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Abstract

Background

During infections involving intracellular pathogens, iron performs a double-edged function

by providing the pathogen with nutrients, but also boosts the host’s antimicrobial arsenal.

Although the role of iron has been described in visceral leishmaniasis, information regarding

its status in the dermal sequel, Post Kala-azar Dermal Leishmaniasis (PKDL) remains lim-

ited. Accordingly, this study aimed to establish the status of iron within monocytes/macro-

phages of PKDL cases.

Methodology/Principal findings

The intramonocytic labile iron pool (LIP), status of CD163 (hemoglobin-haptoglobin scav-

enging receptor) and CD71 (transferrin receptor, Tfr) were evaluated within CD14+ mono-

cytes by flow cytometry, and soluble CD163 by ELISA. At the lesional sites, Fe3+ status was

evaluated by Prussian blue staining, parasite load by qPCR, while the mRNA expression of

Tfr (TfR1/CD71), CD163, divalent metal transporter-1 (DMT-1), Lipocalin-2 (Lcn-2), Heme-

oxygenase-1 (HO-1), Ferritin, Natural resistance-associated macrophage protein (NRAMP-

1) and Ferroportin (Fpn-1) was evaluated by droplet digital PCR. Circulating monocytes

demonstrated elevated levels of CD71, CD163 and soluble CD163, which corroborated with

an enhanced lesional mRNA expression of TfR, CD163, DMT1 and Lcn-2. Additionally, the

LIP was raised along with an elevated mRNA expression of ferritin and HO-1, as also iron

exporters NRAMP-1 and Fpn-1.

Conclusions/Significance

In monocytes/macrophages of PKDL cases, enhancement of the iron influx gateways (TfR,

CD163, DMT-1 and Lcn-2) possibly accounted for the enhanced LIP. However, enhancement

of the iron exporters (NRAMP-1 and Fpn-1) defied the classical Ferritinlow/Ferroportinhigh

phenotype of alternatively activated macrophages. The creation of such a pro-parasitic
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environment suggests incorporation of chemotherapeutic strategies wherein the availability of

iron to the parasite can be restricted.

Author summary

Post kala-azar dermal leishmaniasis (PKDL), a dermal sequel of Visceral Leishmaniasis

(VL) is caused by the digenetic protozoan parasite Leishmania donovani. The parasite

infects humans and replicates intracellularly within macrophages, cells normally engaged

in protecting the host from pathogens. Iron plays a crucial role in microbes and mamma-

lian cells, being needed by the former for its growth and survival, while the latter uses it

for activation of the immune system by facilitating generation of reactive oxygen species.

Therefore, the availability of iron needs to be tightly regulated to ensure its accessibility

for core biological functions, and yet prevent its utilization by intracellular pathogens.

Here we investigated the status of intra-macrophage iron along with expression of its

transporters in patients with PKDL. Our study suggests that within monocytes/macro-

phages there is an enhanced entry of iron via the upregulation of CD71 and CD163 that

translates into an enhanced labile iron pool and Ferritin. However, the concomitant

increase in expression of iron exporters NRAMP-1 and Fpn-1 suggested the host’s attempt

to deny the pathogen access to iron. This Ferritinhigh/Ferroportinhigh phenotype was in

contrast to the conventional Ferritinlow/Ferroportinhigh phenotype present in alternatively

activated M2 macrophages. Taken together, the control of iron homeostasis is one of the

contributors in the host-pathogen interplay as it influences the course of an infectious dis-

ease by favouring either the mammalian host or the invading pathogen.

Introduction

Leishmaniases is caused by the intracellular, digenetic protozoan parasite Leishmania that rep-

licates within phagolysosomes of host macrophages. The diverse disease spectrum is attributed

to the multiple species that can cause self healing cutaneous lesions, non healing muco-cutane-

ous lesions involving the mucosa or have visceral involvement of the liver and spleen and

cause kala-azar or Visceral Leishmaniasis (VL), which in some apparently cured cases mani-

fests as a dermal sequel, Post Kala-azar Dermal Leishmaniasis (PKDL) [1]. The survival of this

intracellular pathogen within host macrophages relies on its ability to effectively nullify host

microbicidal effector mechanisms [2], and thrive within acidified, hydrolase-rich phagolyso-

somes which conventionally constitute compartments responsible for elimination of invading

pathogens [3].

An important evolutionary adaptation in parasites is their acquisition of essential nutrients

from host cells [4], which includes iron, a trace element essential for virtually all forms of life,

as it functions as a cofactor of metabolic enzymes, oxygen transport and participates in

immune surveillance [5]. Accordingly, intracellular pathogens deploy several strategies for

iron acquisition from host macrophages [6,7] to ensure their intracellular growth [8, 9]. How-

ever they also need to minimize the host’s oxidative stress response where iron is a cofactor for

superoxide dismutase (Fe-SOD) [10], and therefore, its inactivation is essential for their intra-

cellular survival [11].

In view of the absence of an animal model for PKDL, the role of iron, if any, remains poorly

defined. Accordingly, this study was undertaken in patients with PKDL, representative of a
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chronic manifestation of Leishmanisis, with a view to delineate within circulating monocytes

and lesional monocytes-macrophages, the acquisition and export of iron, along with the status

of iron metabolism with a view to designing chemotherapeutic strategies that can potentially

limit the availability of iron to Leishmania parasites.

