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ABSTRACT: The calculations of potential of mean force along
complex chemical reactions or rare events pathways are of great
interest because of their importance for many areas in chemistry,
molecular biology, and material science. The major difficulty for free
energy calculations comes from the great computational cost for
adequate sampling of the system in high-energy regions, especially
close to the reaction transition state. Here, we present a method,
called FEG-RBD, in which the free energy gradients were obtained
from rigid body dynamics simulations. Then the free energy gradients
were integrated along a reference reaction pathway to calculate free
energy profiles. In a given system, the reaction coordinates defining a
subset of atoms (e.g., a solute, or the quantum mechanics (QM)
region of a quantum mechanics/molecular mechanics simulation) are
selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the
reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the
reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated
along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and
weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the
free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate
relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case
revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method
effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously
defined by a small subset of atoms within the system.

1. INTRODUCTION

The free energy of molecules is an important physical property,
as it determines the populations of accessible species (e.g.,
conformers of reactant and products) in a system, but it is
computationally much more expensive to obtain compared to
the potential energy. As such, algorithms to calculate the free
energy accurately and efficiently1−6 have been under active
development in the decades since Kirkwood’s and Zwanzig’s
work in 1935 and 1954.7,8 When describing a transition
process, e.g., a chemical reaction, it is convenient and often
necessary to define one or more reaction coordinates a priori
along which the free energy is desired. Using predefined
reaction coordinates, a transition or reaction path is computed,
and the free energy profile along the path can be obtained with
various free energy algorithms. Umbrella sampling is one of the
most broadly applied free energy methods to calculate the free
energy profile along a reaction path with reference to certain
reaction coordinate.9 However, it can be prohibitively expensive
to apply umbrella sampling on cases with more than a few

degrees of freedom. The use of so-called hyperplane constraints
is another useful technique to sample the configuration space
within the vicinity of a reference reaction path.10 But caution
needs to be paid that the hyperplane constraint is only valid
within the region close to the reference path.11 Other methods
have been developed to calculate the free energy profile along
pathways for target reactions with many degrees of freedom,
with a common goal of maximizing sampling along the path
and of avoiding wasting computer resources simulating those
off-path degrees of freedom that do not contribute significantly
to the path free energy.12−15

In contrast to umbrella sampling, in which the free energy
gradient can be inferred from the deviation of the ensemble
with a restraining harmonic potential, in constrained molecular
dynamics the free energy gradient is obtained by computing the
constraint force applied during time propagation.16−20
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However, the latter has been practical only for simple two body
constraints through the use of the popular SHAKE21 algorithm.
Nagaoka and co-workers developed free energy gradient based
optimization methods22−25 using the pairwise RATTLE
algorithm.26 In this work, SHAPE,27 a novel rigid body
integrator that is as accurate as SHAKE for two-body
constraints but is far more flexible in terms of the number
and the types of constraints, is applied in reaction-path free
energy calculations based on the constrained molecular
dynamics theory. The developed method is referred to as free
energy gradient from a rigid body dynamics simulation (FEG-
RBD).
Before describing FEG-RBD, let us briefly review the theory

of constrained molecular dynamics. For an arbitrary reaction
coordinate ξ, the free energy A can be defined as a state
function of ξ in a generalized statistical mechanical expression,

ξ ξ= −A k T Q( ) ln ( )B (1)

where kB is the Boltzmann factor, T is the temperature, and Q is
the partition function. The reaction coordinate ξ could be any
order parameter that can measure reaction progress unambig-
uously, such as bond distance, dihedral angle, etc.
According to thermodynamic integration (TI), the free

energy difference between two values of the reaction
coordinates can be calculated through integrating the derivative
of the free energy along the reaction coordinate:
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The ensemble average of the derivative of the free energy with
respect to a general reaction coordinate is also referred to as the
mean force. The mean force can be calculated in Cartesian
coordinates17 through
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The ensemble average ⟨...⟩ in the numerator contains the
contribution to the mean force from potential energy term and
kinetic energy in term of a logarithmic derivative of the
determinant of the Jacobian. V is the potential energy, J is the
Jacobian matrix to transform Cartesian coordinates to a set of
generalized coordinates including ξ, and Zξ is the so-called
metric tensor and defined as
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where N is the total number of atoms, mk is the mass of atom k,
rk is Cartesian coordinates of atom k, and rk′ is mass-weighted
coordinates

′ = mr r( )k k k
1/2

(6)

Although eq 4 is appealing for its seeming simplicity, the
calculation of the right-hand side of this equation is impractical
for large systems, because the evaluation of the Jacobian matrix
J requires a full set of generalized coordinates.

