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Abstract: Heavy metal monitoring in food-producing ecosystems can play an important role in 
human health safety. Since they are able to interfere with plants’ physiochemical characteristics, 
which influence the optical properties of leaves, they can be measured by in-field spectroscopy. In 
this study, the predictive power of spectroscopic data is examined. Five treatments of heavy metal 
stress (Cu, Zn, Pb, Cr, and Cd) were applied to grapevine seedlings and hyperspectral data (350–
2500 nm), and heavy metal contents were collected based on in-field and laboratory experiments. 
The partial least squares (PLS) method was used as a feature selection technique, and multiple linear 
regressions (MLR) and support vector machine (SVM) regression methods were applied for 
modelling purposes. Based on the PLS results, the wavelengths in the vicinity of 2431, 809, 489, and 
616 nm; 2032, 883, 665, 564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm; 863, 2044, 415, 652, 713, 
and 1036 nm; and 1373, 631, 744, and 438 nm were found most sensitive for the estimation of Cu, 
Zn, Pb, Cr, and Cd contents in the grapevine leaves, respectively. Therefore, visible and red-edge 
regions were found most suitable for estimating heavy metal contents in the present study. Heavy 
metals played a significant role in reforming the spectral pattern of stressed grapevine compared to 
healthy samples, meaning that in the best structures of the SVM regression models, the 
concentrations of Cu, Zn, Pb, Cr, and Cd were estimated with R2 rates of 0.56, 0.85, 0.71, 0.80, and 
0.86 in the testing set, respectively. The results confirm the efficiency of in-field spectroscopy in 
estimating heavy metals content in grapevine foliage. 
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1. Introduction 

In-field spectroscopy provides a time and cost-efficient and accurate way to monitor plant stress 
[1–3]. These hyperspectral data are sensitive to small differences in plant features; i.e., plant disease 
[4–6], water content [7,8], biomass assessment [8,9], crops quantity and quality [10,11], species and 
varieties discrimination [12–14], and heavy metal stress [1,2,15]. 

Heavy metal contamination in food-producing ecosystems is considered to be a major 
environmental problem due to its potential hazard to humans and other organisms and due to the 
intention to protect the safety of food chains [16,17]. Within the selection of human food, grapes and 
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their secondary products (wine, jam, juice, jelly, vinegar, grape seed oil, and raisins) play an 
important role. Therefore, the safety of vineyards in terms of heavy metals is a key factor in grape 
production and wine industries [17,18]. In viticulture areas, the excessive and prolonged usage of 
fertilizers and pesticides releases heavy metals (i.e., Cu, Zn, Cd, Pb, Cr, Ni, Hg, and As), which has 
been considered in many studies [16-20]. According to Milićević et al. [18] and Sun et al. [17], 
significant correlations occur between heavy metal concentration in soil, grapevine parts (leaf, skin, 
pulp, and seed), and wine. Alagić et al. [21] also concluded that the grapevine has some highly 
effective strategies involved in tolerance to heavy metal stress, which makes it an excellent plant 
species for phytostabilization purposes. Therefore, grapevine foliage monitoring can potentially 
demonstrate heavy metal concentration states in other parts of the plant and is also acknowledged to 
be a bio-indicator of heavy metals in the enclosing environment. 

Heavy metal stress can produce some changes in plant morphological and biochemical 
characteristics [15]. This is because the leaf spectral response is mainly affected by plant structural 
and morphological characteristics; i.e., the leaf’s intracellular and extracellular structure, and 
biochemical parameters such as nitrogen, pigments, and water contents [22–27]. 

Usually, heavy metal concentrations are detected in plant samples by acid digestion–solvent 
extraction followed by hydride generation atomic absorption spectrometry [28,29]. This tedious 
approach is expensive and destructive. Alternatively, by modeling the relationships between the 
heavy metal concentrations and foliar spectral characteristics, these concentrations can be efficiently 
estimated without using any chemical solvents. Therefore, by analyzing leaf spectral data, it becomes 
possible to investigate the biochemical and morphological changes caused by heavy metal stress 
[15,30]. It should be noted that in-field spectroscopy is one of the most attractive fields in remote 
sensing studies and can record specific spectral data to any object such as fingerprints [31,32]. 
Hyperspectral sensors can be used in the in-field spectroscopy process and so provide a framework 
for spectral reflectance acquisition in hundreds of narrow and contiguous bands/wavelengths [24,26]. 
Accordingly, it is expected that a plant being exposed to heavy metal stress will lead to subtle 
differences in the spectral curve as opposed to a healthy plant. These differences mainly occur in the 
visible and near-infrared regions of the electromagnetic spectrum [33]. 

Several studies have made specific use of the application of crop spectral characteristics through 
in-field spectroscopy data and multivariate statistical analysis to promote the prediction of heavy 
metal content in plant samples. For instance, Font et al. [28] and Font et al. [29] applied visible and 
near-infrared spectroscopy and the modified partial least squares (PLS) method to forecast metal 
content in prostrate amaranth and rice, with determination coefficients of 0.63 and 0.65, respectively. 
In another study, Rosso et al. [34] examined the spectral and physiological responses of Salicornia 
virginica to heavy metal (Cd and V) stress in laboratory conditions. The potential of in-field 
spectroscopy to detect heavy metal contents was also investigated by Ni et al. [35], Gu et al. [36], Liu 
et al. [37], Liu et al. [38], and Li et al. [39] in the case of dominant plants in the Poyang lake wetlands, 
Brassica rapa chinesis, rice, Phragmites australis, and vegetables, respectively. 

