0–7.2. NB medium contained the same components but lacked agar powder. 

3.2. In Vitro Antibacterial Activity 

In this study, eight sulfone derivatives containing 1,3,4-oxadiazole moieties were evaluated for their 

antibacterial activities against Xoo via the turbidimeter test [26] in vitro. Dimethylsulfoxide (DMSO) 

in sterile distilled water served as an untreated blank control. Bismerthiazole and thiodiazole copper 

which are the principal tools used for controlling rice bacterial leaf blight in China at present served as 

positive controls,. Approximately 40 μL of solvent NB containing Xoo, incubated on the phase of 

logarithmic growth, was added to 5 mL of solvent NB containing the test compounds. The inoculated 

test tubes were incubated at 28 °C and continuously shaken at 180 rpm for 24–48 h until the bacteria 

were incubated on the logarithmic growth phase. The growth of the cultures was monitored on a Model 

680 microplate reader (BIO-RAD, Hercules, CA, USA) by measuring the optical density at 595 nm 

(OD595). The inhibition rate I was calculated by the following formula: 

Inhibition rate I (%) = (C − T)/C × 100 (1)

where C is the corrected turbidity values of bacterial growth on untreated NB (blank control), T is the 

corrected turbidity values of bacterial growth on treated NB, and I represents the inhibition rate. 

Based on previous bioassays, the results of antibacterial activities (expressed by EC50) of the title 

compounds against Xoo were also evaluated and calculated with SPSS 17.0 software. The experiment 

was repeated three times. 

3.3. In Vivo Antibacterial Activity 

To determine the control efficiency of antibacterial potency in vivo at the greenhouse condition,  

the curative activity of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole against rice bacterial 

leaf blight was analyzed in potted plants using a complete randomized block design [27]. Seeds of 

Nipponbare were sowed in plastic pots that contained field soil and thinned to six to ten rice seedlings. 

Xoo, the pathogen of the rice disease of bacterial leaf blight, was cultured in solvent NB at 28 ± 1 °C 
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overnight at 180 rpm, and the concentrations were then adjusted to 108 CFU/mL. Five weeks after 

sowing, Xoo of rice bacterial leaf blight was inoculated on the rice plant. We used scissors, which were 

sterilized using 70% ethanol prior to use and then dipped in bacterial solution, to inoculate the rice 

plant with Xoo. After 7 d of Xoo inoculation, 200 μg/mL 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-

oxadiazole solution was sprayed until run-off onto the leaves, whereas the control plants were sprayed 

with the same volume of distilled water. All inoculated plants were incubated in a growth chamber at  

28 °C and 90% relative humidity. At 15th day after inoculation, the average lesion length was observed 

and scored, and the control efficiency was calculated. The experiment was repeated three times. 

Meanwhile, the protective activity of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole against 

rice bacterial leaf blight was also analyzed under greenhouse conditions. Five weeks after sowing the 

rice plant, 200 μg/mL 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole solution was sprayed onto 

the leaves until run-off, whereas the control plants were sprayed with the same volume of distilled water. 

Seven d after 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole spraying, Xoo rice bacterial leaf 

blight was inoculated on the rice plant. All inoculated plants were incubated in a growth chamber at  

28 ° C and 90% relative humidity. At 28th day after inoculation, the average lesion length was observed 

and scored, and the experiment was repeated three times. The control efficiency was calculated as follows: 

Control efficiency I (%) = (C − T)/C × 100 (2)

where C represents the disease incidence of the untreated blank control, T represents the disease 

incidence of the treatment, and I represents the control efficiency. 

3.4. Field Trial against Rice Bacterial Leaf Blight 

To further determine the activities of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole, field 

trials against rice bacterial leaf blight were conducted. The effect of the natural infection of Xoo was 

studied in a field with rice having suffered rice bacterial leaf blight for several years. Sterile distilled 

water served as an untreated blank control, whereas the commercial bactericides bismerthiazole and 

zhongshengmycin were the positive controls. 2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole 

(150 g ai/ha) and the commercial bactericides bismerthiazole (375 g ai/ha) and zhongshengmycin 

solutions (45 g ai/ha) were sprayed on the foliage of the rice once every 7 days three times. For each 

treatment, three replicates were conducted. The disease incidence of the rice plants was investigated  

15th day after the third spraying. The control efficiency was calculated using the following formula: 

Control efficiency I (%) = (C − T)/C × 100 (3)

where C represents the disease incidence of the untreated blank control, T represents the disease 

incidence of the treatment, and I represents the control efficiency. 