Equation 4 can be simplified for constrained molecular
dynamics in which the reaction coordinate ξ is constrained to a
particular value throughout the simulation. The simplified
equation reads
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where λ is the Lagrangian multiplier with regard to the
constrained reaction coordinate ξ. When using a bond distance
as the reaction coordinate, the Lagrangian multiplier λ has the
same magnitude as the constrained force with regard to that
bond distance. Equation 7 can be generalized for multiple
reaction coordinates ξi=1, ..., p, giving eq 8.
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Zξ is a p × p matrix defined as
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and the Di term reads

∑ ∑
ξ ξ ξ

=
∂
∂ ′

·
∂

∂ ′ ∂ ′
·

∂
∂ ′ξ ξ

− −D Z Z
r r r r

[ ] [ ]i
j

ij
rskl

rs
j

l

r

l k

s

k

1 1
2

(10)

Equation 8 provides a theoretical foundation to calculate the
mean constrained force for multiple reaction coordinates.
The most straightforward reaction coordinates to be

subjected to constraint are bond distances, due to the simplicity
and efficiency of using SHAKE21 or similar methods.
Simultaneously constraining too many bond distances that
are coupled to each other through SHAKE is not practical due
to the recursive nature of this method. On the other hand, most
complex transitions cannot be properly described merely
through several bond distances. It is thus desirable to
simultaneously constrain coupled reaction coordinates of
various types, such as bond distances, bond angles, and
dihedral angles. To the best of our knowledge this has not been
practical using any existing method.

2. METHOD
Constrained dynamics provide an efficient way to sample the
potential of mean force. We will apply constraints in the form
of a rigid body during the simulation to sample the constraint
forces. In the proposed method, the overall reaction is
represented as a reaction pathway through a series of structures.
Each of the structures is subjected to rigid body molecular
dynamics with identified key atoms forming a single rigid body
throughout the simulation. Through the use of a rigid body
integrator published recently and implemented in the SHAPE
module in the CHARMM program package,28 all the degrees of
freedom of this rigid body except overall translations and
rotations are constrained. The constraint forces for maintaining
the rigid body can be integrated to obtain the free energy
profile along the reaction pathway.
Consider a system with total N atoms, with M atoms

identified as necessary to distinguish between reactant (R) and
product (P) structures. If the M atoms form a nonlinear
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structure, the number of degrees of freedom being constrained
is 3M − 6 throughout the simulation with these M atoms
constrained as a rigid body. Normally only one or two order
parameters are used as reaction coordinates to describe
chemical reaction or transition processes. In this case, all 3M
− 6 degrees of freedom being constrained are used to describe
the reaction process, and therefore considered as implicit
reaction coordinates. The transition or reaction between R and
P can be represented as a continuous minimum energy pathway
(Γ) defined by the M atoms. For any given point on Γ, we have
a tangent vector T, and free energy gradient vector F. Both T
and F have 3M − 6 components corresponding to the implicit
reaction coordinates. Therefore, the free energy difference
between R and P can be calculated through a line integral,

∫ ·
Γ

F T sd
(11)

This provides a theoretical framework to calculate the free
energy profile along the given pathway. Equation 11 can be
rewritten with explicit expressions for F and T vectors,
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where p, the number of reaction coordinates, is 3M − 6 for a
nonlinear rigid body in use.
It is worth noting that in a typical TI calculation, what is

being calculated is the free energy difference between two
thermodynamic states without having an actual reaction
pathway connecting the two states. Usually a coupling
parameter λ is used to form a “pathway” to change the
simulation from one state to the other alchemically. After TI
calculation, no free energy profile can be obtained with free
energy reaction barrier information. In the FEG-RBD method,
the mean force integration is carried out along an actual
reaction pathway with a transition state. The integration of the
mean force will provide a complete free energy profile along the
pathway, including the reaction barrier information. This is an
improvement in FEG-RBD method over the TI calculation.
In practice, the continuous pathway Γ is represented by a

series of discrete structures, which can be generated using any
chain-of-states methods.29 The integration in eq 12, therefore,
can be calculated through summation. All the FEG-RBD
simulations in this work were carried out using the CHARMM
molecular simulation program and the CHARMM22 force
field.30

In this study, each individual FEG-RBD simulation was
carried for 10 ns with 1 fs as the time step. To minimize the
autocorrelation in the sampled data and collect sufficient
amount of data for convergence, the constraint force on a rigid
body for every 1000 simulation steps was averaged in each
simulation, leading to the mean constraint forces calculated
from a total of 10 000 frames in each simulation.