It is worth noting that in-field spectroscopy delivers a large amount of spectral data, whereby 
each of the wavelengths may be associated with one of the plant parameters [40]. Therefore, 
identifying optimal wavelengths to monitor any parameter—e.g., heavy metal concentrations—is an 
important step in applying these data [41]. In this regard, the usage of multivariate statistical 
techniques such as the PLS method [14,40,42,43], multiple linear regression (MLR) [41,44,45], and 
support vector machines (SVM) [12,40,46] can help with feature selection, data reduction, and 
modelling the existing relationships between hyperspectral data and plant characteristics. Many 
studies have also taken advantage of spectral indices to minimize atmospheric and background 
disturbances and illustrate plant characteristics [3,15,30,45,47]. These indices are mathematical 
spectral transformations of two or more bands designed to enhance the spectral response of 
vegetation properties [12,40,46]. Hence, spectral indices calculated from foliar reflectance data may 
reveal the biochemical and physiological properties of leaves, which may be responsible for 
monitoring plant characteristics [46]. Despite the proven performance of in-field spectroscopy in 
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estimating heavy metal contents in plants, to the best of our knowledge, such a study has never been 
employed on grapevines leaves. 

Altogether, this study was designed with the following goals: i) developing hyperspectral 
libraries of healthy and heavy metal-stressed grapevine leaves (Vitis vinifera cv. Askari, as a common 
grapevine variety in Iran) by using full range in-situ spectroscopy (350-2500 nm), ii) evaluating the 
potential of in-field spectroscopy for estimating heavy metals (Cu, Zn, Pb, Cr, and Cd) concentrations 
in grapevine foliage, iii) investigating two types of hyperspectral data (wavelengths vs. spectral 
indices) and identifying the most appropriate features to estimate each studied metal in grapevine 
foliage, and iv) comparing the performance of SVM and MLR algorithms in modeling the 
relationships between the foliar spectral response and heavy metal concentrations.  

2. Materials and Methods  

2.1. Pollutant Exposure Experiments 

Since experience in the evaluation of in-field spectroscopy when estimating heavy metal 
contents in grapevine leaves is lacking, we chose to conduct this research in a laboratory-controlled 
environment. Therefore, treatments for heavy metal stress were applied to grapevine seedlings. For 
this purpose, five treatments at varying levels of Cu, Zn, Pb, Cr, and Cd were considered, and in each 
treatment, four repetitions were carried out (a total of 84 grapevine seedlings were examined).  

It should be noted that the objective of this experiment was not to determine the sensitivity of 
grapevine to pollutants. We only intended to add heavy metal contents to the grapevine to compare 
its spectral differences with healthy leaf samples. The common grapevine variety in the study area is 
Vitis vinifera cv. Askari; all seedlings belonged to this variety to eliminate the effect of variety change 
on spectral characteristics [43,48]. Experiments were conducted outdoors in full sun between March 
and September 2018. Each grapevine seedling sample was placed in an individual plastic pot (length 
and width 25 cm × 10 cm) and was randomly divided amongst the studied treatments. The seedlings 
were two years old, and their height at the beginning of the experiment was between 20 and 30 cm. 
All seedlings were in the same conditions in terms of soil, pot size, sunlight exposure, watering, 
temperature, and humidity. In Figure 1, a schematic of the applied treatments is displayed. The first 
treatment served as a control to monitor the potential effects of soil, water, and air on the transfer of 
heavy metals to grapevine seedlings. In the second treatment, the maximum allowed level (MAL) of 
Cu, Zn, Pb, Cr, and Cd in irrigation water provided stress to the seedlings. All contamination levels 
were increased in the third, fourth, and fifth treatments as two, three, and four times the metal MALs 
in irrigation water, respectively. A stress program was applied to treatments 2–5 by dissolving the 
metal salts (nitrate form) in irrigation water. Salt metals have a high solubility, resulting in the 
absorption of the metals by plant organs [34]. According to the Iranian Water Quality Standard 
(IWQS), the MALs for Cu, Zn, Pb, Cr, and Cd in irrigation water are 200, 2000, 100, and 10 mcg/l, 
respectively. Seedlings were examined for a period of seven months, and they were stressed during 
each month (a total of seven stresses were applied). At the end of the stress period and before the 
beginning of the fall season (September 2018), a spectrophotometric analysis of grapevine seedlings 
leaves was applied. 
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Figure 1. Schematic design of the treatment for each studied metal (C: control, L1 to L4: level 1 to level 
4 stressed, MAL: maximum allowed level) and image of applied grapevine seedling pots. 

2.2. Spectra Acquisition 

At least five leaves of each seedling pot were collected for spectroscopy measurements (a total 
of 420 spectra samples were taken), and afterwards, individual reflectance spectra were measured by 
pot. In this study, the grapevine foliar spectral reflectance was measured using the ASD FieldSpec 3 
spectroradiometer in the full range (350–2500 nm). This instrument is supported by three separate 
spectrometers (first: 350–975 nm, second: 976–1770, and third: 1771–2500 nm). The ASD spectral 
resolutions in the range of 350–1000 nm and 1000–2500 nm are 3 and 10 nm with sampling intervals 
of 1.4 and 2 nm, respectively. In accordance with Kumar et al. [49], the electromagnetic spectrum in 
the range of 350 to 2500 nm can be classified into four regions including visible (VIS), red-edge region 
(RDE), near-infrared (NIR), and mid-infrared (MIR), with ranges of 350~700, 680~750, 700~1300, and 
1300–2500 nm, respectively. We performed the spectroscopy experiment in a fully dark room in order 
to reduce the effect of wind, water vapor, temperature, and other environmental disturbance [12]. In 
this study, each spectral sample was recorded in 100 automatic replicates. Then, we applied the 
ViewSpect version 6.0 in order to convert spectral curves into test files and analyze them by statistical 
software. 

For each sample, the reflectance spectrum was recorded at 2151 wavelengths (350–2500 nm), 
which gave a large amount of data, not all of which may be useful for the study purpose. Therefore, 
in this study, 32 spectral indices were calculated to evaluate their ability to estimate heavy metal 
contents. The spectral indices which are used in this study were calculated based on the method 
indicated by Mirzaei et al. [12] , although no specific spectral indices exist to detect heavy metal 
contamination [1]. Table 1 shows the indices that have demonstrated sensitivity in previous studies 
to small differences in plant characteristics [12,46,50]. 