3.5. Determination of SOD Activity 

Rice samples (0.5 g) were homogenized in 0.05 M phosphate buffer (5 mL, pH 7.8) and centrifuged at 

4000 g for 10 min. The supernatant was used as an enzyme source. The reaction mixture (3 mL) contained 

phosphate buffer (1.5 mL, 0.05 M, pH 7.8), methionine (0.3 mL, 130 mM), nitroblue tetrazolium (0.3 mL, 

750 μM), ethylene diaminetetraaceticacid (EDTA) (0.3 mL, 100 μM), and riboflavin (0.3 mL, 20 μM). 
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Phosphate buffer instead of enzyme liquid was set as blank control. The mixture was illuminated under 

a fluorescent lamp (4000 LUX, Ningbo Jiangnan Instrument Plant, Ningbo, China) for 20 min, and the 

absorbance was read at 560 nm. For the blank, identical solutions were kept under the dark. SOD activity 

was expressed as the change in absorbance g−1 fresh tissue [28]. 

3.6. Determination of POD Activity 

Rice samples (1 g) were homogenized in 20 mM KH2PO4 (5 mL) and then centrifuged at 4000 g for 

15 min at 4 °C. The supernatant was used as an enzyme source. The mixed reaction solution of POD 

consisted of 0.1 M phosphate buffer (500 mL, pH 6.0), guaiacol (280 μL), 30% H2O2 (190 μL) and 20 mM 

KH2PO4. To initiate the reaction, mixed reaction solution of POD (3 mL) and enzyme solution (0.1 mL) 

were added to the sample cuvette. Mixed reaction solution of POD and KH2PO4 were set as blank 

control. The absorbance was read at 470 nm about once a minute. POD activity was expressed  

as U·g−1 FW min−1 [29]. 

3.7. Determination of Chlorophyll Content 

According to the work conducted by Peng [30], rice samples (10 mg) were homogenized in a 5 mL 

mixture of acetone and ethanol with a volume ratio of 4:1. Dark extraction was carried out for 1 h, and 

the extract was centrifuged at 4000 g for 5 min. The chlorophyll extract was then placed in a 1 cm-thick 

cuvette, a mixture of acetone and ethanol with a volume ratio of 4:1 was used as a reference. The 

absorbance was read at 645 and 663 nm: 

Ca (mg·L−1) = 0.0127 A663 − 0.00269 A645 (4)

Cb (mg·L−1) = 0.0229A645 − 0.00468 A663 (5)

Total chlorophyll content = Ca + Cb (6)

In the above equation, A645 and A663 are the absorbance values at the wavelengths 645 and  

663 nm, respectively. 

3.8. Determination of MDA Content  

Rice samples (0.5 g) were homogenized in 5% trichloroacetic acid (TCA) (5 mL) and then centrifuged 

at 3000 g for 10 min. Subsequently, 0.67% barbituric acid (TBA) (2 mL) was added to the supernatant 

(2 mL). The mixture (4 mL) was boiled for 30 min at 100 °C and then centrifuged at 3000 g for  

10 min. The absorbance was read at 450, 532, and 600 nm. The MDA content was expressed as  

C (μM·L−1): 

C (μM·L−1) = 6.45(A532 − A600) − 0.56A450 [31] (7)

3.9. Biofilm Assays 

Biofilm formation in glass test tube was quantified as described previously [32,33]. Bacteria were 

grown in NB with shaking to the mid-exponential growth phase and then diluted to 1:100 in fresh NB. 

About 2 mL of a diluted bacterial suspension was placed in each glass tube, incubated with 10 μg/mL  
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2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole,and shaken at 28 °C for 72 h. The culture 

medium was poured out, and attached bacterial cells were gently washed three times with distilled 

water. The cells were then stained with 0.1% crystal violet (2 mL) for 15 min. Unbound crystal violet 

was poured out, and the glass tubes were washed three times with water. The crystal violet-stained 

cells were solubilized in DMSO (2 mL). Biofilm formation was quantified by measuring the absorbance 

at 570 nm using a Synergy H1 detector (BioTek, Winooski, VT, USA). Three replicates were used for 

quantitative measurement. 

