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Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease
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A B S T R A C T

A characteristic feature of COVID-19 disease is lymphopenia. Lymphopenia occurs early in the clinical course
and is a predictor of disease severity and outcomes. The mechanism of lymphopenia in COVID-19 is uncertain. It
has been variously attributed to the release of inflammatory cytokines including IL-6 and TNF-α; direct infection
of the lymphocytes by the virus; and rapid sequestration of lymphocytes in the tissues. Additionally, we postulate
that prostaglandin D2 (PGD2) is a key meditator of lymphopenia in COVID-19. First, SARS-CoV infection is
known to stimulate the production of PGD2 in the airways, which inhibits the host dendritic cell response via the
DP1 receptor signaling. Second, PGD2 is known to upregulate monocytic myeloid-derived suppressor cells
(MDSC) via the DP2 receptor signaling in group 2 innate lymphoid cells (ILC2). We propose targeting PGD2/DP2
signaling using a receptor antagonist such as ramatroban as an immunotherapy for immune dysfunction and
lymphopenia in COVID-19 disease.

Lymphopenia is one of the characteristic features of COVID-19
disease in adults, and a predictor of morbidity and mortality [1,2].
Patients with lymphopenia have more severe disease; correction of
lymphopenia correlates with recovery from severe disease, while severe
and sustained lymphopenia is associated with fatal outcomes [1,2].
Consistent with higher mortality in adults with COVID-19, lympho-
penia is more common in adults than children. In meta-analyses, 15% of
the 1667 children, and over 50% of the 3,062 adults had lymphopenia
[3,4]. Lymphopenia was also observed in 46% of the 80 children, and
about 70% of 138 adults in SARS-CoV 2003 infection, and lymphopenia
was reported to persist for as long as 1 to 2 years [5–7].

The mechanisms underlying lymphopenia during SARS-CoV and
SARS-CoV-2 infections remain unclear. Lymphocytes have minimal
expression of angiotensin converting enzyme 2 (ACE2) [8,9]. SARS-CoV
and SARS-CoV-2 have not been demonstrated to directly infect lym-
phocytes [9]. Peripheral T lymphocytes, both CD4+ and CD8+, are
rapidly reduced in acute SARS-CoV infection possibly due to lympho-
cytic infiltration and sequestration in specific target organs [10].
Lymphopenia, in the later stages of COVID-19 illness, may have been
mediated by thymic involution and atrophy induced by hyperin-
flammation and cytokine release comprising of IL-6, TNF-α, and IL-1
[11]. However, lymphopenia has been reported to occur concurrently
with the onset of clinical symptoms in COVID-19 [1]. We postulate that
lymphopenia observed at the onset or during the early stages of COVID-
19 illness is caused by increased generation of prostaglandin D2 by the
respiratory epithelium.

Prostaglandin D2 (PGD2) is a key eicosanoid generated in re-
spiratory infections. Severe bronchiolitis in infants caused by re-
spiratory syncytial virus (RSV) leads to marked increase in PGD2 in the
airways [12]. Mice infected with SARS-CoV also exhibit significant

increases in PGD2 concentrations in the bronchoalveolar lavage fluid
[13]. SARS-CoV respiratory infection stimulates PGD2 production by
increased expression of phospholipase A2 group IID (PLA2G2D), cy-
clooxygenase-2 (COX-2), and hematopoietic PGD2 synthase (hPGDS)
[14]. Furthermore, protein sequences in the spike and nucleocapsid
proteins of SARS-CoV activate the expression of the COX-2 gene
[15,16]. Increased expression of PLA2G2D and hPGDS genes also occurs
with aging, leading to increased levels of PGD2 in the airways of the
elderly [13]. Compared to the 6-week old mice, there is a 300–400%
increase in the airways’ PGD2 levels in 12-month old and 22-month old
mice [13]. PGD2 action is mediated by binding to two G-protein cou-
pled receptors, D-prostanoid receptor 1 (DP1); and D-prostanoid re-
ceptor 2 (DP2), formerly known as chemoattractant receptor-homo-
logous molecule on T helper type 2 cells (CRTH2) [17]. PGD2 has been
reported to affect the host’s innate and adaptive immune responses to
viruses including SARS-CoV as described below.