Table 1. Characteristics of studied hyperspectral indices [13,46]. 

Indices  Equation  Indices  Equation  

Cellulose Absorption Index, CAI 0.5(R2000 + R2200) - R2100 Gitelson and Merzlyak 

Chlorophyll, GM1 and 2 

GM1 = (R750)/(R550) 

Moisture Stress Index, MSI (R1600)/(R820) GM2 = (R750)/(R700) 

Normalized Difference Water 

Index, NDWI 

(R860 - R1240)/(R860 + R1240) Lichtenthaler Indices, Lic1 to 3 Lic1 = (R800 - R680)/(R800 + 

R680) 

Disease Water Stress Index, DWSI (R802 + R547)/(R1657 + R682) Lic2 = (R440)/(R690) 

Band ratio at 975 nm, RATIO975 2×R960 – 990/(R920 – 940 + 

R1090 - 1110) 

Lic3 = (R440)/(R740) 

Band ratio at 1200 nm, 

RATIO975−2 

2×R1180 - 1220/(R1090 – 1110 + 

R1265 – 1285) 

Simple Ratio Pigment Index, 

SRPI 

(R430)/(R680) 
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Leaf Chlorophyll Index, LCI (R850 - R710)/(R850 + R680) Normalized Phaepophytiniz 

Index, NPQI 

(R415 - R435)/(R415 + R435) 

DattA (R780 - R710)/(R780 – R680) Normalized Pigment 

Chlorophyll Ratio Index, 

NPCI 

(R680 - R430)/(R680 + R430) 

Modified Red Edge Normalized 

Difference Vegetation 

Index, mNDVI705 

(R750 + R705)/(R750 + R705 - 

2×R445) 

Greenness Index, GI (R554)/(R677) 

Chlorophyll Index, SGB (R750 - R445)/(R705 - R445) Water Index at 1180nm, 

WI1180 

(R900)/(R1180) 

Structure Intensive Pigment Index, 

SIPI 

(R445 - R800)/(R680 - R800) Normalized Difference 

Vegetation Index, NDVI 

(R831 - R667)/(R831 + R667 ) 

Simple Ratio, SR (R774)/(R677) Carter Index, CI (R760/R695) 

Reflectance at 550 nm, R550 (R550) Vogelman Index, VOG (R740/R720) 

Reflectance at 680 nm, R680 (R680) Carotenoid Reflectance Index, 

CRI 

R800(1/R520 - 1/R550) 

Water Index, WI (R900)/(R970) Photochemical Reflectance 

Index, PRI 

PRI1 = (R531 - R570)/(R531 + 

R570) 

PRI2 = 1.5(R830 - R660)/(R830 - 

R660 + 0.5) 

PRI3 = (R539 - R570)/(R539 + 

R570) 

R: Reflectance. 

2.3. Heavy Metal Laboratory Analysis 

The leaves of each pot were placed in polyethylene bags and converted separately in the 
laboratory after obtaining the foliar reflectance spectra. The leaf samples were dried for 24 hours in 
an oven at 45 °C to achieve a constant weight [16]. The samples were powdered and stored for further 
analysis with a stainless-steel mill. We then digested one gram of each grapevine sample with HNO3 
+ HClO4 (3:1 v/v) for about 4 hours at a low temperature (about 40 °C) [51]. All digested samples 
were then diluted and filtered to 25 ml. Finally, a Graphite-Furnace Atomic Absorption 
Spectrophotometer (GA-AAS, Model: Analytik Jena, Germany) was used to analyze all samples in 
triplicate. The concentrations of heavy metal samples were expressed as dry weight (DW) mg/kg. The 
device detection limits for Zn, Cu, Pb, Cr, and Cd were 0.008, 0.025, 0.01, 0.04, and 0.009 mg/kg, 
respectively. Based on the analysis, the relative standard deviation accuracy was less than 9%. To 
evaluate the accuracy of analytical techniques, a spike-and-recovery analysis was performed. Post-
analyzed samples were accentuated and homogenized with varying amounts of standard metal 
solutions. The recovery ranged from 90% to 108% of the spiked sample [52].  

2.4. Feature Selection/Partial Least Squares (PLS) 

In summary, the dependent variables were the contents of Cd, Cr, Cu, Pb, and Zn in grapevine 
leaves, while the independent variables were wavelengths (count: 2151) and spectral indices (count: 
32). However, a large number of independent variables can reduce the performance of the 
relationship modelling between spectral data and metal contents. To mitigate this, we needed a 
feature selection process to identify optimal features (wavelengths and spectral indices) to forecast 
the concentration of each metal, individually. Also, before applying statistical operations, it is 
recommended to scale each variable linearly to the same standard range, especially in the machine 
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learning methods [40,53]. The values of wavelengths, spectral indices, and heavy metal 
concentrations were therefore scaled to the range between 0 and 1, as follows:  

minmax

min

-
-
xx
xx

N i
i =  (1) 

where iN  is the normalized value, ix  is the original data, and minx  and maxx  are the minimum 
and maximum of each variable’s percentages, respectively.  

Given the high-dimensional spectral dataset, the use of multivariate statistical analysis is an 
appropriate solution for achieving optimal features to estimate each metal. PLS is a robust and well-
known statistical analysis in relation to hyperspectral data that has shown acceptable performance in 
many studies [12,40]. This statistical analysis method generates some new components instead of 
using existing inputs, based on the least square regression. Unlike principal components analysis 
(PCA), PLS considers response variables in the data reduction process [54]. Fitting a regression model 
between input and output variables, high collinear spectral data, and the high processing speed are 
the other advantages of the PLS method. The PLS-developed components are capable of explaining 
community variance by a simpler structural mechanism. Accordingly, the importance of each input 
variable is realized by its factor load in each component [12]. We therefore selected optimal 
independent variables (wavelengths or spectral indices) based on the maximum factor load in each 
developed PLS component. These variables were considered to be the most representative of the 
related components. Based on the PLS results, the optimal wavelengths and indices were identified 
and introduced to the next step (modelling). Wold et al. [55] has provided more information about 
the assumptions and applications of the PLS. 