3. RESULTS
3.1. Isosceles Triangle. First, the FEG-RBD method is

tested using isosceles triangles composed of three van der
Waals (VDW) gas particles (neon was selected arbitrarily). In
this case, the two legs of the triangle vary from 2.0 to 5.0 Å with
a 0.03 Å step size, while the base is fixed at 2.0 Å. This test case
was selected for its simplicity in structure and complexity in

reaction coordinate, which corresponds to two order
parameters (two legs of the isosceles triangle) with equal
values. The theoretical values of the free energy could be
calculated as reference due to the structural simplicity of this
system. The improved efficiency of FEG-RBD over umbrella
sampling could also be demonstrated due to the complexity in
the reaction coordinate. In total there were 101 isosceles
triangles subjected to FEG-RBD simulations. Each isosceles
triangle comprising three neons was subjected to Langevin
dynamics at 300 K. In the simulation, the constraint forces are
needed to balance the van der Waals interactions among three
particles as well as the centrifugal forces with respect to the
center of mass of the triangle. The mean constraint forces of
each simulation were used to compute the line integral along
the reaction path assembled by 101 isosceles triangles to obtain
the free energy profile (Figure 1). The simulation for each neon

triangle configuration was repeated ten times with different
random initial velocities for statistical purposes. The free energy
profile was plotted in Figure 1 with error bar calculated from
the ten simulations of each configuration. The plotted error
bars in Figure 1 are cumulative, which means that the error bars
at larger reaction coordinates (i.e., the leg length of the
triangle) are the square root of the sum of the variance for each
structure with smaller reaction coordinates. The extremely
small error bars (which are hardly visible in Figure 1) from only
ten simulations of each structure demonstrate the high
convergence rate of FEG-RBD method due to its sampling
efficiency. Since the line integral of the free energy gradient can
only provide the free energy difference, the isosceles triangle
with two legs at 5.0 Å was chosen as the reference point with
zero free energy.
The theoretical free energy curve with regard to the chosen

reaction coordinates is calculated using the following equation
of a rigid body,31

π π= − ABCQ h kT8 ( ) (2 )2 3 1/2 3/2
(13)

where Q is the partition function of the system, h is the Planck
constant, A, B, and C are the principal moments of inertia of
the rigid body with respect to the center of mass, k is the
Boltzmann constant, and T is the temperature. The free energy
profile calculated using FEG-RBD method is in excellent
agreement within statistical precision with the theoretical
results (Figure 1).

Figure 1. Free energy profile of three neon isosceles triangles.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500342h | J. Chem. Theory Comput. 2014, 10, 4198−42074200



Harmonic forces can also be used for free energy sampling as
in umbrella sampling, which is one of the most widely applied
methods for free energy simulation. It would be helpful if
constraint force based and restraint force based free energy
methods can be compared for their advantage and disadvan-
tages. Therefore, the free energy difference between two
configurations of the three-site VDW system was computed
using umbrella sampling and FEG-RBD. For the umbrella
sampling simulations the base of the triangle was constrained
using SHAKE, while the two equivalent edges were restrained
by quadratic potentials. The restraints on two edges actually
create two reaction coordinates for free energy sampling,
instead of one. This leads to some difficulties in postsimulation
analysis, in which only those triangle geometries with the
lengths of two edges close to each other enough can be
counted.
The force constants were chosen so that the bias potential

had a value of one kT directly between bins (ranging from 103
to 759 kcal/mol/Å2). The free energy was evaluated with the
WHAM algorithm. The free energy difference between
configurations with isosceles edge length 3.0 and 4.5 was
computed. To compute the standard error, 15 simulations of
13.3 ns each were executed for every umbrella sampling or
FEG-RBD point. To avoid complications with large umbrella
sampling force constants, a 0.5 fs time step was used, which will
decrease the sampling efficiency by a factor of 2 comparing to a
normal 1.0 fs time step.
As shown in Table 1, the standard errors of the FEG-RBD

simulations are substantially smaller, on average by a factor of 4.

