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Reaction time data from cognitive tasks continue to be a key way to assess decision-
making in various contexts to better understand addiction. The goal of this paper is twofold: 
to introduce a nuanced modeling approach for reaction time data and to demonstrate the 
novel insights it can provide into the decision processes of nicotine-dependent individuals 
in different contexts. We focus on the Linear Approach to Threshold with Ergodic Rate 
(LATER) model, which is a cognitive process model that describes reaction time data in 
terms of two distinct aspects of cognitive functioning: speed of information accumulation 
(“accretion”) and threshold amount of information needed prior to execution (“caution”). 
We introduce a novel hierarchical extension to the LATER model to simultaneously account 
for differences across persons and experimental conditions, both in the accretion and 
caution parameters. This approach allows for the inclusion of person-specific predictor 
variables to explain between-person variation in terms of accretion and caution together 
with condition-specific predictors to model experimental condition manipulations. To 
highlight the usefulness of this model, we analyze reaction time data from a study on adult 
daily cigarette smokers. Participants performed a monetary incentivized Go/No-Go task 
during two testing sessions, once while following their typical smoking patterns and again 
following 12 h of verified smoking abstinence. Our main results suggest that regardless of 
trial type, smokers in a period of abstinence have faster accretion rates, and lower caution 
thresholds relative to smoking as usual.

Keywords: smoking, cognition, cognitive model, abstinence, Go/NoGo task

INTRODUCTION

A fundamental goal of psychiatry and neuroscience research is to understand how and why 
humans make decisions and behave as they do across various contexts. In particular, work aimed 
at understanding how exposure to addictive substances like nicotine impacts and alters decision-
making is of considerable interest. The examination of reaction time data acquired from cognitive 
tasks continues to be a major way to assess decision-making, yet traditional analysis of such data 
(e.g., evaluation of group-level means and variances) limits the extent to which we can assess or 
estimate latent (psychological) processes that may be underlying the decision/behavior. To address 
these limitations, cognitive process models were developed, which use theoretically derived model 
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parameters that represent latent psychological constructs to 
better account for individual differences in the complex processes 
underlying human decisions and behavior; see, for example, 
Stout et al. (1), Yechiam et al. (2), Cohen et al. (3), and Hauser et 
al. (4) for a variety of models and applications.

In this paper, we focus on one particular process model, 
the Linear Approach to Threshold with Ergodic Rate (LATER) 
model, which was developed to capture individual differences 
in the underlying mechanisms of decision-making using data 
from reaction time tasks (5, 6). We extend the basic LATER 
model hierarchically in order to assess sources of both 
individual and experimental condition specific differences 
in reaction times. Moreover, we cast the hierarchical LATER 
model in the Bayesian framework, which provides a convenient 
approach for simultaneous estimation of person-specific 
LATER process parameters and regression coefficients related 
to person-specific (e.g., age) and condition-specific (e.g., 
experimental manipulation of reward, smoking status) effects. 
Additionally, casting the model in the Bayesian framework 
allows for inference in terms of statements about posterior 
probabilities. We assert that coalescing advanced process 
models with experimental manipulations (e.g., abstinence vs. 
smoking to satiety in smokers) can help us better understand 
how drug exposure (e.g., nicotine) affects the underlying 
mental processes guiding decision-making and behavior, and 
may provide insights for a better understanding of addiction, 
particularly at the individual level.

In the sections that follow, we first describe the use of process 
models and specify the LATER model we hierarchically extended 
and employed. We then apply this novel model to reaction 
time data obtained from a sample of adult daily smokers to 
demonstrate its potential utility in addiction research.

Modeling Reaction Times With the LATER 
Model
The time interval between stimulus presentation and initiation 
of a behavioral response is defined as the reaction time, 
or latency, and includes multiple underlying physiological 
processes occurring on varying time scales. For example, 
relatively rapid processes, on the order of tens of milliseconds, 
include transduction of the external stimulus energy to a 
neural response, signal propagation time from the periphery 
to the central nervous system and back, and muscle activation, 
among others. More temporally extended processes comprising 
reaction time include brain network-level computations (on the 
order of hundreds of milliseconds) related to making a decision, 
that is, forming and maintaining internal representations 
of the stimuli, then planning and executing a goal-directed 
motor plan. It is believed that these central, network-level 
computations comprise a majority of the reaction time (7, 8). 
As fast sensory and motor times are relatively fixed, reaction 
time variability is therefore a useful approximation of decision 
time (9). In other words, reaction time largely reflects the time 
needed to decide.

Researchers utilize tailored tasks that attempt to delineate 
the cognitive processes underlying reaction times in order to 

gain insight into decision processes and factors that influence 
them. However, reaction times are typically evaluated in terms 
of average performance across groups and/or study conditions. 
This approach disregards the potential variability in the processes 
underlying latency values, i.e., intraindividual variability across 
trials in a task. Indeed, in experimental paradigms, reaction time 
can vary significantly between one trial to the next, even if the 
same experimental conditions are maintained (9).