2.5. Modelling the Relationship Between Spectral Data and Heavy Metal Contents 

After the identification of the optimal wavelengths and relevant indices by the PLS, two types 
of modelling algorithms (SVM and MLR) were applied to estimate heavy metal concentrations based 
on hyperspectral data. To assess the estimation performance of each model, two goodness-of-fit 
indicators—specifically, the coefficient of determination (R2) and root mean squared error (RMSE)—
were used [40]. All achieved data in this study were randomly separated into two sections: 70% as 
training data and 30% as testing data. As such, the performance of each developed model was 
individually reported for training and testing sets.  

2.5.1. Support Vector Machine (SVM) 

SVM is a nonparametric learning algorithm for regression and classification goals and for 
hyperspectral data mining [56–58]. In the SVM procedure, the n-dimensional input vectors are 
conveyed into a high-dimensional feature space, and consequently, the optimal separating hyper-
planes are developed [59]. Here, the SVM regression algorithm was used in multiple scenarios and 
designs to gain the best performance for modelling the relationship between the in-field 
hyperspectral data and the measured heavy metal concentration in grapevine leaves. To this end, the 
input vectors were linked to the outputs with a kernel function [12]. Regression SVM-type 1 with 
different kernel functions—i.e. radial basis functions (RBF), polynomials, and a sigmoid shape—was 
applied. In order to achieve an optimal training constant, V-fold cross validation was used, and kernel 
function parameters (coefficient, gamma, and degree) were altered to give a high-performance score 
[60]. More details about the assumptions and structure of SVM are provided by Stitson et al. [59] and 
Cristianini and Shawe-Taylor [61]. 

2.5.2. Multiple Linear Regressions (MLR) 

MLR is a parametric regression algorithm that attempts a relationship model between two or 
more independent variables and a response variable with a linear fitting. It has the capacity to select 
appropriate input data. In this study, the forward selection method of MLR was applied to increases 
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the R2 value by adding an independent variable [40]. The Durbin–Watson statistic was applied to test 
autocorrelation in the residuals from statistical regression analysis. Durbin–Watson values close to 2 
(1.5-2.5) indicate that there is no autocorrelation detected in the samples. Additionally, in order to 
detect multicollinearity in regression analysis, thw variance inflation factor (VIF) was considered 
(VIFs exceeding 10 are signs of serious multicollinearity) [62,63]. The general form of the MLR 
equation is as follows:  HMC =  a଴ + 𝑎ଵ𝐿𝑀ଵ + 𝑎ଶ𝐿𝑀ଶ + ⋯+ 𝑎௡𝐿𝑀௡ (2) 

 
where HMC is the heavy metal concentration in grapevine leaves, a (i = 0,1,…,n) are the parameters 
generally estimated by least squares, and X (i = 1,2,...,n) are the independent variables (i.e., wavelengths 
and spectral indices). 

3. Results and Discussion 

3.1. Reflectance Spectra of Healthy and Stressed Leaves 

The average reflectance spectrum of a healthy grapevine vs. stressed grapevine leaves due to 
heavy metal stress is shown in Figure 2. In the VIS region, the light absorption rate of the stressed 
grapevine was drastically decreased. This is due to the fact that the spectral characteristics of plants 
in this region are regularly motivated by pigments [64,65]. Accordingly, this suggests that heavy 
metal stress reduced pigment contents. Various spectral characteristics between healthy and stressed 
leaves can also be observed in the RDE, NIR, and MIR regions (Figure 2). As Vogelmann [66], Slaton 
et al. [23], and Strever [67] stated, plant pigments do not absorb the light in the NIR and MIR regions; 
therefore, the plant leaf reflectance is significantly increasing in these regions. Additionally, the 
spectral characteristics of plant leaf in the NIR and MIR regions were changed by 
structure/morphology and water contents, respectively [54]. According to Figure 2, in the NIR and 
MIR regions, a lower reflectance was observed in healthy grapevine leaves as opposed to the stressed 
grapevine. Although other driving variables such as structural parameters and water contents were 
not measured in this study, it can be concluded that the stress caused by heavy metals had a 
significant effect on the leaf optical properties. 

 
Figure 2. Average reflectance spectrum of healthy grapevine leaves vs. the heavy metal-stressed 
grapevine leaves (from 350 to 2500 nm). 

3.2. Correlation Coefficient  

Figure 3 displays the correlation coefficient between grapevine leaves’ reflectance (350–2500 nm) 
and their heavy metal concentrations (Cu, Zn, Pb, Cr, and Cd). The correlation coefficients were 
noisiest in the range from 350 to 400 nm due to atmospheric effects. Of particular interest is that the 
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highest absolute correlation coefficient took place in the range of 350 to 400 nm in relation to Cr, Pb, 
and Zn. Cd showed the best correlation with the wavelengths in the VIS region (400–680 nm), while 
it dropped sharply in the RDE region (680–750 nm) (Figure 3). This suggests that the RDE region is 
one of the best options for introducing optimal wavelengths to estimate Cd concentrations in 
grapevine leaves. Also, the other heavy metals caused subtle fluctuations in the RDE region, and their 
correlation coefficients tended to be positive. This finding indicates the potential of this region to 
forecast metal contents in the grapevine leaves. Similar correlation coefficients were observed for Cu, 
Zn, Cr, and Pb in the NIR spectrum region (750–1300 nm), but Cd had a varied correlation curve in 
this range. In the MIR region (2500–1300 nm), the heavy metal correlation coefficients were closer 
together (Figure 3). With the exception of Pb, the remaining metals were negatively correlated with 
most wavelengths of this region.  

In comparison to a related study by Zhuang [41], a similar correlation graph between spectral 
response (400–2500 nm) and heavy metal contents (Cu, Zn, Pb, Cd, As, and Fe) was obtained. A 
comparison of Figure 3 with the study results of Zhuang [41] shows that the correlation pattern 
between the heavy metal contents and the spectral response is not alike. Therefore, the structural and 
biochemical differences between the studied species (grapevine and rice) and the level of 
spectroscopy (leaf or canopy level) can be considered as the most important drivers justifying these 
differences. 