Interestingly, the longer the simulations are, the more
significant the improvement of FEG-RBD over umbrella
sampling is. This suggests a faster convergence rate of FEG-
RBD simulations comparing to the umbrella sampling
simulations. Of course, this enhancement will depend to
some extent on the binning used by the WHAM procedure,32

essentially, how large a region on the two-dimensional surface is
averaged over to approximate the free energy of a point on the
path.
Note that each simulation as a recording of ensemble in the

isosceles triangles phase space was uncorrelated with the
previous one. In a simulation of a system of chemical interest,
the standard error of umbrella sampling will likely be
determined by a slow correlation time scale of the uncon-
strained motions. On the other hand, the FEG-RBD removes
any possible slow time scale internal processes in addition to

more efficient sampling of the path. The most part of the free
energy loss resulted from rigid body could be recovered from
postprocessing analysis, and will be discussed later in this paper.

3.2. Intramolecular Condensation Reaction of β-
Alanine. The FEG-RBD method is then tested using the
intramolecular condensation reaction of β-alanine (3-amino-
propanoic acid) (see Scheme 1). This system was selected to

represent a typical chemical reaction, for which the FEG-RBD
method could be an efficient choice for free energy calculations.
A minimum energy pathway (MEP) with 58 structures
representing this reaction was prepared using the replica path
(RPATH) module in the CHARMM program package.28 The
energy and gradient of each structure were calculated at the
B3PW91/6-31G(d,p) level of theory using the Q-Chem
program package33 through an interface within CHARMM.34

The structures along the MEP were solvated in a box of
TIP3P35 water molecules separately (the number of water
molecules ranges from 354 to 424, see Supporting Information
for details) and subjected to the FEG-RBD simulations. Each
FEG-RBD simulation was carried out using the NVT ensemble
at 298 K.
While the minimum energy pathway was obtained from the

quantum mechanics/molecular mechanics (QM/MM) reaction
pathway calculations, our subsequent FEG-RBD simulations
were performed at the level of molecular mechanics only to
avoid prohibitively expensive QM calculation for long
simulations. For each solute structure, which remains rigid
using the SHAPE algorithm, only the VDW parameters and
atomic charges were used to capture the solute−solvent
interaction in the simulation. Other terms for the solute such
as bond stretching, bond angle bending, dihedral angle torsion,
were all omitted from the simulation because these terms do
not contribute to the solute−solvent interaction. The VDW
parameters of solute molecule were obtained from the
CHARMM22 force field.30

Gas-phase electrostatic potential (ESP) charges of each
structure calculated at B3PW91/6-31G(d,p) level of theory
using Gaussian 0936 were used in the FEG-RBD simulations,
thus not accounting for the polarization of solute electron
structure by the solvent molecules. The polarization of solute
by solvent molecules is very important in solvation free energy,
but needs QM calculation in simulations. This will make FEG-
RBD simulation prohibitively expensive for this test case.
However, more methodology development is underway to
speed up the QM calculations in FEG-RBD simulations.
Overall, during the course of each simulation, all the energy
terms between solute and solvent and within solvent molecules
are calculated; while all the intramolecular energy terms of the
solute were ignored, which remain constant for each FEG-RBD
simulation.
The mean constraint forces on solute of each simulation

were used to compute the line integral along the MEP as
represented by 58 structures to obtain the free energy profile.
The simulation for each structure was repeated 10 times with
random starting velocities. The free energy profile was plotted
as a black line with square symbol and error bar calculated

Table 1. Standard Errors for the Free Energy Difference
between Two Points of the Three-Site van der Waals System
from FEG-RBD and Umbrella Sampling Simulations

number of
simulations

umbrella
samplinga FEG-RBDa

enhanced
efficiency

8 0.0098 0.0035 2.8
10 0.0076 0.0027 2.8
12 0.0070 0.0026 2.7
14 0.0090 0.0032 2.8
16 0.0080 0.0020 4.0
18 0.0095 0.0013 7.3
20 0.0081 0.0016 5.1

aThese errors (in kcal/mol) are lowered with an increasing number of
independent simulations without changing the spacing of simulation
windows.