Capturing variability in reaction times with process models 
can provide additional information about the underlying 
mechanisms of decisions. One major theoretical framework for 
understanding decision-making holds that the brain accumulates 
relevant information until the resultant probability reaches a 
threshold that warrants action (10). The length of time in which 
it takes to reach this threshold depends on the dynamics of the 
rise-to-threshold (10). The LATER model describes the latency 
distributions of observed reaction times by characterizing the 
decision-making process in terms of two cognitive variables. The 
first is caution, or the amount of information needed to exceed 
a threshold to respond. The caution parameter represents the 
attitude toward partial prior information in a similar manner 
as a loss function represents the attitude toward risk (11). The 
second variable is accretion, or the rate (speed) of information 
accumulation. Bickel and colleagues (11) argue that caution 
can be seen as assigning an operational definition to the degree 
of conservatism toward ambiguity, and accretion rate as the 
assimilating capacity.

Utilizing the LATER model to describe reaction time data 
based on accretion rates and caution thresholds better reflects 
the actual shape of reaction time data relative to traditional 
averaging approaches. One of the most salient properties of the 
stochastic distribution of reaction times is that they are generally 
positive skewed; the distributions rise rapidly and then fall off 
slowly with a long, right-tailed skew. This is a near universal 
finding, regardless of stimulus type (e.g., visual, auditory), 
response (e.g., manual, oculomotor), or species [see Ref. (12)]. 
Interestingly, when plotted, this skewed distribution does not fit 
any of the traditional mathematical distributions like Gaussian 
or Poisson particularly well [e.g., Refs. (9, 12, 13)]. However, 
if one wants to examine the underlying mechanisms for the 
variability, rather than its effect (14, 15), then the reciprocal of 
the reaction time should be examined. If reciprocal latencies are 
plotted cumulatively (a reciprobit plot), a straight line will be 
obtained. This represents the rate at which the decision reaches 
completion, and follows a normal, Gaussian distribution (see 
below). Accordingly, the LATER model explains this general 
feature of reaction time distribution by appropriately modeling 
the rate of rise for each trial, varying in a Gaussian fashion, which 
explains the observed shape of latency distributions [see Ref. (12) 
for review].

This results in describing reaction time distributions by 
utilizing a model with a decision signal starting point, which then 
rises at a constant rate until it reaches a threshold value, at which 
point a response is initiated. Accordingly, the LATER model is 
a sequential-sampling model, which assumes that during the 
course of a trial, information is accumulated sequentially until 
a threshold amount of information is reached and a response 
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is executed. Indeed, the LATER model explains the observed 
features of reaction time distributions by assuming that a 
stimulus triggers a neuronal decision signal to rise linearly until 
it reaches a threshold value in which a response is then executed. 
This rate of rise for each trial varies in a Gaussian fashion, 
explaining the observed shape of latency distributions. Modeling 
reaction time with the LATER model has provided novel insight 
into the cognitive components (accretion, caution) underlying 
reaction times in healthy individuals [see Ref. (12) for review and 
additional details on the original LATER model].

We argue that the LATER model can benefit from being cast 
in a hierarchical/multilevel framework (16, 17). Oravecz et al. 
(18) described a hierarchical extension to the LATER model 
that allowed for a person-specific accretion rate. We extend 
this approach by allowing for individual differences in both 
accretion and caution parameters. The multilevel extension 
enables us to model the individual-level repeated measures of 
reaction times with the LATER process and pool information 
across the resulting latent, person-specific accretion and caution 
parameters via joint population (group-level) distributions. 
The multilevel framework also provides us with a statistically 
principled way to add person-level predictors on these two 
latent parameters (e.g., to test if the number of cigarettes 
smoked per day is related to slower information accumulation). 
In our proposed model, all latent person-specific parameters 
and corresponding regression coefficients are estimated 
simultaneously, as opposed to first obtaining point estimates of 
caution and accretion for each person and then regressing those 
on predictors, which can lead to bias in the regression coefficient 
estimates [see Ref. (19)]. Importantly, we will also introduce 
condition-specific predictors to capture how accretion and 
caution differ as a function of experimental manipulation (e.g., 
smoking as usual vs. abstinence). The estimation of condition 
and person-specific effects is again simultaneous. The ability to 
have different groups and experimental manipulations within 
the same model also allows for direct statistical comparisons 
between the conditions/groups.

Specification of the Hierarchical  
LATER Model
Next we introduce the model specification for the hierarchical 
LATER model. We start with describing the LATER model as 
originally outlined [see Ref. (5); for reviews see Refs. (9, 12)], 
but with multilevel extensions to both caution and accretion 
parameters. Then we describe how the single-step regression 
is formulated on the person-specific caution (threshold) and 
accretion rate (information accumulation), and we finish with 
showing how condition-specific effects can be incorporated in 
the same model.