 

Figure 3. Correlation coefficient between the heavy metal concentration (determined by laboratory 
analysis) and spectral response of grapevine leaf samples (350 to 2500 nm). 

3.3. Optimal Feature Selection 

Determining the optimal wavelengths to monitor the desired plant parameters within the vast 
hyperspectral bands is one of the most critical operations in spectroscopy [43,46,56]. Commonly, a 
small number of wavelengths/spectral indices are selected with maximum performance for the study 
purpose, while missing data should be minimal [46,68]. Thus, we chose the PLS method because of 
its high adaptability with hyperspectral data to recognize optimal predictive variables (wavelengths 
and spectral indices) for estimating heavy metals in grapevine leaves [42]. Identifying the fit number 
of components is one of the most imperative factors in applying the PLS results because the number 
of components can directly determine the number of model input variables. Accordingly, the cross-
validation algorithm was applied to optimize the number of PLS components [43], and then the 
optimum variable for each of the components was identified. Figure 4 shows the number of optimal 
components and the wavelength factor loads of the metals studied. This figure shows that the 
numbers of developed fit components were 4, 6, 5, 6, and 4, for Cu, Zn, Pb, Cr, and Cd, respectively. 
Therefore, based on the introduced components, the wavelengths and spectral indices which had the 
highest correlation with the components were identified. They can be subsequently used as optimal 
spectral wavelengths and indices in the relevant modelling process, especially for estimating metal 
concentrations in the grape leaves [43]. 

As shown in Figure 4, the wavelengths in the vicinity of 2431, 809, 489, and 616 nm can be 
recognized as an optimal rate for estimating Cu content in grapevine leaves. In the same method, 
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wavelengths in the vicinity of 2032, 883, 665, 564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm; 
863, 2044, 415, 652, 713, and 1036 nm; and 1373, 631, 744, and 438 nm were the optimal wavelengths 
for estimating Zn, Pb, Cr, and Cd, respectively. Based on these results, the VIS, RDE, NIR, and MIR 
regions introduced eight, eight, three, and five wavelengths for estimating the studied heavy metals, 
respectively. The most delicate regions to estimate the studied heavy metals in the grapevine leaves 
were RDE and VIS (particularly the blue region). Consistent with this finding, Liu et al. [38] and 
Zhuang [41] also reported that VIS and RDE delivered the most optimal wavelengths for estimating 
heavy metal contents. Moreover, according to the results, the RDE was one of the most influential 
regions in introducing optimal wavelengths for estimating the contents of Zn, Pb, Cr, and Cd. In 
confirmation with this finding, Gu et al. [36] noted the RDE region as being sensitive to estimate the 
variances of metal contents (especially Cd). They suggested the wavelength of 782 nm as an optimal 
wavelength for estimating Cd concentration in Brassica rapa leaves.  
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Figure 4. The factor load of wavelengths (350–2500 nm) in the optimal components extracted by the 
the partial least squares (PLS) method for estimating heavy metal concentrations (from top to bottom) 
in the grapevine leaves (vertical axis is the factor load). 

In the same way, the optimal spectral indices for estimating contents of Cu, Zn, Pb, Cr, and Cd 
were also determined based on the interpretation of the PLS results. In Table 2, a summary of the PLS 
results is presented, which is used to determine the optimal indices to estimate the heavy metal 
concentrations. As an optimal index for the estimation of Pb, Cr, and Cd concentrations, the Structure 
Intensive Pigment Index (SIPI)( (proposed by Penuelas et al. [69]), which represents the ratio of 
carotenoids to chlorophyll, was the most frequent index among the studied indices. Furthermore, the 
Disease Water Stress Index (DWSI) and Moisture Stress Index (MSI) indices, which are sensitive to 
water levels in vegetation (water stress), were identified as optimal indices for estimating Zn–Pb and 
Cu–Cd, respectively. It is worth remarking that the Normalized Difference Vegetation Index (NDVI) 
was not chosen as the optimal index to predict the studied metal contents. On the other hand, 
according to Zhuang [41], the NDVI band ratios were extremely useful in monitoring the contents of 
metals in the paddy canopy. Therefore, it can be argued that, in addition to the structural and 
biochemical differences between grapevine and paddy species, the differences in studied spectral 
indices are another reason for differences in the optimal spectral indices. 

Table 2. Summary of the PLS results on the number of components and optimal indices for estimating 
heavy metal contents in grapevine leaves. 

Heavy 

Metal 
No. of Optimal 

Components 
Cumulative 

Variance (%) 
Optimal Indices  

in Components 
Cu 4 82 SR, CAI, RATIO9752, and DWSI 
Zn 5 84 R680, WI, Lic1, MSI, and PRI2 
Pb 4 88 VOG, MSI, SIPI, and R550 
Cr 4 92 mNDVI705, GI, RATIO975, and SIPI 
Cd 2 81 SIPI and DWSI 

3.4. Modelling and Accuracy Assessment 

After determining the optimal spectral wavelengths and indices, two regression approaches—
i.e., MLR and SVM—were applied to model the relationships between spectral data and heavy metal 
concentrations. Table 3 illustrates the best-developed models and validation results using the SVM 
algorithm. Based on this table, the RBF function was selected as the optimal central function in 60% 
of the developed models, followed by the linear function (30%). These two functions were therefore 
considered as the optimal functions for relevant modelling in the studied grapevine leaves. 
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Table 3. Modelling and validation results of the best support vector machine (SVM) models based on 
optimal wavelengths and spectral indices for estimating heavy metal concentrations in grapevine 
leaves in training and testing sets. RBF: radial basis function. 
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Model Structure  Train  Test  