Scheme 1
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based on 10 simulations of each configuration in Figure 2.
Similar to the Case 1, the plotted error bars in Figure 2 for
FEG-RBD simulation are cumulative. Considering that these
simulations were carried out in explicit solvent, the small error
bars from only ten simulations of each structure again
demonstrate the high sampling efficiency of the FEG-RBD
method. β-Alanine, the first structure on the MEP, was chosen
as the reference point with zero free energy. Since the internal
energy of solute was removed during the simulation, the free
energy contribution mainly comes from the interaction
between the solute and solvent, and among the solvent
molecules.
The reaction pathway is divided into three steps in Figure 2

reflecting the shape of the free energy contribution. In Step I,
the two ends of the solute molecule (β-alanine) move toward
each other (Figure 2). This movement reduces the space
between the carboxyl and amine groups, leading to a partial
desolvation of these two functional groups and understandably
to an unfavorable free energy contribution. In Step II, the
chemical bonds breaking and forming of the condensation
reaction between the carboxyl and amine groups occur (Figure
2), and lead to a favorable free energy contribution. In Step III,
all the chemical bonds rearrangements are finished; the forming
water molecule moves away from β-lactam as the condensation
product, and eventually forms a hydrogen bond with the
carbonyl oxygen in the final structure in the reaction pathway.
With the FEG-RBD method, the overall solvation contribution
to reaction free energy is found to be 2.5 kcal/mol.
To further illustrate the solvation contribution to the free

energy calculated in this test case, the structures from the
reference reaction pathway were also subjected to single point
calculations at B3PW91/6-31+G** using an implicit solvation

method, SM8,37 as implemented in Q-Chem. SM8 is chosen
because there are separate solvation energy terms, which can be
used for comparison purpose. There are three terms in the SM8
solvation free energy: ΔEF is the change of the solute’s internal
energy from the gas phase to the solution at the same geometry
due to polarization by the solvent; GP is the polarization free
energy of a generalized Born formalism; and GCDS is the
contribution to the free energy from cavitation (C), dispersion
(D) and solvent structural effects (S). SM8 solvation free
energy and its three terms along the reference reaction path are
also plotted in Figure 2 with reference to the first structure. The
free energy profile calculated using FEG-RBD shows some
interesting differences and similarities from the SM8 profile
along the path (Figure 2). In step I, unlike FEG-RBD, SM8
(dark blue line) predicts an initial favorable change in the
solvation free energy as the carboxyl and amine groups move
closer. In steps II and III, SM8 qualitatively agrees with FEG-
RBD. Quantitatively, the SM8 solvation free energies changes
are far steeper.
As mentioned above, the solute is nonpolarizable in our

FEG-RBD simulations, because fixed gas-phase ESP charges are
used for the solute. So, as a more direct comparison, we can
compare it against the nonpolarizable portion of the SM8
solvation free energy: GP_1, which is the polarization free energy
from the first self-consistent field (SCF) cycle in the solution
phase calculation and is thus based on gas-phase CM4 charges,
and GCDS. In other words, we exclude ΔEF (the change in the
solute SCF energy due to polarization by the solvent) and the
change in GP due to different CM4 charges in the gas-phase and
the solution phase. This nonpolarizable portion of the SM8
solvation free energy, GP_1 + GCDS, is shown as the light blue
line in Figure 2, and it closely resembles the entire SM8

Figure 2. Solvation free energy profile of intramolecular condensation reaction of β-alanine (3-aminopropanoic acid) through FEG-RBD simulation
(black line), and key structures along the reaction pathway. Also shown are relative solvation free energies from the SM8 implicit solvation model
(dark blue line), and its three components: GP (red line), GCDS (green line) and ΔEP (purple line). For a direct comparison to FEG-RBD results, the
nonpolarizable portion of SM8 solvation free energy, GP_1 + GCDS, is also shown (light blue line). This comparison demonstrates that FEG-RBD
simulation was able to capture the detailed solvation effect of solute molecule excluding polarization effects.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500342h | J. Chem. Theory Comput. 2014, 10, 4198−42074202