Data will be denoted as y
p,i

 for person p and trial i. We allow 
each subject p to have their own accretion (vp) and caution (θp) 
parameters. On a trial i, a trial and person-specific realization of 
the accretion rate, zp,i is modeled through a normal (Gaussian) 
distribution with the following specification:

 Z N vp i p, ~ ( , )1  (1)

We can get the predicted response time (or latency) at trial i 
for person p (yp,i) by dividing the person-specific caution by the 
person-specific accretion rate on trial i: 
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To summarize, the LATER model assumes sequential 
sampling; it assumes that over the course of a trial, information is 
accumulated sequentially until a threshold amount of information 
is reached, at which time a response is executed. This resulting 
accretion process (i.e., information accumulation) is assumed to 
be linear and eventually reaches a fixed threshold, with a rate that 
is random from trial to trial, as shown in Figure 1. Importantly, 
this trial-to-trial random rate is one of the key motivations to 
model reaction time with the LATER model approach.

To model similarities across individuals in terms of accretion 
and caution, we will assume that all person-specific LATER 
process parameters come from joint group-level (or level-2 or 
population) distributions. These group-level distributions also 
provide for a straightforward manner to regress these parameters 
on relevant person predictors (e.g., cigarettes smoked per day) 
to further improve the model. Therefore, in our application, the 
means of the population distributions of caution and accretion 
are made into the function of person predictors. Assume that 
K person covariates are measured and xp,k denotes the score 
of person p on covariate k (k = 1, …, K). For example, in our 
application we considered that age, gender, cigarettes smoked per 
day, and nicotine dependence level (as assessed by the Fagerström 
Test for Nicotine Dependence; FTND) could be possible sources 
of individual differences among persons; therefore, we included 
them as person predictors. All person-specific covariate scores 
are collected into a vector, with the length K+1, denoted as 
xp = (1, xp1, xp2, …, xpK)T, where the first element is an intercept. 
The group-level distribution of the person-specific accretion 
parameters νp is then formulated as

 vp = xp βv + εp,v 

where vector βν, of dimension 1 × (K+1), contains the regression 
weights for the person predictors (e.g., association between 
FTND and accretion) and εp,v is normally distributed with 
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mean 0 and variance σv
2 , quantifying residual unexplained 

inter-individual differences (random effects). Following similar 
logic, the group-level distribution of the person-specific caution 
parameters was modeled similarly: θp = xp βθ + εp,θ. Besides 
person-specific differences, covariates capturing experimental 
conditions can also be included in the model. In our application 
(described below), smokers completed the task under two 
conditions, smoking as usual vs. abstinent. Abstinence was 
operationalized as abstaining from smoking for a minimum 
of 12 h. Baseline measures of exhaled CO were taken during a 
screening procedure, allowing for verification of an abstinence 
state. The task was composed of two trial types, reward vs. 
neutral. The design was completely crossed; all participants 
completed both conditions and trial types (smoking as usual-
reward trials, smoking as usual-neutral trials, abstinent-reward 
trials, abstinent-neutral trials). We selected smoking as usual 
and neutral as the baseline, and dummy coded the neutral–
abstinent, reward–abstinent, and reward–smoking as usual 
conditions. The regression coefficients corresponding to these 
dummy-coded condition-specific variables represent the 
deviations of a condition from the baseline (i.e., smoking as 
usual-neutral reward).

We denote these covariates for every data point as gn,c 
where n = (1, 2, …, N), with N representing the total number 
of reaction times in the experiment and c = (1, 2, …, C), and 
C representing the number of dummy-coded conditions 
minus 1 (baseline). Corresponding regression coefficients are 
denoted as δv,c for accretion and δθ,c for the caution threshold. 
Table 1 shows the conditions (reward vs. neutral and smoking 
as usual vs. abstinent) with corresponding regression terms 
for further clarification of the design. To formulate the 
LATER model with these experimental condition effects, we 
introduce a more general notation than that of Equation 1 
for data yp,i: we stack all trials for the persons p under each 
other, resulting in a long vector of reaction time scores, where 
n stands for a single trial (up to N), and then we rewrite the 
model as:

 
y N v

n
n

n n
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θ θ
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For example, with the three conditions we introduced, the 
accretion is then modeled as:

 vn = vp+gn,1δv,1 + gn,2δv,2 + gn,3δv,3 

which can be written in a more general form:

 vn = vp + gδv 

Similar formulation applies to the caution parameter:

 θn = θp + gδθ 

This formulation allows us to model the effect of the 
experimental manipulation in terms of meaningful process 
model parameters while also capturing individual differences in 
these parameters.