3.10. Quantitative Determination of EPS Production  

To measure the influence of EPS production of Xoo in culture supernatants, bacterial cells were 

grown in NB supplemented with different concentrations (20, 10, 5, and 2.5 μg/mL) of 2-(methyl- 

sulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole at 28 °C for 72 h. Subsequently, 10 mL portions of the 

cultures were collected, and the cells were removed by centrifugation at 8000 g for 20 min [34]. 

Finally, three volumes of ethyl alcohol were added to the supernatants [35]. The precipitated EPS were 

pelleted via centrifugation, dried, and weighed. The test was performed three times independently. 

3.11. RNA Extraction, cDNA Synthesis, and RT-qPCR Analysis 

Bacteria were grown in NB medium at 28 °C with shaking at 180 rpm, and 1 mL samples of Xoo 

strain cultures were collected at 12 h after bacterial cells were incubated with different concentrations 

(20, 10, 5, and 2.5 μg/mL) of 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole. Bacterial cells 

were centrifuged at 12,000 g for 10 min, and the cell pellets were treated with a Trizol reagent kit 

(TaKaRa, Dalian, China) [36]. Total RNA purity was estimated by calculating OD260/OD280 using an 

ultraviolet spectrophotometer (ACTGene, Piscataway, NJ, USA). All OD260/OD280 values of RNA 

were between 1.8 and 2.2. The concentration of total RNA was calculated according to the dilution 

ratio and OD260. 

cDNAs were synthesized using a cDNA synthesis kit (TaKaRa). H2O was added up to 6 μL to the 

solution containing 1000 ng of RNA and 1 μL of random primers, and heated to 70 °C for 10 min.  

The solution was rapidly placed on ice for 2 min. Up to 2 μL of MLV buffer, 0.5 μL of 10 mM each 

dNTP, 0.25 μL of RRI, and 0.25 μL of M-MLV were added. The reaction mixture was heated to 30 °C 

for 10 min, 42 °C for 1 h, and to 70 °C for 15 min. 

RT-qPCR was carried out using SYBR Premix Ex TaqII (TaKaRa). The reaction solution contained 

10 μL of SYBR, 0.8 μL of primer pair, 1 μL of cDNA, and 8.2 μL of H2O. Four target genes were 

chosen for expression analysis with 16S rRNA as the endogenous control. The primers, shown in 

Table 5, were designed using the sequences of the Xoo genome. The PCR cycle consisted of the 

following steps: 30 s at 95 °C and 40 cycles of 20 s at 95 °C and 30 s at 59 °C. After each run, a 

dissociation curve was designed to confirm specificity of the product and avoid production of primer 

dimers. Relative amounts of amplification products were calculated with the comparative 2−∆∆Ct 

method. A total of three independent biological replicates were used for each treatment. 
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Table 5. Groups of RT-qPCR primers used to amplify gene-specific regions. 

Gene Name GenBank Acc. No. Primers (5′–3′) 

gumB [32] 3265197 
Forward: CTGACCGAAATCGAGAAGGGCACCAATC 

Reverse: GCGCCACACCATCACAAGAGGAGTCAGTTC 

gumG AF147035 
Forward: GTCACAATGCTTGCTTACA 
Reverse: ATGGCGATGAAGAACAAC 

gumM AF231924 
Forward: GTTCTTCGCCAATACCAAT 
Reverse: TCTCACGACACAGATACG 

xanA 999354 
Forward: GCAGCGGCGAGATCAACT 
Reverse: AAACGCCATTCGCCAAAA 

4. Conclusions 

Sulfone derivatives containing 1,3,4-oxadiazole moieties have indicated good antibacterial activities 

against rice bacterial leaf blight in vitro. In particular, 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-

oxadiazole revealed the best antibacterial activity against Xoo, which was better than those of the 

commercial agents bismerthiazole and thiodiazole copper. In vivo antibacterial activity tests under 

greenhouse conditions and field trials demonstrated that 2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-

oxadiazole was effective in reducing rice bacterial leaf blight. This study also demonstrated that  

2-(methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole could stimulate the increase in SOD and POD 

activities in rice, causing a marked enhancement of plant resistance against rice bacterial leaf blight.  

2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole also improved the chlorophyll content and 

restrained the increase in the MDA content to considerably reduce the amount of damage caused by 

Xoo. 2-(Methylsulfonyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole could inhibit the production of EPS, 

resulting in weaker pathogenicity in the bacterial strain. It also induced the gene expression levels of 

gumB, gumG, gumM, and xanA, whose products are involved in the biosynthesis of the EPS. 
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