Materials and methods

Chemicals

All antibodies were from BD Biosciences (San Jose, CA, USA) and reagents from Sigma

Aldrich (St. Louis, MO, USA), except rK39 immunochromatographic test strips (InBios Inter-

national, Seattle, WA, USA), QIAmp DNA Mini kit (Qiagen, Hilden, Germany), SYBR Green

qPCR Master Mix (Applied Biosystems, Grand Island, NY, USA), cDNA Reverse Transcrip-

tion kit (Applied Biosystems, Grand Island, NY, USA), anti-human CD68 (clone PG-M1), sec-

ondary detection system EnVision G|2 System/AP-Rabbit/Mouse (Permanent Red), EnVision

FLEX Target Retrieval Solution (Dako, Glostrup, Denmark), and CD163 kit (RayBiotech, Nor-

cross, GA, USA). All reagents, instruments and analysing software for droplet digital PCR

were from Bio-Rad Laboratories (Hercules, CA, USA).

Study population

Patients clinically diagnosed with PKDL (n = 25) were recruited either from the Dermatology

outpatient departments of School of Tropical Medicine/Calcutta Medical College/Institute of

PG Medical Education & Research, Kolkata, West Bengal or from active field surveys con-

ducted in endemic districts of West Bengal (Malda, Dakshin Dinajpur, Murshidabad and Birb-

hum) by a camp approach, wherein a door-to-door survey was conducted by Kala-azar

Technical Supervisors using standard case definitions and defined risk factors e.g. living in an

endemic area and having an epidemiological link (past history of VL) as also a rK39 strip test

positivity [12].

These suspected cases were examined at medical camps; cases with hypopigmented macules

were considered as macular PKDL, whereas an assortment of papules, nodules, macules, and/

or plaques were considered as polymorphic [13, 14]; diagnosis was confirmed by ITS-1 PCR

from skin biopsies [15]. Skin biopsies from healthy individuals (n = 3) undergoing voluntary

circumcision were taken for the ddPCR based work; for other experiments, age and sex-

matched healthy volunteers (n = 24) were recruited from endemic and non-endemic areas and

were seronegative for anti-leishmanial antibodies as tested by ELISA. None suffered from any

co-infection or pre-existing disease.

Measurement of parasite load by real time PCR

For measurement of parasite load, a standard curve was generated by adding a defined number

of L. donovani parasites (MHOM/IN/1983/AG83) ranging from 10 to 1 X 105 to blood (180 μl)

from a healthy control [15]. Real-time PCR was performed using specific primers for mini-

circle kDNA (116 bp, forward 5’-CCTATTTTACACCAACCCCCAGT-3’and reverse 5’GGGT

AGGGGCGTTCTGCGAAA-3’ [16]. DNA (1 μl) was added to a 19 μl reaction mixture con-

taining SYBR Green Master mix and 400 nM of each primer. Negative controls used were

DNA from a healthy donor (no amplification), and a reaction mixture with water instead of

template DNA (No template control, NTC). The number of parasites was extrapolated from

the standard curve and final parasite load stated as the number/μg of genomic DNA. The para-

site number when <10 reported a Ct value equivalent to NTC and was accorded an arbitrary

value of 1 [16].
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Measurement of plasma iron and sCD163

Plasma iron levels were measured using commercially available kits as per the manufacturer’s

instructions (Crest Biosystem, Goa, India). Briefly, plasma (200 μl) was treated with an acidic

buffer to allow iron bound to Transferrin to be released, along with reduction of Fe3+ to Fe2+,

which upon reaction with Ferrozine formed a violet coloured complex, and absorbances were

measured at 570 nm using Spectramax M2e (Molecular devices, Sunnyvale, CA, USA). The

concentration of iron in plasma was calculated against a supplied standard (100 μg/dl).

Soluble CD163 was measured by ELISA; briefly, to anti-human CD163 coated 96-well

plates, standards and samples (100 μl) were incubated at room temperature for 2.5 h. After 3

washes, biotinylated antihuman CD163 antibody (100 μl) was added for 1 h and using HRP-con-

jugated streptavidin (100 μl), binding was detected using TMB and absorbances measured at 450

nm; the concentration of sCD163 was calculated against a standard curve (0–8000 pg/ml).

Immunophenotyping of peripheral blood monocytes

Peripheral blood was layered over a monocyte isolation medium (3:1; HiSep 1073, Himedia,

Mumbai, India), and centrifuged (400g for 30 minutes). The monocyte rich interface, after two

washes in PBS, was resuspended in PBS and cell viability confirmed by trypan blue exclusion

(>95%). Whole blood (100 μl) stained with anti-human CD14-Fluorescein isothiocyanate

(FITC), transferrin receptor (CD71)-Allophycocyanin (APC), hemoglobin-haptoglobin recep-

tor (CD163)-Phycoerythrin (PE) and hemopexin receptor (CD91)-PE was incubated for 20

minutes; erythrocytes were lysed with incubation in BD Fix-lyse lysing buffer for 10 minutes

(2 ml), washed twice with PBS and finally resuspended in PBS (400 μl) for acquisition in a

Flow Cytometer (BD FACSVerse). Monocytes were initially gated on their characteristic for-

ward vs. side scatter, and quadrants set based on their fluorescence minus one (FMO) controls,

after which on the basis of CD14 positivity 3000 cells were acquired per tube and analysed

using BD FACS Suite software (BD Biosciences, San Jose, CA, USA). As the samples were

obtained from field trips, there was a 24-48h lag period which adversely impacted on the cell

morphology; accordingly, samples analyzed by Flow Cytometry were randomly selected,

ensuring that at least 5–7 samples were analyzed per assay.

Determination of intramonocytic labile iron pool

Monocytes (5x105/ml) were centrifuged (400g X 5 minutes), resuspended in 500 μl PBS, and

stained with Calcein acetoxymethyl ester (Calcein-AM, Molecular Probes, Carlsbad, CA, USA,

2.5 nM, 30 minutes, 37˚C) [17], after which fluorescence was acquired on a flow cytometer.