Modeling in the Hierarchical Bayesian 
Framework
The hierarchically extended LATER model was cast in the 
Bayesian framework. In this framework, both data and model 
parameters are defined as random variables and the Bayesian 
model specifies their joint probability distribution (20). With 
this approach, statistical inference is focused on the posterior 
probability distribution of the parameters, which is derived by 
combining the likelihood and prior distribution on the model 
parameters based on Bayes’ rule. The prior distributions are 
integral parts of the model; the mean of the prior suggests the 
likely parameter value, and the variance of the prior distribution 
reflects the level of uncertainty about the possible values of 
the parameter of interest. This analysis is the mathematically 
normative way to reallocate credibility across parameter values 
as new data arrive (21).

In the Bayesian framework, inferences about parameters are 
based on the posterior probability distributions of the parameters. 
The posterior distribution is stochastically approximated by 
taking a large number of samples from it, and then calculating 
posterior point estimates, posterior standard deviations (similar 
to that of the standard error), and posterior credible intervals for 
each parameter. One of the key strengths in fitting a hierarchical 

FIGURE 1 | Visual representation of the cognitive processes (accretion rate 
and caution threshold) examined in the Linear Approach to Threshold with 
Ergodic Rate (LATER) model.

TABLE 1 | Describes the design matrix of the current study; the two conditions 
(Smoke as Usual, Abstinent) and two trial types (reward, neutral) with 
corresponding regression terms are shown here for the person-specific pater 
parameters.

Smoke as Usual Abstinent

Neutral δv,1,δθ,1 Baselines
Reward δv,3,δθ,3 δv,2,δθ,2

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Application in SmokersRoberts et al.

5 July 2019 | Volume 10 | Article 474Frontiers in Psychiatry | www.frontiersin.org

model with a Bayesian statistical approach is that these algorithms 
are able to fit increasingly complex models to the data (22). This 
is especially useful for our model as we can estimate all person-
specific parameters, group-level variances, and regression 
coefficients corresponding to person and condition effects 
simultaneously. Parameter estimation was implemented in Stan 
(23); software code for the model is provided in Appendix A. The 
utilized data and accompanying R script are also provided as an 
Online Supplement on the project’s Open Science Framework 
(OSF) page: https://osf.io/5h8m4/?view_only=f6c1e50dcfa04244
bba428d6cf259d36

Model Application—Smokers
We fit the hierarchical LATER model to data from “go” trials from 
a Go/No-Go task performed by a group of adult daily smokers 
to gain further insight into cognitive changes associated with 
smoking abstinence. While the Go/No-Go task is a paradigm 
typically used to investigate inhibitory control (no-go trials), 
it can also be a highly informative task in terms of assessing 
what cognitive mechanisms support “go” decisions (12, 24). 
Notably, go trials in this task far outnumber the number of no-go 
trials, increasing power and adding an additional dimension 
of rich data to analyze from this classic task. Prior studies have 
utilized the Go/No-Go behavioral paradigm to study the effect 
of nicotine use on cognitive systems using reaction times [e.g., 
Refs. (25–27)]; these studies manipulate the task environment 
in various ways, such as smoking status (e.g., daily smoker vs. 
non-smoker) and session type (e.g., smoking to satiety vs. 
abstinent). However, findings from these studies thus far have 
only demonstrated differences in reaction times (and error rates) 
between these various manipulations. While these studies have 
been informative in highlighting the fact that nicotine impacts 
task performance under particular task manipulations, they fail 
to explain how. That is, what are the underlying mechanisms 
of reaction times (i.e., components of decision-making) that 
nicotine affects?

Given widespread effects of nicotine on cognitive brain 
systems [e.g., Refs. (25, 26, 28–35)], we hypothesize that 
nicotine will affect psychological (cognitive) processes 
important for decision-making, including caution threshold 
and accretion rates. Furthermore, given that nicotine is known 
to alter (decrease) responsiveness to non-drug (e.g., money), 
particularly during periods of smoking abstinence [e.g., Refs. 
(33, 36–38)], we hypothesize that the availability of rewards 
may differentially impact caution and accretion depending on 
smoking status, as these likely interact with reward processes 
during incentivized decision-making [e.g., Ref. (29)]. We 
suggest that these effects may be masked or confounded when 
analyzing latencies via traditional average mean scores. In 
addition, traditional analysis is often based on averaging task 
performance across individuals per experimental condition, 
disregarding possible intraindividual differences that may be 
present. Failure to account for such differences may contribute 
to inconsistent results found in previous work [see Ref. (39)]. 
By utilizing the LATER process modeling approach instead 
of relying on statistical summaries of raw reaction times, 

substantively meaningful latent model parameters (accretion 
and threshold) are calculated and updated in a trial-by-trial 
manner, better capturing intraindividual processes. Moreover, 
by allowing individual differences in the latent process model 
parameters, this ensures that condition-specific differences are 
not biased by an averaging artifact. To this end, our proposed 
modeling approach was employed in an attempt to elucidate 
the effects of nicotine exposure (smoke as usual vs. abstinence) 
on cognitive functioning and potential moderating effects of 
rewards on Go/No-Go task performance.