Kernel 

Function 

No. of 

Vectors  
Coefficient Degree Gamma R2 RMSE* R2 RMSE* 

W
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Cu  RBF 13 - - 0.25 0.97 7.46  0.54  25.06  

Zn Linear 25 - - - 0.67 22.50  0.42  29.65  

Pb  RBF 21 - - 0.20 0.89 22.28  0.71  24.09  

Cr  Linear 30 - - - 0.84 5.61  0.71  7.82  

Cd  RBF 34 - - 0.25 0.78 98.16  0.77  103.09  

Sp
ec

tr
al

 In
di

ce
s

 

Cu  Linear 32 - - - 0.88 13.01  0.50  25.46  

Zn RBF 23 - - 0.8 0.92 13.42  0.85  15.94  

Pb  RBF 24 - - 0.4 0.85 22.49  0.67  24.51  

Cr  RBF 43 - - 0.32 0.80 7.27  0.79  6.11  

Cd  Polynomial 19 1 11 0.7 0.88 91.94  0.86  102.85  

*mg/kg: dry weight. 

Table 4 shows the modelling results using the MLR method. In cases where the Durbin–Watson 
coefficient ranged from 1.5 to 2.5, there was a lack of self-correlation between error terms in the 
regression model that included 60% of the presented models [40]. However, in relation to the 
presented models for Pb–Cd (based on wavelengths) and Cr–Cd (based on spectral indices), the 
Durbin–Watson coefficient was less than 1.5 and lacked one of the most important conditions for 
using regression modelling. VIF was also considered for the multicollinearity checking between the 
predictor variables in the regression models. According to Table 4, there was serious multicollinearity 
(some predictor VIFs exceeded the critical threshold of 10) in the Pb-based-wavelength and Zn-based-
spectral index models. Therefore, these models violate the key assumption of multiple linear 
regression, making these models invalid. 

Table 4. The results of modelling and validation of the best multiple linear regression (MLR) models 
based on optimal wavelengths and spectral indices for estimating heavy metals concentrations in 
grapevine leaves in training and testing sets. 
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Model Structure  

Train  Test  

R2 RMSE* R2 RMSE 

W
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Cu All <10 <0.05 2.17 
CCu = –1.27 – (0.28×R2431) + (4.08×R809) – (5.32×R489) –

(8.73×R616) 
0.94  9.35  0.56  25.60  

Zn All <10 <0.05 2.18 
CZn = –1.11 – (5.77×R2032) – (1.83×R665) + (2.38×R564) + 

(13.85×R688) – (7.7×R437) 
0.73  20.46  0.47  399.13  

Pb 
Some cases 

>10 
>0.05 1.39 CPb = 0.46 – (5.1×R692) + (6.24×R683) 0.32  25.29  0.13  27.28  

Cr All <10 <0.05 1.59 
CCr = 0.61 + (18.08×R415) – (1.41×R2044) – (4.01×R652) –

(1.99×R1036) + (1.11×R713) 
0.84  5.58  0.78  6.79  
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Cd All <10 <0.05 1.38  
CCd = 0.98 + (2.76×R1373) + (3.15×R631) + (1.04×R744) –

(5.09×R438) 
0.63  132.79  0.64  117.26  

Sp
ec

tr
al

 In
di
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s

  

Cu All<10 <0.05 1.74  
CCu = –2.95 + (3.38×SR) – (0.01×CAI) + (6.76×RATIO9752) –

(0.77×DWSI) 
0.89  12.63  0.52  25.33  

Zn 
Some cases 

>10 
<0.05 1.81  

CZn = –2.26 – (11.34×R680) + (41.89×WI) + (20.68×Lic1) –

(3.63×MSI) – (4.14×PRI2) 
0.87  15.73  0.70  20.38  

Pb All<10 <0.05 1.55  CPb = 2.53 – (1.33×VOG) + (1.93×MSI) + (0.85×SIPI) 0.50  24.45  0.15  27.03  

Cr All<10 <0.05 1.06  
CCr = –4.97 + (5.23× mNDVI705) + (0.17×GI) – 

(1.28×RATIO975) 
0.59  8.48  0.60  8.78  

Cd All<10 <0.05 1.27 CCd = –6.66 + (4.70×SIPI) + (1.13×DWSI) 0.66  121.77  0.67  112.17  

*mg/kg: dry weight, Rn: reflections at a certain wavelength, Cn: concentration of a certain heavy metal. 

3.4.1. Modelling of Cu Concentration 

Figure 5 illustrates the distribution of the observed vs. predicted concentration of Cu in the test 
set. In some cases, the predicted values were significantly lower than the observed values, which led 
to a sharp decrease in their accuracy. The optimal wavelengths in the SVM and MLR approaches can 
predict test samples with 54 and 56% accuracy, respectively. Hence, as a general finding, using 
wavelengths has a more acceptable performance as opposed to using spectral indices for estimating 
Cu concentration in the grapevine leaves. In relation to the modelling approaches, it should be noted 
that, although MLR yielded a slightly superior R2 than SVM (at the test set), the SVM–RMSE (25.06) 
was lower than the MLR–RSME (25.65 mg/kg); therefore, the SVM’s performance seems more 
acceptable (see also Tables 3 and 4). 

 

Figure 5. Standardized values (between 0 and 1) of the observed (horizontal axis) and the predicted 
(vertical axis) concentration of Cu based on wavelengths (top) and spectral indices (bottom) in the 
testing sets of the SVM and MLR methods. 

3.4.2. Modelling of Zn Concentration 

The SVM and MLR approaches based on wavelengths were able to predict the Zn contents with 
accuracies of 42%–47% and based on spectral indices with accuracies of 70%–85% in the testing set, 
respectively (Tables 3 and 4). As shown in Figure 6, the predicted values overestimated the observed 
values in most cases of wavelength-based models. However, a more uniform distribution was found 
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between the observed and predicted values in spectral indices-based models. Therefore, spectral 
indices-based models tend to be preferred for predicting Zn contents in the grapevine leaves. 

