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Breast cancer is the most common malignant cancer in women worldwide, especially in
developing countries. Herceptin is a monoclonal antibody with an antitumor effect in
HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its
employment. In this study, we constructed and screened HER2-nanobody and verified its
tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was
established, filtrated, purified, and was demonstrated to inhibit cell total number, viability,
colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer
cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by
both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK
and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-
RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was
credible for HER2-nanobody to play the tumor suppressive role by inhibiting the
phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a
small molecular antibody to suppress HER2-positive breast cancer.

Keywords: HER2, nanobody, HER2-VHH, domain antibody, breast cancer
INTRODUCTION

The incidence of breast cancer ranks first in female malignancies worldwide (1, 2). According to
epidemiological statistics in 2018, breast cancer tied for first with lung cancer in new tumors
(11.6%), ranked first among female tumors (24.2%), and ranked fifth among deaths (6.6%). In Asia,
the incidence of breast cancer in 2018 was 43.6%, the mortality was 49.6%, and the 5-year prevalence
was 38.2% (3). The main treatments for breast cancer were surgery, radiotherapy, chemotherapy,
hormonotherapy and bio-targeted therapy (4), but the curative effect is not satisfactory.

HER2 (Human Epidermal Growth Factor Receptor 2), a member of the epidermal growth factor
receptor (EGFR) family, also known as ERBB2 or c-erbB2. HER2 was reported to promote cell
proliferation via several downstream pathways including E-cadherin and ATF4 (5, 6).
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Overexpression of HER2 inhibited the anti-tumor immunity in
the internal environment (7). In addition, HER2 was reported to
relate with worse prognosis in many cancers including breast
cancer and gastric cancer (8, 9). Herceptin was the first
monoclonal antibody drug approved by the FDA (Food and
Drug Administration) for breast cancer and gastric cancer
patients with HER2 overexpression (10). Studies have shown
that the combined use of Herceptin and chemotherapeutic drugs
could effectively improve disease-free and overall survival in
breast cancer patients (11–13). However, Herceptin was not
effective for all patients and some patients would acquire drug
resistance eventually (14, 15). Besides, cardiotoxicity was one of
the side effects in Herceptin use (16). The development of novel
drugs is necessary.

Heavy chain only antibodies, lacking light chains are
naturally occurring in blood of camelidae as first reported in
1993 (17). Compared with the antigen binding fragment of
conventional monoclonal antibodies, heavy chain only
antibodies recognize their cognate antigen via the single
variable domain of the heavy chain. This variable domain is
also known as VHH (Variable domain of the heavy chain of a
heavy chain-only antibody) or Nanobody. These Nanobodies
have a molecular mass of 15,000 (18, 19). Nanobodies are
suitable for prokaryotic expression and various eukaryotic
expression systems (20, 21), and are widely used in the
development of therapeutic antibody drugs, diagnostic reagents,
affinity purification matrices, and scientific research, becoming an
emerging force in a new generation of therapeutic biomedical and
clinical diagnostic reagents (22–24). Previously, there were some
reports about nanobodies targeting HER2: combining nanobodies
targeting HER2 with photochemical internalization (PCI) on
polymerized nanoparticles (NPs) that carry saponin achieved the
selectivity of NPs (25); a combination of liposome and HER2-
nanobody facilitated the localization of breast cancer cells by
magnetic resonance imaging (MRI) (26); HER2-nanobody
radiolabeled with 131I, 18F, or 117Lu pinpointed and evaluated
HER2 protein expression and localization (27–29). There has even
been a phase I study using 68Ga-labeled HER2-nanobody for PET/
CT to evaluate HER2 expression in breast cancer (30). However, few
reports were published about HER2-nanobodies with specific
suppressive role on HER2 positive cancer cells. Establishing a
tumor-suppressive HER2-nanobody will facilitate the
development of HER2-targeting therapy in human cancers.