solvation free energy (dark blue line) as the reaction progresses.
At the same time, electron polarization effects account for
about 20% of SM8 solvation free energy for this reaction, so the
GP_1 + GCDS values are typically ca. 20% smaller, bringing it
closer to our FEG-RBD results.
Since SM8 was parametrized against experimental aqueous

solvation free energies, the correlation between our FEG-RBD
results and SM8 results along the reaction pathway, at least in
steps II and III, strongly suggests that our FEG-RBD method
captures the nonpolarizable portion of solvation free energy,
especially the contribution from cavitation, dispersion, and
solvent structural effects. To further capture the solute
polarization effect, we need to either adopt a polarizable force
field for the solute or, more preferably, treat the solute quantum
mechanically during the simulation. The latter (QM/MM)
treatment can be rather expensive for the long (10 ns)
simulations carried out in this study. Further work is underway
to speed up the QM/MM calculation in FEG-RBD simulations.
3.3. Butane. The first two cases demonstrate both accuracy

and efficiency of FEG-RBD method. To test the limitation of
FEG-RBD method, butane molecule was selected as a third test
case using dihedral angle as the main reaction coordinate. The
energy profiles of the dihedral angle rotation defined by four
carbons in butane are calculated for comparison. The purpose
for this selection is testing the effectiveness of FEG-RBD
method on dihedral angle rotation, which is a common reaction
coordinate, but difficult to deal with in constrained molecular

dynamics simulations. The MEP with 73 structures, which
corresponds to the rotation of butane backbone dihedral angle,
was prepared using the RPATH method available in the
CHARMM program package.28 The energy profile of MEP is
plotted in Figure 3. The 73 structures of butane on MEP were
subjected to two types of FEG-RBD simulations. In the first
type simulation (FEG-RBD 1 in Figure 3), the whole butane
molecule is kept as rigid body. In the second type (FEG-RBD 2
in Figure 3), only four carbon atoms are kept as rigid body.
Both FEG-RBD simulations were repeated 10 times with
different random initial velocities for statistical purposes.
To measure the accuracy of our FEG-RBD results, the free

energy profiles are also computed in two other ways. First, a
total of 1.2 μs standard molecular dynamics simulation time at
300 K were carried out for butane and subjected to distribution
(binning) analysis for calculating the free energy, where the
results are shown in both Figure 3 and Table 2. The simulation
was repeated ten times with different random initial velocities.
Second, vibrational analyses were performed on the 73
structures on the MEP to calculate the free energy correction
from the 3N − 7 vibrational modes (excluding the backbone
torsion and translations/rotations) to the MEP. From Figure 3,
clearly, with the exception of the region around TS1, the
vibrational correction works remarkably well to reproduce the
free energy from the binning analysis.
The free energy profile from the FEG-RBD 1 simulations

does not show significant difference compared to the MEP

Figure 3. Energy profiles of dihedral angle rotation associated with central carbon−carbon bond in butane.

Table 2. Barriers and Energies of Butane (kcal/mol)

method global minimum TS 1 intermediate TS 2

binning 0.00 3.41(±0.0075) 0.98(±0.011) 5.72(±0.095)
minimum energy path (MEP) 0.00 3.49 0.87 5.30
FEG-RBD 1 0.00 3.46(±0.017) 0.84(±0.022) 5.24(±0.029)
FEG-RBD 2 0.00 3.27(±0.040) 0.75(±0.058) 5.36(±0.074)
MEP + vib. corr. 0.00 3.52 0.99 5.60
FEB-RBD 2 + VSA corr. 0.00 3.31 0.82 5.52
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profile. With the relative positions between all carbon and
hydrogen atoms fixed, FEG-RBD 1 only accounts for the
translational and rotational degrees of freedom and the shape
and size of the molecule does not change dramatically during
the course of the central carbon−carbon bond rotation in
butane. TS1, the intermediate, and TS2 all become more stable
with FEG-RBD 1. The largest difference occurring at TS2
where the FEG-RBD1 value (5.24 kcal/mol) is 0.06 (±0.029)
kcal/mol lower than the MEP value (5.30 kcal/mol), reflecting
lower rotational free energy at TS2.
In addition to the translational and rotational degrees of

freedom, the hydrogen atoms also become flexible with FEG-
RBD 2. This makes TS1 and the intermediate even more stable.
On the other hand, the methyl rotations are allowed in FEG-
RBD 2 simulations. At TS2, methyl rotations are hindered
this might be the main reason behind the 0.06 (±0.074) kcal/
mol increase of the free energy from MEP (5.30 kcal/mol) to
FEG-RBD 2 (5.36 kcal/mol).
The binning analysis suggests that the free energy makes TS1