Early in infection, activated respiratory dendritic cells (rDC) un-
dergo a maturation process that includes upregulation of costimulatory
ligands, antigen-presenting complexes, and importantly, chemokine
receptors such as C–C chemokine receptor type 7 (CCR7) [13]. The
elevated levels of chemokine receptors facilitate migration of antigen-
bearing rDCs to the local draining lymph nodes (DLNs) in the medias-
tinum where they participate in initiating adaptive host immune re-
sponse to the respiratory virus. PGD2/DP1 signaling in the airway epi-
thelial cells leads to the inhibition of CCR7 which suppresses rDC
migration to draining lymph nodes. This leads to impairment of T
lymphocyte priming and maturation, thereby leading to lymphopenia
[13,18]. Second, PGD2/DP2 signaling stimulates Group 2 innate lym-
phoid cells (ILC2) and T helper 2 (Th2) cells to secrete interleukin-13
(IL-13). IL-13 upregulates monocyte-macrophage derived suppressor

https://doi.org/10.1016/j.mehy.2020.110122
Received 19 June 2020; Accepted 16 July 2020

Abbreviations: PGD2, prostaglandin D2; DP1, D-prostanoid receptor 1; DP2, D-prostanoid receptor 2; ILC2, group 2 innate lymphoid cells; MDSC, monocytic myeloid-
derived suppressor cells; COX, cyclo-oxygenase; Phospholipase, A2 (PLA2) group IID (PLA2G2D); rDC, respiratory dendritic cell; CCR7, C-C chemokine receptor type 7;
Th2, T helper type 2

Medical Hypotheses 143 (2020) 110122

0306-9877/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03069877
https://www.elsevier.com/locate/mehy
https://doi.org/10.1016/j.mehy.2020.110122
https://doi.org/10.1016/j.mehy.2020.110122
https://doi.org/10.1016/j.mehy.2020.110122
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mehy.2020.110122&domain=pdf


cells (MDSC), which downregulates the T-lymphocyte response, causing
lymphopenia [19–21]. MDSCs mediated impairment of pathogen spe-
cific adaptive immune responses has been demonstrated with Hemo-
philus influenzae respiratory infection [22]. Interestingly, ILC2, despite
their scarcity, are the dominant innate lymphoid cell population in the
lung, indicating a key role as first responders and amplifiers upon im-
mune challenge at this site [23].

Based on the above findings, we hypothesize that an increase in
airway PGD2 levels initiates lymphopenia in COVID-19 (Fig. 1). We
propose that antagonism of PGD2 synthesis or signaling can prevent
lymphopenia or promote recovery of lymphocyte counts in COVID-19
disease. However, suppression of PGD2 synthesis will inhibit PGD2/DP1
signaling which has been demonstrated to attenuate inflammation and
reduce vascular permeability [24,25]. Therefore, selective targeting of
PGD2/DP2 signaling, while sparing PGD2/DP1 axis, is necessary to re-
store immune dysfunction during the symptomatic phase of COVID-19.
Ramatroban is a potent, reversible, and selective antagonist of PGD2/
DP2 receptors that has been shown to inhibit PGD2 stimulated IL-13
secretion, with an IC-50 of 118 nM [17,20]. Ramatroban has been used

orally as a treatment for allergic rhinitis in Japan for the past 20 years.
[26] Given the global disease burden of the COVID-19 pandemic, there
is an urgent need to examine the role of eicosanoids including PGD2 in
the pathogenesis of the disease, and to investigate the potential im-
munotherapeutic role of PGD2 antagonists such as ramatroban.
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Fig. 1. Proposed mechanism of lymphopenia in patients with COVID-19. A host specific, exuberant PGD2 response early in infection, initiates DP1 signaling, which
inhibits the dendritic cell function by downregulating CCR7, leading to a weak T cell response. PGD2/DP2 signaling stimulates respiratory ILC2 and Th2 cells, which
secrete IL-13. IL-13 stimulates proliferation of MDSC cells, thereby downregulating the pathogen specific T cell responses. Excessive PGD2 action via DP1 receptors
during the incubation period and DP2 receptors during the symptomatic stage leads to lymphopenia. Lymphopenia is a predictor of morbidity and mortality in
COVID-19.
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