In this study, we successfully constructed a tumor-suppressive
nanobody against HER2, and verified its function through cell
functional and xenograft experiments. The HER2-nanobody (also
described as HER2-VHH) was constructed through camel
immunization, RNA extraction and amplification, phasmid
(pMECS) ligation and prokaryotic expression. Through cell total
number assay, MTT assay, cell colony formation assay and flow
cytometry, the HER2-nanobody constructed was examined to
suppress cell proliferation, mitosis and stimulate apoptosis in
HER2-positive breast cancer cells. The HER2-nanobody
suppressed the phosphorylation of ERK and AKT which was
involved in the RAS-RAF-MAPK and PI3K-AKT-mTOR
pathways, two important downstream signaling pathways of
Frontiers in Oncology | www.frontiersin.org 2
HER2 (31, 32). Moreover, the HER2-nanobody dramatically
inhibited tumor growth of HER2-positive breast cancer cells
in vivo. Therefore, the HER2-nanobody we constructed in this
study had tumor suppressive effects in HER2-positive breast
cancer cells. Agents based on this HER2-nanobody could be
potentially used for HER2-positive breast cancer therapy.
MATERIALS AND METHODS

Construction and Screening
of HER2-Nanobody
Construction of HER2-Nanobody
A schematic diagram of the construction of HER2-nanobody was
shown in Figure 1. We mixed 1 mg of recombinant human HER2
protein (Beidamab, China) with an equal volume of freund’s
adjuvant (filled up to 4 ml with PBS) (freund’s complete adjuvant
for the first time, and freund’s incomplete adjuvant for the second
time) (Sigma-Aldrich) and subcutaneously inject it into a male
camel (4 site, 1ml/site) (in camel breeding center of Jurong, Jiangsu,
China) for 6 consecutive weeks. The peripheral blood of the
immunized camel was extracted (300 ml) on the 45th day and
situated at room temperature for 10 minutes. Density gradient
centrifugation was used to separate lymphocytes from peripheral
blood. The serum and blood cells were separated by centrifugation
(3500 rpm, 10 min) and the blood cells were filled up with
physiological saline to 300 ml. The diluted blood cells were mixed
with 70% percoll (Sigma-Aldrich) and centrifuged (1500 rpm,
20 min). The separated lymphocytes were washed twice with
equal volume of saline and added into 1 ml trizol (Invitrogen,
USA). Reverse transcriptionwas implemented asmentioned before
to extract RNA and synthesize cDNA with oligo (dT) primer (33).
Two-stepnestedPCRwas carried out asmentionedpreviously (34).
The primers of the first PCR used were: 5’-GTCCTGGCTGCT
CTTCTACTTCC-3’, 5’-GGTACGTGCTGTTGAACTGTTCC-3’.
The primers of the secondPCRusedwere:5’-GATGTGCAGCTGC
AGGAGTCTGGAGGAGG-3’, 5’-CTAGTGCGGC CGCTGA
GGAGACGGTGACCTGGGT-3’ (35). The obtained VHH
fragment was ligated with pMECS phagemid vector to form a
pMECS/Nb recombinant (restriction endonuclease were: PstI-
CTGCA^G; NotI-GC^GGCCGC). The obtained recombinant
was electrotransformed into E.coli TG1 cells as mentioned
previously (36). The size of the library reached 1.2×108 individual
transformants, selected 50 clones for PCR randomly. PCR was
performed as recommended (36). The primers used were: 5’-
CCGGAATTCCAGGTGCAGCTGGTGGAG-3’, 5’-CCCCTCG
AGTCATGAGGAGACGGTGACCAT-3’.

Phage Display
TheHER2-nanobodieswere selected byphage display. Four rounds
of biopanning on 96-well plates were performed to enrich the
phages expressing HER2-VHH specifically on the coat protein.
Ninety-six single colonies randomly selected in each round were
grown inTBmedium. ELISA assay (described in ELISAAssay) was
used to identify positive clones of HER2-nanobody. After
sequencing, the identified positive clones were divided into
May 2021 | Volume 11 | Article 669393
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different categories according to the CDR sequence. In our study,
there were 68 positives among 96 clones. Sequencing analysis
could be divided into 4 categories according to the CDR
sequence (described in Biacore and Figure 2E). We selected
antibodies with higher affinity for research. The plasmid was
extracted from TG1 cells and further electrotransformed into
E.coli WK6 cells. Cells were grown in TB medium. When the
OD600 was between 0.6 and 0.9, 1 mM IPTG (isopropyl b-ɒ-1-
thiogalactopyranoside) was used to shake overnight at 28°C to
induce nanobody expression. The extract protein from the
periplasm was purified by Ni-NTA spin columns affinity
chromatography (described in Ni-NTA Spin Columns Affinity
Chromatography) to purify HER2-nanobody. The purified
Frontiers in Oncology | www.frontiersin.org 3
HER2-nanobody was further analyzed by Gel filtration
chromatography (described in Gel Filtration Chromatography).