0.08 (±0.0075) kcal/mol more stable comparing to MEP
calculations (3.49 to 3.41 kcal/mol). At the same time, the
intermediate becomes 0.11 (±0.011) kcal/mol less stable (0.87
to 0.98 kcal/mol), and most significantly, TS2 is 0.42 (±0.095)
kcal/mol less stable (5.30 to 5.72 kcal/mol). So, with flexible
hydrogen atoms, FEG-RBD 2 reproduces the same trend as the
binning analysis at both TS1 and TS2.
The relative free energy of the intermediate from binning

analysis is consistently higher than FEG-BRD 2 results: 0.14
(±0.048) kcal/mol (3.41 vs 3.27 kcal/mol) at TS1, 0.23
(±0.069) kcal/mol (0.98 vs 0.75 kcal/mol) at the intermediate,
and 0.36 (±0.17) kcal/mol (5.72 vs 5.36 kcal/mol) at TS2.
These differences should come from applying the rigid-body
constrains in our FEG-BRD 2 simulations, namely, (a) the
flexibility of the butane backbone (bond stretching and bond
angle bending), which are not accounted for in the rigid body
simulation; and (b) the coupling between these backbone
motions and the motions of the hydrogen atoms. Observing the
accuracy of the vibrational free energy correction to MEP (as
compared against the binning analysis), vibrational subsystem
analysis (VSA) was performed on the backbone. Here the
molecular Hessian is partitioned into a basis that represents the
three C−C stretching and two C−C−C angle bending degrees
of freedom. As shown in Figure 3 and Table 2, this vibrational
subsystem analysis brings FEG-RBD 2 results closer to the
binning analysis results. At TS2 the difference was narrowed
from 0.36 (±0.17) kcal/mol to 0.20 (±0.095) kcal/mol (5.72
vs 5.52 kcal/mol). For TS1, the difference is 0.10 (±0.0075)
kcal/mol, and for the intermediate state 0.16 (±0.011) kcal/
mol.
Furthermore, the enthalpic costs of imposing the SHAPE

constraints can be readily evaluated by conducting a
minimization on the constrained degrees of freedom. This
was done by removing the SHAPE constraints from the
carbons and then restraining or constraining the other degrees
of freedom before conducting an energy minimization.
Normally this is very small correction, because a minimum
on potential energy surface is close to its counterpart on the
corresponding free energy surface. For FEB-RBD2, the
enthalpic costs of the SHAPE constraints ranged between
0.0002 and 0.0447 kcal/mol, but the effect on the relative free
energy of TS1, TS2, and the intermediate state are below
0.0007 kcal/mol, so the enthalpic contribution of the
constraints can be neglected in this particular case.

4. DISCUSSION
In general, the free energy calculation using rigid body
constraint can be represented as a calculation cycle illustrated
in Figure 4. Corrections are needed for FEG-RBD results for

better free energy information. One source of corrections is
that the constrained potential energy surface is not the same as
the unconstrained surface in the off-path degrees of freedom.
To properly account for such differences, one can calculate or
estimate the free energy cost of applying such constraints
(ΔGcons). This free energy cost can be accounted for by
determining the enthalpy increase (ΔH) and entropy losses
(−TΔS) of the constrained degrees of freedom for each
snapshot. The enthalpic costs can be estimated by the potential
energy difference between the constrained structure and the
structure at the local energy minimum of the degree of
freedom. This corresponds to using the projections of the
gradients g and Hessian H into the constrained degrees of
freedom, and performing a one step Newton−Raphson
minimization,

Δ ≈ −H x g x H x g x( )
1
2

( ) ( ) ( )cons cons
T

cons
1

cons
1 (14)

where ∥···∥ denotes a sum over all elements.
The entropic costs of the constrained degrees of freedom

include both a frequency term and a term based on the metric
tensor (Jacobian).38−40 The Jacobian term of the system Js, can
be calculated as

∏ ∏= = × ·
α

α
α

α α α
= =

−J J s s s( )
N N

i j kS
1 1

1

(15)

where α is the index of atom, N is the total number of atoms,
and Jα is the Jacobian factor of each atom, and internal
coordinates for each atom are represented as three vectors, siα,
sjα, and skα.