Cells were morphologically gated, and 2000 monocytes were acquired per tube and analysed

using BD FACS Suite software.

Isolation of RNA and cDNA preparation

Total RNA from skin (4 mm punch biopsies) of patients with PKDL [n = 8; polymorphic

(n = 4) and macular (n = 4)] or healthy individuals (n = 3, males undergoing voluntary circum-

cision) was isolated using the Trizol method and converted to cDNA using the cDNA Reverse

Transcription Kit. Absolute quantification by droplet digital PCR was performed using gene

specific primers for transferrin receptor (TfR1/CD71), haemoglobin/haptoglobin scavenging

receptor (CD163), divalent metal transporter (DMT-1/NRAMP-2), Lipocalin-2 (Lcn-2), heme-

oxygenase-1 (HO-1), ferritin-H, NRAMP-1, Ferroportin (Fpn1) and Interleukin-10 (IL-10)

(Table 1). Primers were designed from the database of National center for Biotechnology

Information (NCBI) and specificity confirmed.
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Copy number analysis of the target genes using droplet digital PCR

(ddPCR)

The cDNA from lesional or healthy skin (diluted with nuclease free water to a final concentra-

tion of 12.5 ng/μl) was used for ddPCR to quantify in terms of copy number. The reaction mix-

tures contained ddPCR EvaGreen Supermix (Bio-Rad Laboratories, Hercules, CA, USA),

primers (6 μM) and template DNA (1 μl, 12.5 ng/μl) in 20 μl. Each reaction was then loaded

into a sample well of an eight-well disposable cartridge (DG8), along with 70 μl of droplet gen-

eration oil. Droplets were formed using a QX200 droplet generator as per the manufacturer’s

instructions which were then transferred to a 96-well PCR plate to perform PCR (95˚C for 5

min, followed by 40 cycles of 94˚C for 30s and 60˚C for 1 min, with a final extension at 98˚C

for 10 min). The annealing temperature and cycle number were optimised for incremental

separation between positive and negative partitions in ddPCR. The resultant products were

scanned on a QX200 Droplet Reader, and data analysed using QuantaSoft software. Any value

of copy number/μl above 0.5 was considered as 1 copy, and if below 0.5, was considered as

non-detectable. Values were expressed as copy number/20 μl.

Detection of intracellular free ferric iron (Fe3+) in lesional sites by Prussian

blue staining

Formalin fixed paraffin embedded (FFPE) tissue sections were deparaffinised in xylene and

rehydrated using descending grades of alcohol (100–70%) and distilled water. The slides were

then incubated with a working solution of equal volumes (1:1) of 5% HCl (aq) and 5% Potas-

sium ferrocyanide [K4Fe(CN)6] at room temperature for 20 minutes. After three washes with

water, slides were counterstained using Nuclear Fast Red for 5 minutes and observed under a

light microscope (EVOS FL Cell Imaging System, Waltham, MA, USA). Immunohistochemi-

cal analysis was performed for identification of macrophages using anti-human CD68 [18].

Table 1. Primers and amplification conditions for RT-PCR (https://www.ncbi.nlm.nih.gov).

Name Sequence (5’-3’) Annealing Temperature (oC)

TfR1 (F) CAGCAGAGACCAGCCCTTAG 55.5

TfR1 (R) TGCCTTGTGTGTTGTTTTCGT

CD163 (F) ACCTCTTCAACAGACCCCCAGTGAA 57.8

CD163 (R) GAGGACTGAGAGCTCTTCTGGCATT

DMT-1 (F) AGCCAGAGCCAGGTACTCAA 57.8

DMT-1 (R) GTGCAATGCAGGATTCAATG

Lipocalin-2 (F) GGGAGAACCAAGGAGCTGAC 56.5

Lipocalin-2 (R) AGCTCCCTCAATGGTGTTCG

HO-1 (F) TTCTCTCCCAACCCTGCTTGCGT 57.8

HO-1 (R) AGGTGGGCAGACCAAGGTTCAA

HIF-1α (F) ACCTATGACCTGCTTGGTGC 59

HIF-1α (R) GGCTGTGTCGACTGAGGAAA

Ferritin (F) AATCCAAGACAGCCACACCTT 60

Ferritin (R) TTGGGAAAGCTGCCCACTAA

NRAMP-1 (F) AAACCCGGCCTGATTAAAGT 57.8

NRAMP-1 (R) GCCTGACGGAAAGAAGTG

Ferroportin (F) CGAGATGGATGGGTCTCCTA 55.5

Ferroportin (R) ACCACATTTTCGACGTAGCC

IL-10 (F) ACCCAGTCTGAGAACAGCTGC 59.4

IL-`10 (R) GTTCACATGCGCCTTGATGTCT

https://doi.org/10.1371/journal.pntd.0007991.t001
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Statistical analysis

Data was analyzed either by Mann-Whitney t test (in case of two groups) for non-parametric

data and unpaired t test for parametric data using Graph Pad Prism software (version 5.0),

p< 0.05 being significant. All data were expressed as median (Interquartile range or IQR)

except the ddPCR data which was expressed as mean ± SEM (Standard Error of Mean). Corre-

lation was by Pearson’s correlation for parametric data and Spearman’s rank correlation for

non-parametric data, and the coefficient of correlation (r) when >0.4 was considered as

relevant.

Ethics statement

The study received approval from the Institutional Ethics Committee of School of Tropical

Medicine, Kolkata and Institute of Post Graduate Medical Education and Research, Kolkata.

Written informed consent was obtained from all individuals, and for a minor (<18 years),

their legally accepted representative provided the same.