ELISA Assay
ELISA assay was carried out to identify positive clones of HER2-
nanobody and to detect the content of HER2-nanobody. Each
well was coated with HER2 protein (10 mg/ml) overnight at 4°C
and blocked with 0.5% BSA (BSA blocking solution) for 1 hour at
room temperature. The candidate nanobody clones (2 mg/ml)
were added to the experimental wells (100 ml/well) and incubated
at room temperature for 90 minutes, the same amount of PBS
was used as control. From the candidate nanobody clones, we
screened the one with the strongest binding to HER2 protein and
FIGURE 1 | Construction of HER2-nanobody (HER2-VHH).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yan et al. HER2-Nanobody Inhibits HER2-Positive Breast Cancer
for further performed ELISA assay with different concentrations:
0.5 mg/ml, 2 mg/ml, 5 mg/ml. In detail, each well was coated with
HER2 protein (10 mg/ml) (the same amount of PBS was used as
control) overnight at 4°C and blocked with 0.5% BSA (BSA
blocking solution) for 1 hour at room temperature. The
candidate nanobody clones were added to the experimental
wells (100 ml/well) (the same amount of NC (BSA, bovine
serum albumin, Sigma, USA) was used as control) and
incubated at room temperature for 90 minutes. We washed the
wells with TBST for 5 times and added the secondary antibody
(1:20000) to incubate at room temperature for 60 minutes.
Finally, the ELISA plate was washed for 3 times with TBST and
Frontiers in Oncology | www.frontiersin.org 4
developing for 15 minutes in dark. The absorbance at 405 nm
(OD405) was measured by a spectrophotometer (ThermoFisher).

Biacore
Biacore assay was carried out to detect the affinity of HER2-
nanobody for HER2 protein according to the description in
previous study (35). In short, after the HER2 ligand on the chip
was fixed, HER2-nanobody incubation and chip regeneration
were performed cyclically. KD between HER2 protein and HER2
nanobody was determined by SPRi technique. HER2 dilutions
were injected at concentrations of 2,10, 50, and 200 nM (C1–C4).
The sensorgram represented the interaction of HER2 with the
A

B

E

C D

FIGURE 2 | Screening of HER2-nanobody (HER2-VHH). (A), HER2-VHH candidates were examined by ELISA assay. 100 ml/well 2 mg/ml HER2-VHHs were added
to the titer plate coated with 10 mg/ml HER2 protein and incubated for 90 minutes. The HER2-VHH with the most content was screened. (B), the binding of different
concentration (0.5 mg/ml, 2 mg/ml, 5 mg/ml) of the screened HER2-VHH with HER2 protein were examined by ELISA assay (NC meant bovine serum albumin). For
ELISA assay, OD405 was measured by a spectrophotometer. (C), Ni-NTA spin columns affinity chromatography was performed to purify and verify the obtained
HER2-VHH. (D), gel filtration chromatography was performed for further verifying the obtained HER2-VHH. (E), The KD value between HER2 and the finally screened
HER2-Nanobody was determined by the SPRi technology. HER2 dilutions were injected at concentrations of 2,10, 50, and 200 nM (C1–C4). The sensorgram
represents the interaction of HER2 with the HER2-nanobody from the lowest concentration (lowest curve C4) to the highest concentration (top curve C1). **P < 0.01.
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HER2-nanobody from the lowest concentration (lowest curve
C1) to the highest concentration (top curve C4).

Ni-NTA Spin Columns Affinity Chromatography
Ni-NTA spin columns affinity chromatography was performed
to purify the obtained HER2-nanobody. We washed NI-IDA
with 0.05% TBST for 5 times and added 1 ml 0.5% BSA to block
non-specific antigens (shaken on the reverse shaker for one
hour). Then the blocked NI-IDA was washed for 3 times with
TBST and loaded the columns. The HER2-nanobody was added
into the HER2 columns (3 ml/min). The effluent liquid was
collected and SDS-PAGE electrophoresis was performed.