38 The Jacobian term was estimated to be below
0.01 kcal/mol for the present cases, so it was neglected.
However, there might be cases where the Jacobian term is
important (e.g., constraining a single bond length that changes
by more than 10%). The frequency term can be well estimated
using a vibrational subsystem analysis41,42 if the off-path
constrained degrees of freedom are primarily harmonic on
the unconstrained potential energy surface. This is the case for
the bond and angle terms considered in the examples here.

β
π
β

− Δ ≈ Λ −⎛
⎝⎜

⎞
⎠⎟T S x x( )

1
2

ln
2

[ ( )]cons cons
1

1 (16)

where Λ are the eigenvalues of Hessian matrix.
The free energy change due to releasing all constraints in a

free energy simulation is

Figure 4. Free energy calculation using rigid body constraint.
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βΔ = − ⟨ ⟩β β− − Δ + ΔG eln H T Sx x
cons

1 ( ) ( )
cons

cons cons (17)

where ⟨⟩cons denotes an ensemble average using rigid body
constrained dynamics. This equation corresponds to the
Zwanzig equation, but uses ΔG instead of ΔU.8 More details
on how to calculate the corrections for constrained bonds and
angles in simulations can be found in a manuscript that has
been submitted elsewhere.43

Notably, the above analysis only works for constrained
degrees of freedom that can be treated harmonically. This is not
true for dihedral angles with multiple rotational states.
However, this problem can be addressed using the techniques
for treating rotational isomers developed by Straatsma and
McCammon.44 If there are n subspaces that together span the
entire accessible phase space (i.e., n possible rotational states),
the free energy difference can be calculated by

∑βΔ = − β−

=

− ΔG eln
i

n
G1

1

i

(18)

where ΔGi is the free energy difference for one particular
subspace or rotational substate. Thus, the free energy difference
can be evaluated by performing a rigid body simulation for each
possible rotational state. A good approximation may consist in
simulating just the lowest energy rotamers if the other states are
strongly disfavored.

5. CONCLUSIONS
We presented a free energy gradient simulation method
employing rigid body dynamics (named FEG-RBD) to enhance
sampling efficiency for a reference reaction pathway. In this
method, all the atoms that are important (as determined by the
user) for a reaction coordinate are selected to form a rigid body,
while all the other atoms are free to move during the
simulation. The constraint forces associated with the rigid body
are averaged over the simulation to obtain the gradient of the
free energy. Such a rigid body simulation is carried out for each
structure along the reaction path. Finally, the gradients of the
free energy from the rigid body simulations are integrated along
the reference reaction pathway to obtain the free energy profile.
When using the constrained dynamics concept, three test

cases demonstrated both the strengths and weaknesses of the
FEG-RBD method. A simple test case with an analytically
known free energy was simulated to demonstrate the
rigorousness of the method. Using the constrained dynamics
concept through rigid body simulation, the convergence rate for
free energy simulations is faster than normal molecular
dynamics or simulations with restraints, providing an efficient
way to calculate free energy from simulation. The FEG-RBD
method is the most suitable for complex chemical reactions in
solution and biochemical reactions, in which multiple order
parameters are essential to define the reaction progress, and
entropic contribution from the environment is important for
the overall free energy.
The missing contribution to the free energy from the loss of

flexibility in the rigid body can be accounted in terms of
enthalpy and entropy. The enthalpic correction can be
estimated from the energy difference between constrained
and unconstrained structures. The entropic correction includes
frequency term and Jacobian term. The Jacobian term is
normally negligible in most cases. The frequency term can be
estimated through vibrational subsystem analysis.41,42 The
degrees of freedom that cannot be treated harmonically, such

as dihedral angles with multiple rotational states, can be
addressed using special techniques for treating rotational
isomer.44

The FEG-RBD method with enhanced sampling efficiency
comparing to umbrella sampling method by a factor of 4 has
potential applications for free energy simulation in many areas,
including solvation free energy calculations, enzymatic reaction
and many other complex chemical reaction mechanisms. For
example, for the solvation free energy calculation, solute
molecule can be treated as rigid body in QM/MM dynamics
simulation to include polarization effect. Further study in this
direction is currently under development.
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