The current dataset has previously been explored via the 
traditional frequentist approach to examine the effects of 
reward and smoking conditions on the latency and accuracy 
of task performance (see Ref. 40). However, it is not well 
understood which cognitive parameters nicotine affects. As a 
result, it remains unknown if non-drug rewards affect particular 
components of cognitive functioning in smokers. One goal 
in extending the LATER model was to explore intraindividual 
differences among daily cigarette smokers in their information 
accumulation and caution cognitive processes. In addition, we 
also wanted to study the difference in these two processes across 
experimental conditions (i.e., reward/neutral condition; smoke 
as usual/abstinence).

METHODS

Participants
After Institutional Review Board approval, 23 smokers were 
recruited via community advertisements. Inclusion criteria 
were the following: a) ≥18 years old, b) smoked at least 
four cigarettes/day for the past 12 months, c) inhale while 
smoking, and d) no intention to quit smoking in the next 
1 month. Exclusion criteria were the following: a) women 
who were pregnant or lactating, or who planned to become 
pregnant or breastfeed during the study, and b) other tobacco 
use within the past 12 months. Participants who dropped out 
before completing the study (n = 5) were excluded, leaving a 
final sample of 17 (5 females). While this is a relatively low 
sample size, each person has a high number of trials (750), 
which facilitate the estimation of the person-specific process 
parameters. Fewer trials would certainly result in more 
uncertainty (higher posterior standard deviation) in the 
parameter estimates; however, via hierarchical modeling, we 
pool information across participants to improve parameter 
estimation. Moreover, a large number of trials in fact are 
not uncommon in the Go/NoGo literature, as it helps build 
a prepotent response. In addition, as we take a multilevel 
modeling approach, we pool information across persons, 
which helps handle outlier effects and reduces the risk of model 
over-fitting. The mean age of these participants was 31.06 (SD = 
13.82). Participants identified as Caucasian, (66.7%), Asian 
(27.8%), and mixed race (5.6%). Participants reported smoking 
an average of 11.08 cigarettes per day. The sample exhibited 
low nicotine dependence on the Fagerström Test of Nicotine 
Dependence (FTND), with a mean score of 2.61 (SD = 2.35).
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Procedure
Participants attended a baseline session. A coVita|Bedfont 
Micro Smokerlyzer® was used to monitor CO levels. The Beck 
Depression Inventory–II (41) and the Center for Epidemiologic 
Studies Depression Scale–Revised (42) were used to screen 
for current depression. A screening for dependence on drugs 
other than nicotine was also administered. Participants then 
completed the FTND (43). Participants then attended two 
counterbalanced sessions—smoke as usual and abstinent. For 
the abstinent session, participants were instructed not to smoke 
for at least 12 h before the session. For the smoke as usual 
session, participants were instructed to continue their regular 
smoking habits.

Participants began the experimental sessions by providing a 
CO sample to ensure abstinence or smoke as usual conditions. 
Abstinence was determined by a CO level of at least one half of 
the participant’s CO level at their baseline session. Individuals 
then completed a recent nicotine, alcohol, and substance use 
measure, and the Questionnaire of Smoking Urges–Brief 
(QSU) (44). Participants reporting the use of alcohol or other 
substances within 24 h before experimental sessions were asked 
to return at a later date when they had refrained from substance 
use. Investigators then administered a measure of nicotine 
withdrawal, followed by an antisaccade (inhibitory control) and a 
working memory task (not reported here), as well as a monetary 
incentivized Go/No-Go task. Each session lasted approximately 
2 h. Results of questionnaires utilized in the current analyses and 
additional demographics can be found in Table 2.

Go/No-Go Task
An incentivized version of the Go/No-Go task was administered 
via a computer with a 17-in. monitor presented in E-Prime 
(Psychology Software Tools, Inc., Pittsburgh, PA). The task 
consisted of three trial types: frequent-Go (FGO; 75%), 
infrequent-Go (IFGO; 12.5%), and NoGo trials (12.5%) (45). 
Only data from the FGO trials are analyzed in this study as a 
main aim of the current modeling approach was to examine inter-
individual variability in reaction times. Including IFGO trials 
would introduce additional sources of variability, confounding 
the findings. The participants were required to press the space bar 
on a computer keyboard using the index finger of their dominant 
hand. Each trial consisted of the presentation of a colored 
square for 400 ms followed by the presentation of a fixation 
cross for 400 ms. Responses were collected during this 800-ms 
period. Participants were instructed to respond as quickly and 
as accurately as possible. Trials with reactions times <150 ms 