Results

Study population

Patients with PKDL (n = 25; Table 2) were randomly recruited by active or passive surveil-

lance; the population included polymorphic (n = 10) and macular (n = 15) cases with a view to

represent the present scenario of PKDL [12]. The rk39 test was positive in all cases while the

presence of Leishman Donovan bodies was identified by Giemsa staining in all the polymor-

phic cases, but not in the macular variant. Additionally, the presence of parasites was con-

firmed by ITS-1 PCR [15]. Their hemoglobin levels and leukocyte counts were comparable

with controls (Table 2). Amongst them, 21/25 patients (84%) gave a past history of VL and the

median interval between VL and onset of PKDL was 5 years (Table 2). The parasite burden as

quantified by qPCR was 5550 (1765–8891) parasites/μg of genomic DNA (Table 2).

Increased entry of iron into circulating monocytes and lesional monocytes/

macrophages in patients with PKDL

The entry of iron into monocytes/macrophages involves multiple ports of entry that include

(a) the transferrin receptor TfR1 (CD71) that binds iron bound to ferritin and/or transferrin,

Table 2. Study population.

Characteristics Patients with PKDL

(n = 25)

Healthy controls

(n = 24)

Age (years)� 29.00 (18.50–43.50) 25.00 (7.70–29.50)

Sex ratio (M:F) 2:3 1:1

Hb (g/dl)� 13.20 (11.60–14.20) 13.23 (11.54–14.00)

WBC (count/mm3)� 4.65 (3.80–5.40) 5.35 (4.12–6.09)

Lesion type

(Macular: Polymorphic)

3:2 NA

Disease duration (years)� 2.00 (0.60–5.50) NA

Interval between cure of VL and onset of PKDL (years)� 5.00 (3.00–10.00) NA

ITS-1 PCR +ve 25/25, 100% NA

Parasite load (number of parasites/μg of genomic DNA)� 5550 (1765–8891) NA

�values are given as median (IQR); NA = Not applicable

https://doi.org/10.1371/journal.pntd.0007991.t002
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(b) divalent metal transporter (DMT-1) for non-transferrin bound iron, or lipocalin-2 (Lcn-2)

for siderophore bound iron that mediates transmembrane uptake of Fe2+, (c) CD163 via

phagocytosis of the hemoglobin-haptoglobin (Hb-Hp) complexes and CD91 for hemopexin

bound heme uptake [19]. The frequency of TfR (CD71) positive CD14+ monocytes was signifi-

cantly raised by 2.42-fold vis a vis healthy controls, 16.46 (13.15–23.72) vs. 6.80 (5.31–7.84) %,

p<0.001 (Fig 1A), but their frequency correlated poorly with the parasite load, r = 0.07.

CD163, the scavenger receptor for the haptoglobin-hemoglobin complex is expressed exclu-

sively on monocytes/macrophages, and the frequency of CD14+163+ monocytes was signifi-

cantly elevated by 6.74-fold in patients with PKDL as compared to healthy controls, 8.16

(5.59–9.61) vs. 1.21 (0.68–2.14) %, p<0.01 (Fig 1B), along with a significant 8.4 fold increase

in the plasma levels of sCD163, 60154 (9519–77690) vs. 7046 (3094–13728) pg/ml. However,

CD163 correlated poorly with parasite load, r = 0.15. Hemopexin (Hpx)-bound heme is scav-

enged by the CD91 receptor and the frequency of CD14+91+ monocytes remained unaltered

in patients with PKDL as compared to healthy controls, 31.73 (29.85–33.62) vs. 30.87 (28.47–

32.13)% (S1 Fig)

As PKDL is a dermal disease, the mRNA expression of TfR1 and CD163 were examined at

the lesional sites in terms of copy number/20 μl in 4 polymorphic and 4 macular PKDL

patients. In healthy controls, the mRNA expression of TfR1 was undetectable, whereas in

PKDL cases there was a substantial increase, being 8.43 ± 0.99 copies/20 μl (Fig 1C). Similarly,

in case of CD163, a 4.07-fold higher copy number was detected in PKDL vs. healthy controls,

10.00 ± 1.63 vs. 2.46 ± 1.25 copies/20 μl, p<0.05, (Fig 1D). The mRNA expression of CD163
correlated positively with parasite load, r = 0.58, but that was not so with TfR1, r = 0.14.

Another portal of entry for non-transferrin bound iron and Fe2+ from endosomes is via the

divalent metal transporter-1 (DMT-1/NRAMP-2). At the lesional sites, the mRNA expression

of DMT-1 was elevated, being 14.00 ± 3.24 copies/20 μl, whereas it was undetected in healthy

controls (Fig 1E). Another approach for iron acquisition is via lipocalin-2 (Lcn-2) whose

mRNA expression was increased by 7.29-fold as endorsed by absolute quantification in PKDL

lesions being 12.17 ± 3.72 vs. 1.67 ± 0.07 copies/20 μl, p<0.05 (Fig 1F). However, both DMT-1
and Lcn-2 showed no correlation with parasite load, r = 0.22 and 0.11 respectively.