Gel Filtration Chromatography
Gel filtration chromatography was implemented to further purify
and identify the obtained HER2-nanobody. In short, we filled the
gel filter column with gel slurry and the preliminary purified
HER2-nanobody was added to the column (A Hiload 16/60
Superdex75 Column (GE Healthcare) was then preformed on an
ÄKTA purifier 10 system. Gel filtration was run in 50 mM Tris-
HCl, 150 mM NaCl, 1mM DTT at pH 7.4. The injection volume
was 5 ml. The collections were concentrated by ultrafiltration).
When the sample flowed to 1 mm above the gel bed, the outlet
was closed and the effluent was collected and SDS-PAGE
electrophoresis was performed.

SDS-PAGE Electrophoresis
The sample spotting and electrophoresis process were carried out
according to the description in previous study (36). After
electrophoresis, the gel was taken out and fixed with fixative at
4°C overnight. The next day, the gel was treated with staining
solution for one hour and then washed with distilled water
several times until a clear protein band was formed.

Functional Experiments and Mechanism
Exploration of HER2-Nanobody
Cell Lines and Cell Culture
Breast cancer cell line MCF-7 (barely expresses HER2), BT474
(strongly expresses HER2) and SKBR3(strongly expresses HER2)
[obtained from ATCC (the American Type Culture Collection)
(Rockville, MD)] were used in this study. The culture conditions
were: RPMI 1640 medium [Invitrogen, USA, containing 10%
fetal bovine serum (FBS, Invitrogen, USA)] and 5% CO2 at 37°C
as recommended.

Cell Functional Assays
Cell total number assay, MTT assay and cell colony formation assay
were implemented asmentioned before (36, 37). In cell total number
assay, 1×105 cells were seeded into 6-well dishes, 0, 10 or 20 mmol/L
HER2-nanobody or NC-nanobody was added after 24 hours and
cells were counted continuously for 5 days. In MTT assay, 2000 cells
(MCF-7) or 5000 cells (BT474 and SKBR3) were seeded into 96-well
dishes, 0, 2.5, 5, 10 or 20 mmol/L HER2-nanobody or NC-nanobody
was added after 24 hours and cell viability (OD570nm) was
detected after 72 hours. In cell colony formation assay, 1500 cells
(MCF-7) or 2500 cells (BT474 and SKBR3) were seeded into 6-well
dishes and 0, 10 or 20 mmol/L HER2-nanobody or NC-nanobody
Frontiers in Oncology | www.frontiersin.org 5
was added after 24 hours. Cell colony images were pictured and cell
colony numbers were counted after 14 days.

Flow Cytometry
Cell apoptosis and cell cycle examinations were implemented by
flow cytometry as mentioned before (33). Cells were treated with
HER2-nanobody (0mmol/L or 10mmol/L) for 96 hours. Analysis of
cell cycle experiments results (as shown in Figures 4C, D). The red
part on the left side of the figure indicates that the cell is in the G1
phase of cell division, which refers to the gap time before DNA
replication is completed frommitosis; thepart framedwithdiagonal
lines in the middle indicates that the cell is in the S phase of cell
division,which refers to theDNAreplicationphase;The red part on
the right indicates that the cell is in the G2 phase of cell division,
which refers to the period of time from the completion of DNA
replication to the beginning of mitosis.

Western Blot
Protein levels including ERK, p-ERK, AKT, p-AKT and control
b-actin were examined by western blot as mentioned before (36).
Mouse monoclonal antibody against b-actin (1:5000, Sigma,
USA) and rabbit polyclonal antibodies against ERK (1/2)
(1:1000), p-ERK (1/2) (1:3000), AKT (1:1000) or p-AKT
(1:3000) (all from Proteintech Group, USA) were employed.
The specific schedule was as follows: transmembrane time was 90
minutes and transmembrane current was 300 mA; blocking time
was 45 minutes; primary antibody incubation time was 2 hours;
secondary antibody incubation time was 1 hour.