were excluded from analyses to avoid the inclusion of potentially 
premature responses. This was a threshold that we set in order to 
ensure that the response was in fact a reaction to the stimulus. If 
reaction times are too fast, they are not a reaction to the stimulus; 
rather they reflect general responding. Utilizing a threshold is 
well documented in the reaction time literature [see, e.g., Ref. 
(40)] (46). The trial types were presented pseudo-randomly. 
Participants completed 10 runs, and each run was composed of 
100 trials. Five runs were preceded by a ring of dollar signs ($), 
indicating the availability of monetary reward depending on run 
performance. Five runs were preceded by a ring of pound signs 
(#), indicating that no monetary reward was available. The order 
of runs was randomized. Participants were instructed that they 
could earn up to $5.00 in addition to their participation earnings, 
and that faster and more accurate performance on rewarded 
blocks would result in a greater reward amount. Participants 
were instructed that they would receive the earned rewards once 
they had completed the study and the investigators analyzed 
their data. At the end of the trials, the participants were told that 
they were getting the full reward amount.

Bayesian Data Analysis
In the present application of the model, we used weakly 
informative prior distributions, specified in Appendix A. As we 
had no prior knowledge, we chose weakly informative priors 
so that the prior distributions would have very little impact on 
the results. Parameters were estimated by running six chains 
with 2,000 iterations each, discarding the first 1,000 samples 
as burn-in. Convergence of the six chains was tested by the R̂ 
statistic (the Gelman–Rubin convergence statistic, used to test the 
degree of convergence of a random Markov Chain; see Ref. 47). R̂  
is calculated by taking the ratio of variance within and between 
chains. R̂ was lower than 1.01 for all parameters (conventional 
criterion being R̂ <1.1), indicating no problems with convergence. 
The full R script and accompanying data that allow for replicating 
the analysis can be found on the Open Science Framework website 
of the project1.

RESULTS

Individual Differences in the Decisions 
on Go Trials
We estimated an accretion and a caution threshold parameter 
for each person. Results show individual differences in accretion 
rate and caution threshold (Figure 2). Caution parameter 
estimates ranged between 2 and 6, while accretion rate was 
between 0.7 and 1.6. To relate these two scales, a person, for 
example, with caution parameter 4 and accretion rate 1 would 
need ¼ s (250 ms) to give a response. Alternatively, the same 
reaction time can arise from a faster accretion rate (e.g., 1.5) but 
also higher caution (e.g., 6). As can be seen in Figure 2, various 
combinations of accretion rates and caution parameters can 
result in very similar reaction times.

1 https://osf.io/5h8m4/?view_only=f6c1e50dcfa04244bba428d6cf259d36

TABLE 2 | Participant characteristics. 

Mean SD

Age 34.15 18.31
Age of first use 19.63 5.34
FTND 2.63 11.32
Avg. cigarettes per day 2.29 11.00

FTND, Fagerström test for nicotine dependence.
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We included person-level predictors (chronological age, 
age of smoking initiation, FTND score, average number of 
cigarettes smoked per day) to predict individual differences in 
accretion or caution, but no predictors explained differences 
in either parameter. Regression coefficients estimates 
and corresponding 95% credible intervals are reported in 
Appendix B.

Condition-Specific Differences in the 
Decisions on the Go Trials
We were interested in capturing differences in the decisions on 
the Go trials in periods when smokers abstained from smoking 
(vs. smoking as usual) and when a reward was offered depending 
on their performance (vs. neutral condition with no reward). 
These conditions were crossed for each person for a two-by-two 
design. We chose the neutral trials in the smoke as usual session 
as our baseline, and modeled the differences in the neutral and 
abstained from smoking, and the abstinent and smoking as usual 
reward conditions in terms of accretion and caution. Results 
are reported in Table 3. All accretion parameters had posterior 
distributions that had posterior mass largely concentrated away 
from zero, indicating support for a difference in these conditions 
on accretion, compared to the baseline (neutral trial, smoke as 
usual) condition. The δv,1 and δv,3 accretion parameters reveal that 
regardless of trial condition (neutral vs. reward), abstaining from 
smoking was associated with faster information accumulation 
compared to smoking as usual. The δv,2 accretion estimate 
indicated that when smoking as usual, smokers had slower 
accretion rates relative to reward trials.

Compared to the baseline condition, regardless of trial 
condition, smokers had a lower caution threshold when in a 
period of abstinence, relative to the baseline condition (δθ,1,δθ,3) 

The δθ,3 parameter had a 95% confidence interval containing 0, 
indicating less confidence for a meaningful difference between 
this parameter (abstinent, reward) to the baseline (smoke as usual, 
reward). The δθ,2 parameter indicates a larger caution threshold 
in the reward trials relative to the neutral trials in the smoke as 
usual session, suggesting that participants are integrating reward 
information into their cognitive appraisals of whether or not to 
execute a “go” response.