Status of intracellular labile iron pool (LIP), iron recycling and storage in

PKDL

In PKDL, as the circulating monocytes and dermal macrophages are alternatively activated

[20], the labile iron pool could be raised. This was substantiated in PKDL (n = 8, polymorphic:

macular = 1:1) by measuring the intra-monocytic labile iron pool (LIP) using Calcein-AM

whose fluorescence is quenched by Fe2+; accordingly, the fluorescence of Calcein is inversely

proportional to the intracellular iron content [17]. The LIP was enhanced in patients with

PKDL as compared to healthy controls, the fluorescence expressed as geometric mean fluores-

cence channel (GMFC) being 2.15-fold lower, 3378 (3039–4391) vs. 7259 (6741–8232),

p<0.001 (Fig 2A and 2B); the LIP correlated positively with parasite load, r = 0.53. In PKDL

as compared to healthy controls, the plasma iron levels were significantly lowered by 3.87-fold,

being 52.30 (27.05–102.90) vs. 202.40 (146.20–265.70) μg/dl, p<0.001 and negatively corre-

lated with the parasite load, r = -0.83, p<0.05. However, in contrast to VL, the hemoglobin

(Hb) levels of patients with PKDL was comparable with healthy controls 13.20 (11.60–14.20)

vs. 13.23 (11.54–14.00) g/dl.

In response to CD163-mediated heme uptake and possible iron overloading secondary to

the enhanced presence of IL-10 [21], monocytes/macrophages counteract the pro-oxidant

milieu via enhancement of the inducible heme-oxygenase-1(HO-1), which is downstream of

Host iron trafficking in PKDL
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CD163 [22]. This was endorsed at the lesional sites, wherein the mRNA expression of HO-1
was raised, 31.72 ± 13.12 copies/20 μl, whereas it was not detectable in healthy controls (Fig

2C), and positively correlated with parasite load, r = 0.83, p<0.05. A crucial role for mamma-

lian oxygen sensing transcription factor hypoxia inducible factor-1α (HIF-1 α) has been

Fig 1. Status of CD71, CD163 divalent metal transporter (DMT-1) and Lipocalin-2 in PKDL. A: Representative profiles of the % of CD14+CD71+

circulating monocytes in a healthy control (i) and patient with PKDL (ii). Individual gates were set by using monocyte forward and side scatter

characteristics and then with fluorochrome conjugated CD14-FITC. Scatter plots indicating frequency of CD71+ within CD14+ monocytes in healthy

controls (n = 12, black filled circle) and patients with PKDL at presentation (n = 10, black filled square); each horizontal bar represents the median. B:

Representative profiles of the % of CD14+CD163+ circulating monocytes in a healthy control (i) and patient with PKDL (ii) with individual gates being set

using monocyte forward and side scatter characteristics followed by CD14-FITC. (iii) Scatter plots indicating frequency of CD163+ within CD14+

monocytes in healthy controls (n = 20, black filled circle) and patients with PKDL at presentation (n = 13, black filled square); each horizontal bar

representing the median. C&D: One-dimensional plots of droplets measured for fluorescence signal (amplitude indicated on y-axis) emitted from the gene

CD71 (C) and CD163 (D) at lesional sites. EvaGreen-bound positive droplets are shown in blue, while negative droplets are shown in black, along with bar

graphs where data is expressed as mean ± SEM of the copy number/20 μl DNA. Bar graphs (open) denote healthy controls (n = 3) and filled bars represent

patients with PKDL (n = 8). E&F: One-dimensional plots of droplets measured for fluorescence signal (amplitude indicated on y-axis) emitted from the

gene DMT-1 (E) and lipocalin-2 (F) at lesional sites. EvaGreen-bound positive droplets are shown in blue while negative droplets are shown in black, along

with bar graphs for data expressed as mean ± SEM of the copy number/20 μl DNA. Bar graphs (open) denote healthy controls (n = 3) while filled bars

represent patients with PKDL (n = 8).

https://doi.org/10.1371/journal.pntd.0007991.g001
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established in innate immunity against intracellular pathogens and its expression was mea-

sured. However, there was no alteration in the mRNA expression of HIF-1α in patients with

PKDL as compared to healthy controls 2.34 ± 0.88 vs. 2.47 ± 1.24 copies/20 μl (S2 Fig).

Iron storage at the dermal sites was also examined in terms of the mRNA expression of the

ferritin heavy chain, wherein healthy controls showed no detectable expression, but in PKDL

cases, there was a substantial elevation being 9.70 ± 2.07 copies/20 μl (Fig 2D), and signifi-

cantly correlated with parasite load r = 0.75, p<0.05. This was accompanied by a significant

16.44-fold increase in the IL-10 copy number, 80.57 ± 19.71 vs. 4.90 ± 2.75 copies /20 μl,

p<0.05 (Fig 2E). CD163 and HO-1 positively correlated with IL-10, r = 0.42 and 0.64

respectively.

Increased mRNA expression of iron exporters at the dermal sites in

patients with PKDL

The natural resistance macrophage protein1 (NRAMP-1or Slc11a1) has been characterized as

a late phagosomal protein that exports iron from phagosomes to the cytoplasm, followed by

Fig 2. Status of intramonocytic labile iron pool and heme-oxygenase-1 in PKDL. A: Representative histogram profile of GMFC of calcein in circulating monocytes

from a healthy control (solid line) and patient with PKDL (dotted line). Scatter plot for GMFC fluorescence of calcein representing the intracellular labile iron pool in

circulating monocytes from healthy controls (n = 15, black filled circle) and patients with PKDL (n = 8, black filled square). Each horizontal bar represents the median.