Xenograft Analysis
Xenograft Analysis
The animal-related experiments in this study were conducted in
accordance with the guidelines of the Institutional Animal Care
and Use Committee (available from www.iacuc.org). The work
has been approved by the Institutional Animal Care and Ethics
Committee of Anhui Medical University. All mice were raised in
SPF (Specific Pathogen Free)-class housing of laboratory. Thirty
4-week female BALB/c-nu/nu mice (GemPharmatech Co, Ltd,
Jiangsu, China) were unilaterally injected into mammary fat pad
with HER2-positive breast cancer cells SKBR3 (5×106/125
ml/site) and 24 of the 30 mice formed palpable tumors. After
15 days, tumors were about 200 mm3, these mice were divided
into two groups randomly (12 mice in each group): the mice in
group1 were injected intratumorally with HER2-nanobody (20
mg/kg) (8 mice) or the same amount of PBS (4 mice) once a
week; the mice in group2 were injected tail-intravenously with
HER2-nanobody (20 mg/kg) (8 mice) or the same amount of
PBS (4 mice) once a week. Tumor volumes (V (mm3) = L ×W2 ×
P/6) were measured every four days and the mice were executed
39 days after cell injection. Tumors were isolated, pictured, and
then fixed with 4% formalin and made into paraffin section.

Immunohistochemistry and TUNEL
Positivity of ki-67 and apoptotic nuclei in tumors formed by
SKBR3 cells were detected by Immunohistochemistry (IHC)
and terminal transferase deoxyuridine triphosphate nick end
labeling (TUNEL) respectively as mentioned before (37, 38).
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The UltraSensitive-SP kit (Maxin-Bio, Fuzhou, China) and
mouse polyclonal antibody against ki-67 (Zhongshan
Goldenbridge Biotechnology Co, Beijing, China) was used. The
staining results were evaluated independently by two senior
pathologists in the Pathology Department of the First Affiliated
Hospital of Anhui Medical University.

Statistical Analyses
In this study, three or more repeated experiments were
averaged to represent the final results. Unpaired two-tailed t
test was employed in PCR, ELISA assay, cell total number
assay, MTT assay, cell colony formation assay, flow cytometry
and xenograft analyses. Pearson ’s chisquare test was
employed in immunohistochemistry. P<0.05 was considered
statistically significant.

RESULTS

Construction of HER2-Nanobody
A schematic diagram of the construction of HER2-nanobody was
shown in Figure 1. We immunized camels with HER2 protein
and extracted peripheral blood after eliciting the immune
response. Lymphocytes were isolated by density gradient
centrifugation. The total RNA of the immunized lymphocytes
was extracted and the target fragments were obtained and
amplified by reverse transcription and two-step nest PCR. The
fragments of the preliminary HER2-nanobody were ligated to
pMECS to form a recombinant phagemid (pMECS/Nb) and
finally transferred it into E.coli TG1 cells for amplification. The
details were described in the Materials and Methods section. In
our library, the size was 1.2×108. After each round of panning we
randomly chose 96 clones for screening in ELISA.

Screening of HER2-Nanobody
The amount of HER2-specific nanobody in the extract and the
antigen-specificity of the Nb was assessed by ELISA. As
expounded in Figure 2A, The amount of HER2-nanobodies
were significantly higher than those of PBS control respectively.
The most content of HER2-nanobody was selected for further
study. As shown in Figure 2B, the HER2-nanobody showed a
dramatically stronger binding to HER2 protein compared with
NC or PBS control in different concentrations (0.5 mg/ml, 2 mg/
ml, 5 mg/ml). The obtained HER2-nanobody was further verified
and purified by Ni-NTA spin columns affinity (Figure 2C) and
gel filtration chromatography (Figure 2D). Compared with the
traditional HER2 antibody (185kDa) and trastuzumab (298kDa),
the molecular weight of HER2-nanobody that we finally screened
was only about 15kDa. Moreover, The KD value between HER2
and the finally screened HER2-nanobody was determined by the
SPRi technology. KD=(1.11 ± 0.08)×10-8, Kon=(1.38 ± 0.07)×104,
Koff=(1.53 ± 0.09)×10-4 (Figure 2E).