Model Fit
In addition to overall model convergence, we tested how 
well the LATER model fit the actual observed data through 
posterior predictive checks (PPCs). For this, we generated 100 
new data sets from the posterior distributions of the LATER 
model parameters. Figure 3 shows smoothed blue curves of 
these generated datasets overlaying the experimental data 

FIGURE 2 | Individual differences in participants’ accretion, caution, and mean reaction time (RT) estimates. Note. Mean RT is log transformed. Mean reaction times 
were included in the figure to demonstrate the different combinations of caution and accretion, which could result in similar RTs.

TABLE 3 | Summary of the regression weights where response speed was 
modeled with the LATER model. 

Condition Posterior 
mean

Posterior 
SD

95% CrI

Neutral, abstinent −0.3638 0.0552 (−0.4763, −0.2613)
Reward, smoke as usual 0.1231 0.0565 (0.0153 , 0.2360)
Reward, abstinent −0.2494 0.0556 (−0.3573, −0.1384)
Neutral, abstinent −0.0655 0.0145 (−0.0938, −0.0376)
Reward, smoke as usual 0.0835 0.0150 (0.0537, 0.1120)
Reward, abstinent −0.0068 0.0147 (−0.0352 , 0.0222)

Negative Posterior Means indicate faster accretion rates and lower caution 
thresholds; positive values indicate slower accretion rates and higher caution 
thresholds. Mean and SD are posterior mean and standard deviation. “Neutral” 
refers to a neutral trial; “Reward” refers to a reward trial. CrI, credibility interval; SD, 
standard deviation.
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(red histogram). Plot A depicts the full data PPC results, and 
Plot B displays a randomly selected participant’s data. Overall, 
the LATER model adequately fit the experimental data well, 
demonstrated by generated data sets, which nicely overlay the 
real experimental data (i.e., the blue curves follow the same 
pattern of the red histogram). The results were analyzed in the 
Bayesian framework, which does not utilize traditional indices 
to show goodness of fit (e.g., CFI) but relies on PPCs. This entails 
“simulating replicated data under the fitted model and then 
comparing these to the observed data” (48, p. 158). Systematic 
discrepancies within these graphical checks are indicative of 
poor model fit. Here, our graphical PPCs shown in Figure 3 do 
not reveal any systematic misfit.

DISCUSSION

In this paper, we articulated model implementation of a novel 
hierarchically extended LATER model, which parses reaction 
time into two distinct aspects of cognitive functioning: 
accretion rate and caution threshold. This model extension 
enables researchers to account for and compare differences 
in sources of variation related to experimental conditions and 

person-specific differences in accretion and threshold. We 
demonstrated the applicability and benefits of this model by 
applying it to reaction time data from a group of adult daily 
smokers, identifying condition and trial level effects. We 
aimed to place emphasis on both modeling and the nuanced 
substantive findings that this modeling makes possible. That 
is, we presented a novel hierarchical extension to the LATER 
model in order to account for differences across persons and 
experimental conditions simultaneously. We showcase the 
strength of this approach by demonstrating what researchers 
can learn about smoking status and the influence of rewards 
utilizing this modeling approach.

In the original analyses of the data, Lydon et al., (40) reported 
that task performance was more accurate (in regards to error 
processing) on rewarded trials relative to the neutral trials, but only 
in the smoke as usual session. There were no differences between 
reward and neutral trials during the abstinent session. And 
importantly, there were no significant differences in mean reaction 
times between the abstinent and smoke as usual sessions, regardless 
of the trial type. Here, our findings demonstrate differences in both 
cognitive parameters underlying reaction times.

In the current analyses, in the accretion parameter, the 
baseline (or comparative) condition was smoke as usual, neutral 
trials. Our results demonstrated the following: Relative to our 
baseline condition, when smokers were in an abstinent state, 
they had faster accretion rates in both reward and neutral trials. 
When smokers were smoking as usual, they had slower accretion 
rates when a reward was at stake relative to neutral trials. In 
regards to the caution threshold, again the baseline was smoke 
as usual, neutral trials. Relative to this baseline condition, when 
a participant was in a period of abstinence, regardless of the trial 
type (reward, neutral), s/he utilized a lower caution threshold. 
Compared to the baseline smoke as usual neutral condition, 
when a reward was at stake (still smoking as usual condition), 
smokers utilized a larger caution threshold.