B-D: One-dimensional plots of droplets measured for fluorescence signal (amplitude indicated on y-axis) emitted from the gene HO-1 (B), Ferritin (C) and IL-10 (D)

in lesional sites. EvaGreen-bound positive droplets are shown in blue while negative droplets are shown in black, along with bar graphs for data expressed as

mean ± SEM of the copy number/20 μl DNA. Bar graphs (open) denote healthy controls (n = 3) while filled bars represent patients with PKDL (n = 7).

https://doi.org/10.1371/journal.pntd.0007991.g002
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iron being subsequently exported through ferroportin present on the cell membrane. In

PKDL, the lesional mRNA expression of NRAMP-1 was significantly enhanced by 5.67-fold as

compared to healthy controls, 29.07 ± 5.85 vs. 5.13 ± 1.43 copies/20 μl, p<0.05, (Fig 3A), but

correlated marginally with the parasite load, r = 0.39. At the lesional sites, the mRNA expres-

sion of ferroportin significantly increased by 4.95-fold in PKDL, 21.29 ± 2.17 vs. 4.30 ± 0.10

copies/20 μl, p<0.05 (Fig 3B), and positively correlated with the parasite load, r = 0.86,

p<0.05. Despite the substantial infiltration of CD68+ macrophages in the lesional sites, stain-

ing for Prussian blue which represents the proportion of Fe3+, was negative (S3 Fig).

Discussion

The acquisition of iron by intracellular pathogens like Leishmania parasites is analogous to a

double edged sword, as iron is essential for their cellular metabolic processes and pathogenicity

[5], being a component of several iron-dependent proteins [e.g. iron superoxide dismutase

(FeSOD), ascorbate peroxidase, cytochrome b5 (CytB5) and cytochrome p450 (CYP)] that

participate in detoxification of reactive oxygen species [23–25]. Additionally, as iron is a com-

ponent of ribonucleotide reductase and iron clusters present in the mitochondrial respiratory

chain, it is critical for DNA synthesis and energy metabolism respectively [26]. However, this

very property of electron transfer makes iron potentially dangerous via its participation in oxi-

dation/reduction reactions, where by donating electrons to O2 and H2O2, it can generate toxic

molecules like superoxide anion and hydroxyl radicals [27]. Accordingly, for Leishmania to

survive and replicate within a hostile iron limiting parasitophorous vacuole (PV), the cellular

uptake, distribution, storage and export of iron is a tightly regulated process [6].

Fig 3. mRNA expression of NRAMP-1 and Ferroportin in dermal lesions of PKDL. A&B: One-dimensional plots of

droplets measured for fluorescence signal (amplitude indicated on y-axis) emitted from the gene NRAMP-1 (A) and

Ferroportin (B) in lesional sites. EvaGreen-bound positive droplets are shown in blue while negative droplets are

shown in black, along with bar graphs for data expressed as mean ± SEM of the copy number/20 μl DNA in lesional

sites. Bar graphs (open) denote healthy controls (n = 3) while filled bars represent patients with PKDL (n = 8 for

NRAMP-1 and n = 7 for Ferroportin).

https://doi.org/10.1371/journal.pntd.0007991.g003
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The delivery of iron to cells is accomplished by multiple approaches that include its com-

plexation with transferrin (Tf), a monomeric plasma iron-binding protein, which upon bind-

ing to cell-surface receptors (transferrin receptor or TfR1) facilitates the entry of iron via

endocytosis [28]. However, as the Fe3+ released from transferrin is essentially insoluble at

physiological pH, it is reduced to Fe2+ within endosomes by ferric reductase (STEAP3), and

eventually contributes towards the labile iron pool (LIP) [28]. In the peripheral blood of

patients with PKDL, the uptake of iron was supported by an increased frequency of CD71/

TfR1 (Fig 1A) and was corroborated by its enhanced mRNA expression at lesional sites (Fig

1C). Leishmania upon scavenging iron from LIP causes activation of iron-sensing proteins,

and the resultant enhanced interaction of Iron Responsive Elements (IREs) with TfR1 trans-

lates into an increased uptake of iron [29]. Additionally, as patients with PKDL demonstrate a

mixed Th1-Th2 cytokine milieu with a tilt towards Th2, the increased levels of IL4 and IL-10

[30] too can facilitate an increased mRNA expression of TfR1 [31]. However, this did not

occur in patients with VL, as a decreased expression of TfR1 was reported [31]. Similarly, stud-

ies regarding Legionella also reported decreased levels of TfR1 in activated macrophages which

were attributed to the IFN-γ mediated pro-inflammatory environment [32]. Another intracel-

lular pathogen that enhances its iron pool via increased entry through TfR1 is Francisella tular-
ensis [33], whereas Salmonella typhimurium, Legionella pneumophila and Neisseria spp
sequester iron as transferrin via siderophores [34].

While the presence of iron in endosomal membranes is associated with entry via transfer-

rin, the uptake of non-transferrin bound iron is mediated by the membrane bound divalent

metal transporter 1 (DMT1), also known as NRAMP-2 or solute carrier family 11 member 2,

SLC11A2 [35]. NRAMP-2 is a symporter of H+ and metal ions, and under physiological condi-

tions is localized in the early endosomal membranes where it is responsible for delivery of

extracellularly acquired bivalent cations into the cytosol [36]. Intracellular organisms like

Francisella tularensis upregulate DMT-1 expression [37] and similarly, at lesional sites of

PKDL cases, the increased mRNA expression of DMT-1 endorsed its possible utilization by

parasites to enhance influx of iron (Fig 1E). However, in VL, an unaltered expression of DMT-
1 was observed, and could be attributed to it being an acute disease vis-a-vis the chronicity of

PKDL [31].