HER2-Nanobody Restrained Cell Proliferation
in HER2-Positive Breast Cancer Cells
Breast cancer cell line MCF-7 (barely expresses HER2), BT474
(strongly expresses HER2) and SKBR3 (strongly expresses
Frontiers in Oncology | www.frontiersin.org 6
HER2) were cultured and treated with different concentrations
of HER2-nanobody [the following were designated as MCF-7/
BT474/SKBR3-HER2-VHH (-treatment concentration)] or
Negative control nanobody (HSA-nanobody, NC-VHH). Cell
total number assay, MTT assay and cell colony formation assay
were implemented to detect cell proliferation and viability. As
expounded in Figures 3A–C, cell total numbers of both BT474
and SKBR3 cells were memorably reduced when treated with 10
mmol/L or 20 mmol/L HER2-nanobody compared with vehicle
control within 5 days, while there was no significant change in
MCF-7. After treated with concentration gradient of HER2-
nanobody (0, 2.5, 5, 10 or 20 mmol/L) for 3 days, the cellular
viabilities of MCF-7 didn’t change obviously (Figure 3D). BT474
and SKBR3 cells showed significantly decreased cell viabilities
compared with control respectively (Figures 3E, F).
Congruously, the capacity of cell colony formation in both
BT474-HER2-VHH (10 mmol/L or 20 mmol/L) and SKBR3-
HER2-VHH (10 mmol/L or 20 mmol/L) cells faded compared
with control group and the trend was more obvious in higher
HER2-nanobody concentration (20 mmol/L), while there was no
significant change in MCF-7 when treated with different
concentration of HER2-VHH (Figures 3G–I). Meanwhile, NC-
VHH showed no significant effect on the proliferation of BT474
cells (Figure S1). Therefore, HER2-nanobody restrained cell
proliferation in HER2-positive breast cancer cells.
HER2-Nanobody Accelerated Cell
Apoptosis and Restrained Cell
Karyokinesis in HER2-Positive
Breast Cancer Cells
We next performed flow cytometry to explore the influence of
HER2-nanobody on cell apoptosis and karyokinesis in HER2-
positive breast cancer cells. As expounded in Figures 4A, B, the
proportion of apoptotic cells in BT474-HER2-VHH-10mmol/L
(41.48%) and SKBR3-HER2-VHH-10mmol/L (20.38%) increased
relatively compared with BT474-HER2-VHH-0mmol/L (15.05%)
and SKBR3-HER2-VHH-0mmol/L (7.72%). Meanwhile, the
proportion of cells in G1 phase increased from 53.25%
(BT474-HER2-VHH-0mmol/L) and 48.08% (SKBR3-HER2-
VHH-0mmol/L) to 76.06% (BT474-HER2-VHH-10mmol/L)
and 59.28% (SKBR3-HER2-VHH-10mmol/L), the proportion
of cells in G2 phase decreased from 20.02% (BT474-HER2-
VHH-0mmol/L) and 14.24% (SKBR3-HER2-VHH-0mmol/L) to
12.11% (BT474-HER2-VHH-10mmol/L) and 12.80% (SKBR3-
HER2-VHH-10mmol/L), and the proportion of cells in S phase
decreased from 26.74% (BT474-HER2-VHH-0mmol/L) and
37.68% (SKBR3-HER2-VHH-0mmol/L) to 11.83% (BT474-
HER2-VHH-10mmol/L) and 27.93% (SKBR3-HER2-VHH-
10mmol/L) respectively (Figures 4C, D). These results showed
that the proportion of cells in G1 phase increased and that in S
and G2 phase decreased memorably after treating with 10 mmol/L
HER2-nanobody in both BT474 and SKBR3 cells, indicating
that more cells stayed in resting state and fewer cells in mitotic
phase. Therefore, HER2-nanobody accelerated cell apoptosis and
restrained cell mitosis in HER2-positive breast cancer cells.
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FIGURE 3 | HER2-nanobody (HER2-VHH) restrained cell proliferation in HER2-positive breast cancer cells. (A–C), cell total number assay, 1×105 cells were seeded
into 6-well dishes, 0, 10 or 20 mmol/L HER2-VHHs were added after 24 hours and cells were counted continuously for 5 days. (D–F), MTT assay, 2000 cells
(MCF-7) or 5000 cells (BT474 and SKBR3) were seeded in 96-well dishes, 0, 2.5, 5, 10 or 20 mmol/L HER2-VHHs were added after 24 hours and cell viability
(OD570nm) was detected after 72 hours. (G–I), cell colony formation assay, 1500 cells (MCF-7) or 2500 cells (BT474 and SKBR3) were seeded in 6-well dishes and
0, 10 or 20 mmol/L HER2-VHHs were added after 24 hours. Cell colony images were pictured and cell colony numbers were counted after 14 days. **P < 0.01.
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HER2-Nanobody Inhibited Phosphorylation
of ERK and AKT in HER2-Positive Breast
Cancer Cells
To explore the inhibitory mechanism of HER2-nanobody on
HER2-positive breast cancer cells, the protein levels of t-ERK
(1/2), p-ERK (1/2), t-AKT and p-AKT were examined by western
blot. The results were graphed from three blots and each protein
levels were statistically compared to the HER2-VHH-0mmol/L-
72h group respectively. As expounded in Figures 5A, B, the
protein levels of p-ERK (1/2) and p-AKT decreased memorably in
BT474 and SKBR3 cells after treated with 2.5mmol/L and 5mmol/L
HER2-nanobody compared with control, while the protein levels
of t-ERK (1/2) and t-AKT didn’t change. Moreover, higher
concentration of HER2-nanobody (5 mmol/L) and/or longer
Frontiers in Oncology | www.frontiersin.org 8
treatment time (96 hours) induced the phosphorylation of ERK
(1/2) and AKT to reduce more remarkably. Therefore, HER2-
nanobody inhibited phosphorylation of ERK and AKT in HER2-
positive breast cancer cells.