 
Figure 6. Standardized values (between 0 and1) of the observed (horizontal axis) and the predicted 
(vertical axis) concentration of Zn based on wavelengths (top) and spectral indices (bottom) in the 
testing sets of the SVM and MLR methods. 

3.4.3. Modelling of Pb Concentration 

The MLR models based on wavelengths and spectral indices yielded a low performance in 
testing sets with accuracies of 13% and 15%, respectively (Table 4 and Figure 7). Conversely, the SVM 
model performed more reasonably and predicted Pb contents based on wavelengths and spectral 
indices in the testing set with accuracies of 71% and 67% (RMSE: 22.49 and 24.51 mg/kg), respectively 
(Table 3 and Figure 7). It can thus be deduced that SVM is better at estimating Pb contents in the 
grapevine leaves as opposed to MLR. It should also be noted that the wavelength–SVM model had a 
more acceptable performance as compared to spectral indices. The obtained results therefore suggest 
that the wavelength–SVM model is an optimal scenario for estimating Pb contents in grapevine 
leaves. 
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Figure 7. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted 
(vertical axis) concentration of Pb based on wavelengths (top) and spectral indices (bottom) in the 
testing sets of the SVM and MLR methods. 

3.4.4. Modelling of Cr Concentrations 

Figure 8 shows the distribution pattern of the observed vs. predicted values of Cr in the test set. 
As shown, the predicted values were overestimated in most cases of MLR, but the predictions of SVM 
were closer to the observed contents. Overall, the usage of the spectral indices–SVM model was an 
optimal scenario for estimating Cr contents in the studied grapevine leaves (see also Tables 3 and 4). 

 
Figure 8. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted 
(vertical axis) concentration of Cr based on wavelengths (top) and spectral indices (bottom) in the 
testing sets of the SVM and MLR methods. 

3.4.5. Modelling of Cd Concentrations 

The wavelengths-based and spectral indices-based MLR models can estimate Cd contents with 
accuracies of 64% and 67% in the testing set, respectively (Table 4 and Figure 9). On the other hand, 
the accuracies of SVM were 77% and 86% in the testing set, respectively. Thus, the SVM outperformed 
the MLR method at estimating Cd concentrations in the grapevine leaves. It must be admitted, 
however, that the majority of observed values were around zero, leading to biased estimations. This 
is also reflected in the RMSE values, which were higher than the other studied metals. Overall, the 
best model presented by the SVM approach (based on spectral indices) had an RMSE value of 102.85 
mg/kg dry weight in the testing set (see also Table 3). 
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Figure 9. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted 
(vertical axis) concentration of Cd based on wavelengths (top) and spectral indices (bottom) in the 
testing sets of the SVM and MLR methods. 

3.5. Summarizing Heavy Metal Modelling 

Grapevine leaves are a suitable option for the study of the absorption and accumulation of heavy 
metals [21]. Therefore, the monitoring of heavy metal concentration can ensure food security as well 
as the reduction of health and ecological risks [16]. In this study, a stress–stroke method was 
employed to ensure the appearance of heavy metals in grapevine foliage. This method was also used 
in similar studies [34,38]. It is important to note that expanding heavy metal masses in plant foliage 
leads to an increase in the number of reactive oxygen species [70]. Reactive oxygen species are 
produced in the course of electron transfer activities—mainly in chloroplasts and mitochondria. They 
also have an important role in consequences such as plant growth retardation, chlorophyll content 
reduction, inhibition of enzymatic activity, damage to biological molecules (such as lipids, proteins, 
and nucleic acids, especially DNA), cell membrane peroxidation, and damage to important cellular 
organelles such as chloroplasts and mitochondria [71,72]. Heavy metal stress, like other non-biotic 
stresses, leads to changes in the pathways of synthesis of secondary plant metabolites and increases 
or decreases these compounds [73,74]. It was also observed that heavy metal stress leads to changes 
in the cuticle position of the leaves and the openings of leaves’ stomas [73]. Considering the effect of 
heavy metals on the physico-chemical changes in the plant, the spectral pattern of the plant can 
change, which leads to the spectral pattern differentiation of stressed leaves from healthy leaves. 
These differentiations can be determined by field-based spectrometry. 

According to our results, SVM and MLR prediction methods performed similarly in estimating 
Cu contents, but in relation to Zn, Pb, Cr, and Cd, the SVM models outperformed the MLR models 
(Tables 3 and 4). Therefore, the SVM regression method tends to be preferred. Although, in related 
studies, MLR was the most-used model due to its clarity and structure simplicity [30,41,45], the 
results of this study recommend SVM for future investigations. The most important reason for the 
superiority of SVM as opposed to MLR can be attributed to the nature of the relationships between 
independent and dependent variables. SVM regression was able to perform more accurately in 
estimating heavy metals due to its high flexibility in training by using both linear and nonlinear 
functions in the kernel equation [75]. Similarly, a comparison between MLR and artificial neural 
network (ANN) methods was performed to estimate heavy metals in rice leaves [38]; the results also 
showed the superior performance of ANN as opposed to MLR.  

A comparison between the results obtained for the testing set and the optimal spectral indices 
and wavelengths in estimating heavy metal contents in various studies was conducted and is shown 
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in Table 5. Based on the R2 rate of the test set, the performance order of the presented models was Cd 
> Zn > Cr > Pb > Cu (Table 5). Therefore, the predictive accuracies for Cd, Zn, and Cu were 86, 85, and 
56%, respectively. Li (2011) listed a prediction order accuracy of heavy metals in vegetation as Cr > 
Pb > Cu > Zn. Furthermore, Zhuang [41] ranked the prediction accuracy of heavy metals in rice as Cu 
> Pb > Zn, which is different from the findings of the present study (Table 5). The rate of prediction 
accuracy of Pb in this study is close to the findings of Li [44] and Zhuang [41]. The accuracy of Cr 
prediction content is also comparable to the results of Li et al. [39]. According to Li [44], Zhuang [41] 
and Ping et al. [30], Cu predictions were, respectively, 60, 76, and 69%, higher than the present study’s 
result (56%) (Table 5). However, the present study was able to estimate Zn contents with a higher 
accuracy compared with the results of Li [44], Zhuang [41], and Kooistra et al. [45], as well as Cd 
contents as compared to the findings of Ping et al. [30] and Liu et al. [37]. 