To counteract siderophore mediated iron acquisition by pathogens, host monocytes

infected with Mycobacterium tuberculosis produce Siderocalin, or lipocalin 2 (Lcn-2), and this

translated into attenuation of infection [38, 39]. Although evidence regarding the role of side-

rophores and/or siderophore receptors in acquisition of iron by Leishmania is limited, in

PKDL, an increased lesional mRNA expression of lcn-2 was demonstrated (Fig 1F), attribut-

able to a possible pleiotropic effect of cytokines. In-vivo studies have shown that following LPS

administration to neutrophils and macrophages, the resultant activation of the toll-like recep-

tor (TLR)-4 leads to increased secretion of Lcn-2. Additionally, induction of Lcn2 can be trig-

gered by other TLR ligands and cytokines, including IL-1β, IL-6, IL-10, IL-17, IL-22, and

TNF-α [40]. Accordingly, it may be proposed that in PKDL cases, the increased expression of

Lcn-2 may be attributed to the increased lesional mRNA expression of IL-10 (Fig 2E), along

with raised circulating levels of pro- (TNF-α, IL-6, IL-1β and IL-8) and anti-inflammatory (IL-

4, IL-10, IL-13 and TGF-β) cytokines, the latter being signature molecules of M2 polarization

[20, 30]. The SLC39/ZIP family transporters are a new class of iron-trafficking proteins con-

taining 14 members which includes ZIP8 and ZIP14 that transport non-transferrin bound

iron above pH 7 and near physiological pH, whereas DMT-1 is most efficient at pH 5.5, which

corresponds to the pH of acidified endosomes [41]. Therefore, the impact of these newer trans-

porters on Leishmania-macrophage interaction should be explored and may well explain some

of the apparent paradoxes observed.
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Besides TfR1, macrophages express the hemopexin receptor (CD91), which takes up heme

bound to the heme-sequestering protein hemopexin [42]. However, in peripheral blood of

PKDL cases, the frequency of CD91 remained unaltered. A similar function is attributed to

CD163, another entry point for iron through which heme bound iron is scavenged in the form

of hemoglobin bound to haptoglobin [42]. CD163 is considered as a hallmark of alternatively

activated M2 macrophages, a phenotype that sustains the disease chronicity in PKDL [20, 43].

In peripheral blood, the enhanced frequency of circulatory CD163 (Fig 1B) was endorsed by

its increased mRNA expression at lesional sites (Fig 1D). This enhanced uptake of heme-

bound iron can induce hemeoxygenase-1 (HO-1), an enzyme responsible for degrading heme

to biliverdin, carbon monoxide and Fe2+, as also mediate attenuation of the immunopathology

caused by oxidative stress [44]. During Leishmania infection, the host tightly regulates the sol-

uble Fe2+ by deploying multiple options that includes (i) incorporation into the LIP, (ii) stor-

age as ferritin, (iii) export via ferroportin [Fpn, 45] and/or (iv) entry into the phagolysosome.

The increased mRNA expression of HO-1 has been implicated in the pathogenesis of several

infectious diseases, as its activation following heme degradation translates into decreased for-

mation of the heme containing NADPH-oxidase complex. This leads to an attenuated genera-

tion of reactive oxygen species (ROS) and provides for a pro-parasitic environment [46].

Indeed, the replication of Leishmania chagasi was favoured by induction of HO-1, as it damp-

ened leishmanicidal mechanisms such as generation of nitric oxide and ROS [47]. Further-

more, in PKDL the HO-1 catalyzed generation of CO, can lead to decreased generation of

superoxide, and along with an increased availability of reduced glutathione, facilitate creation

of an anti-oxidant, pro-parasitic milieu [20, 48]. In PKDL cases, the lesional mRNA expression

of HO-1 was substantially elevated (Fig 2C) and correlated positively with the parasite load.

Another factor that enhances HO-1 activation is IL-10 [49] whose upregulation (Fig 2E) repre-

sents an additional subversive mechanism adopted by Leishmania to escape the oxidative

burst, and therefore its manipulation could well be considered as a therapeutic target.

Intracellular pathogens can access the LIP, the metabolically active fraction of cytosolic iron

that is loosely bound to low molecular-weight chelators and represents the free cytoplasmic

iron pool [19, 50]. As LIP is the transition zone between import, cellular utilization and stor-

age, it responds to the cell’s metabolic needs. During infection with Francisella tularensis, there

is an active Fe2+ acquisition system associated with a sustained increase in the LIP [51]. Simi-

larly, erythrocytes infected with Plasmodium falciparum demonstrated an increased LIP that

was associated with parasite maturation [52]. Similarly, in PKDL, the increased LIP, (Fig 2A

and 2B) via its ability to inhibit binding of the transcription repressor Bach1 to specific

sequences in the HO-1 promoter, could potentially increase the expression of HO-1 and

enhance parasite survival [53]. Although the calcein-AM (calcein-acetoxymethyl ester) method

is a widely used technique to measure the LIP, it can only measure the cytoplasmic LIP, as it

cannot enter cellular compartments. Therefore, the changes, if any, in the low-mass iron pres-

ent in the phagolysosomal compartment will get overlooked. This is particularly relevant in

Leishmaniasis as amastigotes reside within the phagolysosome, whereas this compartment,

owing to its low pH, cannot be accessed by Calcein. Therefore, there could well be an under

representation of the iron present within the amastigotes [54]. As an excess of free Fe2+, sec-

ondary to its enhanced entry (Fig 1), can be potentially hazardous owing to its ability to sup-

port the generation of free radicals, an increased LIP is generally associated with an

upregulation of Ferritin-H, which along with Ferritin-L subunits, forms a multimeric protein

complex and stores Fe2+ [55]. This was possibly adopted by PKDL cases as evident by the upre-

gulation of lesional ferritin (Fig 2D), although it was not in concordance with the classical fer-

ritinlow phenotype associated with alternatively activated M2 polarized macrophages [22].
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The replication of Leishmania within acidified, hydrolase-rich microbicidal phagolyso-

somes requires iron and their Fe2+ acquisition strategies includes ferric reductase (LFR1),

which by converting Ferritin bound Fe3+ to Fe2+ facilitated the entry of L. amazonensis amasti-

gotes via the Leishmania Fe2+ transporter 1(LIT-1) [50]. Alongside, macrophages express a

metal transporter NRAMP-1 that functions as a pH dependent divalent cation efflux pump

whose crucial role is modulating the access of pathogens to iron as substantiated by studies in