Our study is the first to combine advanced process models with 
experimental manipulations to examine the effects of smoking on 
behavior. Understanding how rewards affect decisions is critical 
as contingency management treatment programs encourage 
continued abstinence by increasing the value associated with 
continued abstinence (49). Our findings demonstrate differences 
in both accretion and caution parameters when smokers were 
abstinent relative to smoking as usual: faster accretion rates and 
lower caution thresholds when participants were in a period of 
abstinence, regardless of trial type. This overall main finding 
falls in line with other studies demonstrating abstinence-related 
reward-insensitivities (28, 33, 36), with important implications 
for contingency management programs. If incentives used in 
smoking interventions are not overcoming cognitive deficits 
produced by acute nicotine withdrawal, incentives may fail to 
change the value associated with continued smoking abstinence, 
undermining the allocations of cognitive resources needed in 
attempts to remain abstinent. Future work should focus on 
examining the generalizability of reward/reward insensitivity, 
particularly in an abstinence state, to other types of motivating 
incentives (e.g., food, social praise) in order to investigate if 
alternative incentives can impact cognitive performance in 

FIGURE 3 | Visual summary of the posterior predictive checks. Checks 
were completed with 100 generated data sets. Smoothed histograms of 
these generated datasets are depicted by the blue curves. The distribution 
of the experimental data is shown with the red bars. Plot (A) shows these 
checks on the level of the full data set, while Plot (B) shows it for a randomly 
selected participant.
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deprived smokers in order to inform the development of effective 
interventions.

Interestingly, when smokers were smoking as usual, rewarded 
trials produced slower accretion rates and increased caution 
thresholds. This finding suggests that when participants were 
smoking as usual, they seemed to be more careful in their 
decision time, perhaps a speed-accuracy tradeoff. Indeed, Lydon 
et al. (40) reported fewer errors when examining the no/go trials 
of this task in rewarded vs. neutral trials when participants were 
smoking as usual. Additionally, additional processing demands/
time could have been needed in order to integrate information 
about the reward into the decision process.

To our knowledge, a LATER process model has never 
been applied to cigarette smokers to examine the underlying 
mechanisms of reaction or decision times. However, our findings 
fall in line with other research groups attempting to examine 
differences in underlying mechanisms of decision-making based 
on smoking state. Zack et al. (50) found that adolescent heavy 
smokers made more errors on a rapid information processing 
task relative to when they were smoking as usual, in line with 
the current results. These results support the notion that that 
accretion rate, the speed of information accumulation, is 
affected by abstinence. In a resting state magnetic resonance 
imaging study, Lerman and colleagues (30) reported that weaker 
inter-network connectivity (salience and default) predicted 
less suppression of default mode activity during performance 
of a working memory task. They argue that alterations in the 
coupling of these networks, and the inability to disengage from 
the default mode network, may be critical in cognitive alterations 
that underlie dependence. In our study, the trial type (reward vs. 
neutral) did not make a difference when smokers were in a period 
of abstinence. This could be due to alterations in the coupling of 
these networks as found in the study by Lerman and colleagues.

There are notable limitations in the current study. We 
implemented our model in the Bayesian statistical framework, 
which allowed us to fit a complex model to reaction time data in a 
single step. However, there are limitations to utilizing a Bayesian 
framework, namely in the computation power needed to 
implement such approaches. The current analysis was carried out 
using parallel computations [six cores running six Markov chain 
Monte Carlo (MCMC) chains] and took about 25 min. However, 
due to recent advances in statistical software, computational 
difficulty is becoming less of an issue. In addition, we had a limited 
sample size and unbalanced gender. However, as described in our 
Methods section, our implementation of a process model that 
utilizes a sequential sampling method and hierarchical modeling 
handles small sample sizes better than traditional approaches. We 
have made our scripts and data available to facilitate researchers 
utilizing this approach, hopefully with larger samples and more 
balanced samples to overcome this limitation in future work.

Taken together, our hierarchical extension of the LATER 
process model is able to separate the reaction time of the go 
trials into two cognitive processes, accretion and caution, while 
simultaneously accounting for differences in groups/session 
(smoke as usual vs. abstinent) and experimental condition 
(reward vs. neutral trials). Combing these approaches provides 
additional nuanced insight into nicotine’s effects on behavior.

Our model examines differences across individuals together 
with condition specific differences. This is an important extension 
of the model as it is critical for researchers to have the ability to 
test both between- and within-person differences in experimental 
conditions. Continual use of marrying cognitive process models 
with experimental condition manipulations will help elucidate 
factors that may impact decision-making in smokers, and can be 
extended to additional types of addiction. This modeling approach 
can and should be used in future research; by combining this 
approach with other tasks, group conditions, etc., researchers can 
better understand the cognitive processes underlying decision-
making within particular groups. These cognitive factors have 
the potential to inform the development and improvement 
of intervention programs by understanding which cognitive 
mechanisms need to be targeted by interventions. Although we 
did not find an association between individual level predictors 
and accretion/caution parameters, our novel extension to the 
LATER model puts us in a position to assess this in the future 
with larger sample sizes, more diverse samples (e.g., varying 
levels of nicotine dependence), and other types of addiction.
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