As a final remark, in many studies, RDE and VIS regions were reported to be sensitive to the 
stress caused by heavy metals [36,38,41]. The comparison of the optimal spectral indices and 
wavelengths selected for the heavy metal rate predicted in the present study and other related studies 
show discrepancies (Table 5). The number of spectral samples, spectroscopy acquisition level, 
spectral range, calculated spectral indices, as well as statistical analyses for data reduction and 
relationship modelling can all play a role in explaining these differences. Finally, it should also be 
pointed out that each heavy metal has a special effect, leading to distinct responses depending on the 
plant species (including leaf colour changes, chlorosis, necrosis, dwarfism, giant, leaf and root 
spreading, etc.), which can justify this finding [76]. 

Table 5. Comparison results of the best models presented in this study and other similar studies in 
relation to the estimation of heavy metal contents in plant species using field-based spectrometry. 

Metal Reference Plant/Species Approach Optimal Spectral Indices/Wavelengths R2 

Cu  Present study Grape MLR R616, R489, R809, R2431 0.56 
Li [44] Vegetation MLR  0.60 
Zhuang [41] Paddy/Rice MLR   0.76 

Ping et al. [30] Maize MLR NI15, NI11  0.69 
Zn  Present study Grape SVM R680 WI, Lic1, MSI, PRI2  0.85 

Li [44] Vegetation MLR   0.48 
Zhuang [41] Paddy/Rice MLR 661.96×R2210-136.26  0.34 
Kooistra et al. [45] Grass  MLR MSAVI2  0.64 
Liu et al. [37] Rice ANN  0.95 

Pb  Present study Grape SVM R1865, R728 R692, R683, R356  0.71 

Li [44] Vegetation MLR   0.77 
Zhuang [41] Paddy/Rice MLR   0.70 
Ping et al. [30] Maize MLR NI15, NI17  0.87 

Cr  Present study Grape SVM mNDVI705, GI, RATIO975, SIPI  0.80 
Ping et al. [30] Maize  MLR NI5, R553  0.49 
Li et al. [39] Vegetation  MLR R688, R672, R874, R677, R678, R679, R 680, R566  0.81 

Cd  Present study Grape  SVM SIPI, DWSI  0.86 
Ping et al. [30] Maize  MLR NI11, NI17  0.63 
Liu et al. [37] Rice  MLR  0.70 

NI11: (R700–R690)/(R700+R690), NI15: (R760–850–R350–400)/(R760–850+R350–400), NI17:(R1220–
R510)/(R1220+R510), Rn: Reflections at a certain wavelength. 

4. Conclusion 



Remote Sens. 2019, 11, 2731 17 of 21 

 

In this study, we examined the suitability of in-field hyperspectral data (wavelengths from 350 
to 2500 nm and 32 spectral indices) in the estimation of heavy metal contents (Cu, Zn, Pb, Cr, and Cd) 
in vine leaves. Our most important findings are listed as follows: 

i) The grapevine’s foliar spectral signatures (reflectance characteristics) altered when applying heavy 
metal stress due to their effects on the biochemical components and the leaves’ structure. 
Considerable changes are observed in the VIS, RDE, NIR, and MIR regions of the electromagnetic 
spectrum.  

ii) Significant correlations are found between the heavy metal contents and the grapevine’s foliar 
spectral response, especially in VIS and RDE regions.  

iii) From the reflectance data, 32 spectral indices were formulated using two or more bands. In PLS 
analysis, it was found that the Simple Ratio (SR), Cellulose Absorption Index (CAI), RATIO9752, 
and DWSI; R680, Water Index (WI), Lic1, MSI, and Photochemical Reflectance Index (PRI)2; 
Vogelman Index (VOG), MSI, SIPI, and R550; mNDVI705, Greenness Index (GI), RATIO975, and 
SIPI; and SIPI and DWSI are more responsive to heavy metal contents compared with the other 
indices. They are considered to be optimal indices to estimate Cu, Zn, Pb, Cr, and Cd 
concentrations, respectively. 

iv) Also based on the PLS results, the wavelengths in the vicinity of 2431, 809, 489, and 616 nm; 
2032, 883, 665, 564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm; 863, 2044, 415, 652, 713, and 
1036 nm; and 1373, 631, 744, and 438 nm are optimal for estimating Cu, Zn, Pb, Cr, and Cd contents 
in the grapevine leaves, respectively. Accordingly, VIS and RDE emerged as the most sensitive 
regions for monitoring heavy metal contents in grapevine leaves.  

v)  In most cases, the SVM regression models yielded more accurate performances when estimating 
heavy metal contents as opposed to the MLR models. For the best SVM structures, the 
concentrations of Cu, Zn, Pb, Cr, and Cd are estimated with R2 values of 0.56, 0.85, 0.71, 0.80, and 
0.86 in the testing set, respectively. 

vi) As a general finding, spectral indices yielded more acceptable performance as opposed to 
wavelengths in forecasting heavy metal contents in the grapevine leaves. 

Altogether, the scenario of joining spectral indices with SVM regression is suggested as the most 
appropriate method for predicting heavy metal contents in the grapevine leaves. At the same time, 
this conclusion underpins the usage of in-field spectroscopy data and multivariate statistical analysis 
for the rapid and eco-friendly monitoring of heavy metals in food-producing ecosystems. This study 
further revealed that the spectral responses of foliar grapevine and other agriculture/horticulture 
species to heavy metal stress need to be better understood. Similar studies are required to investigate 
heavy metal spectral signatures in other plant species. Eventually, the ultimate goal of this research 
line is to integrate field data with spectral data from overpassing aerial and satellite sensors to up-
scale and automate the monitoring strategy to the field scale. 
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