NRAMP -/- animals [2]. It is a highly pH dependent antiporter that fluxes metal ions in either

direction against a proton gradient. Furthermore, as NRAMP-1 is localized in late endosomal/

lysosomal membranes, it delivers bivalent cations from the cytosol into this acidic compart-

ment and therefore can influence antimicrobial activity [36]. Accordingly, the increased tran-

scriptional expression of NRAMP-1 in PKDL (Fig 3A) could be attributed to the subtle iron

homeostasis achieved by parasites within phagolysosomes.

Fig 4. Iron trafficking in Leishmania infected monocytes/macrophages. Following the phagocytosis of senescent erythrocytes (erythophagocytosis), the

heme-bound iron is released and recycled to the labile iron pool. Other alternatives for uptake of iron include Transferrin-bound iron that is internalized

through the transferrin receptor (CD71, TfR1), non-transferrin bound iron (NTBI) is taken up through the divalent metal transporter-1 (DMT-1), and

hemoglobin-bound heme through CD163. Following metabolism of heme by hemeoxygenase-1 (HO-1), there is generation of carbon monoxide (CO), bilirubin

and free iron, the latter being stored as ferritin or is added to the labile iron pool, and/or can be exported via ferroportin. Leishmania amastigotes can augment

the iron-poor environment of the parasitophorous vacuole (PV) via Leishmania ferric reductase-1 (LFR1) which converts Fe3+ to Fe2+, which is then

translocated across the membrane by Leishmania Fe2+ iron transporter (LIT1). Additionally, monocytes-macrophages strive to limit the availability of iron to

intracellular pathogens by enhancing its removal from the parasitophorous vacuole (PV) to the cytoplasm via natural resistance-associated macrophage protein

(NRAMP-1), which is further exported through ferroportin.

https://doi.org/10.1371/journal.pntd.0007991.g004
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Ferroportin (Fpn) is an established mammalian iron exporter whose regulation is critical

for iron homeostasis, and its alterations can translate into iron deficiency or iron overload. It

has been proposed that to increase the availability of iron, host cell derived hepcidin promotes

the degradation of Fpn which translates into increased availability of iron during infections

with L. amazonensis [56, 57], and has been substantiated in patients with VL [31]. However, in

L. donovani models of infection where despite the levels of Hepcidin being raised, the mRNA

expression of Fpn too was elevated [57]. Similarly, in PKDL cases an increased mRNA expres-

sion of Fpn was demonstrated (Fig 3B); however it should be confirmed at a translational level.

Similarly, in intracellular pathogens, Salmonella and Mycobacterium, an enhanced expression

of Fpn has been reported, that could be attributed to either the host and/or the pathogen regu-

lating the export of iron to limit its availability to the installed pathogen [58–60].

Taken together, this study has established that monocytes/macrophages sourced from

patients with PKDL have several ports of entry that includes TfR1, DMT-1 and lipocalin-2 (Fig

4). Additionally, there is an increased uptake of heme bound iron by CD163. This results in an

increased availability of HO-1, which in turn increased the presence of Fe2+ resulting in an

enhancement of the intramonocytic labile iron pool and ferritin, thus providing the pathogen

with an adequate source of iron, which can be sequestered as necessary into phagolysosomes

by LIT-1 (Fig 4). However, in view of iron being likened to a ‘double edged sword’, it is neces-

sary to prevent iron mediated toxicity, and therefore host macrophages ensure this via an ade-

quate efflux of iron through the phagolysosomal exporter NRAMP-1 and the cellular exporter

Fpn (Fig 4). Collectively, to eliminate an intracellular pathogen like Leishmania, iron depriva-

tion is necessary and is potentially achievable by either restricting the availability of iron i.e.

nutritional immunity, or by dampening the microbial iron transporters, and both approaches-

could serve as novel therapeutic interventions.
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S1 Fig. Representative profiles of the % of CD14+CD91+ circulating monocytes in a healthy

control (i) and patient with PKDL (ii). Individual gates were set by using monocyte forward

and side scatter characteristics and then with fluorochrome conjugated CD14-FITC; (iii) scat-

ter plots indicating frequency of CD91+ within CD14+ monocytes in healthy controls (n = 6,

black filled circle) and patients with PKDL at presentation (n = 5, black filled square);each hor-

izontal bar represents the median.

(TIF)

S2 Fig. One-dimensional plots of droplets measured for fluorescence signal (amplitude

indicated on y-axis) emitted from the gene HIF-1α in lesional sites. EvaGreen-bound posi-

tive droplets are shown in blue while negative droplets are shown in black, along with bar

graphs for data expressed as mean ± SEM of the copy number/20 μl DNA Bar graphs (open)

denote healthy controls (n = 2) while filled bars represent patients with PKDL (n = 8).

(TIF)

S3 Fig. Status of intracellular free Fe3+ in lesional biopsies. A&B: Representative H&E pro-

files from dermal biopsies of a healthy control and patient with PKDL (magnification 10X).

C&D: Representative immunohistochemical profiles of CD68+ macrophages from dermal

biopsies from a healthy control and patient with PKDL (magnification 10X). E&F: Representa-

tive Prussian blue stained profiles from dermal biopsies of a healthy control and patient with

PKDL (magnification 10X) showing absence of free ferric ion. G&H: Positive control
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