HER2-Nanobody Inhibited Tumor Growth
of HER2-Positive Breast Cancer In Vivo
Moreover, we examined the role of HER2-nanobody on HER2-
positive breast cancer cells in vivo. Thirty 4-week female BALB/
c-nu/nu mice were unilaterally injected into mammary fat pad
with HER2-positive breast cancer cells SKBR3 (5×106/125 ml/
site) and 24 of the 30 mice formed palpable tumors after 15 days
(about 200 mm3). The mice were treated randomly with HER2-
nanobody (20 mg/kg) or PBS as control intratumorally or tail-
A

B

C

D

FIGURE 4 | HER2-nanobody (HER2-VHH) accelerated cell apoptosis and restrained cell karyokinesis in HER2-positive breast cancer cells. BT474 and SKBR3 cells
were treated with HER2-VHH (0 mmol/L or 10 mmol/L) for 96 hours. (A, B), cell apoptosis was implemented by flow cytometric analyzation. (C, D), cell cycle analysis
of cancer cells was implemented by flow cytometric analyzation. **P<0.01.
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intravenously. Tumor sizes were measured every 4 days and the
mice were executed 39 days after cell injection. As expounded in
Figure 6A, the tumor size in the HER2-nanobody injection
groups (both intratumorally and tail-intravenously, especially
the intratumoral-injection group) were much smaller compared
with the PBS injection control group. In our present condition,
we did not observe off-target toxicity in the in vivo model. In
addition, immunohistochemistry was carried out to detect ki-67
levels in the tumor sections to determine cell proliferation and
TUNEL assay was carried out to determine cell apoptosis in the
tumor sections. Concordantly, tumors in mice treated with
HER2-nanobody showed significantly lower levels of ki-67
compared with control in both intratumoral-injection group
and tail-intravenous-injection group. The fold decrease of ki-
67 positivity (HER2-nanobody/vehicle) was 0.21 (P<0.01) in tail-
intravenous-injection group and was 0.17 (P<0.01) in
intratumoral-injection group (Figure 6B). On the other hand,
tumors in mice treated with HER2-nanobody showed
significantly higher apoptotic nuclei compared with control in
both intratumoral-injection group and tail-intravenous-injection
group. The fold decrease of apoptotic nuclei (HER2-nanobody/
Frontiers in Oncology | www.frontiersin.org 9
vehicle) was 7.69 (P<0.01) in tail-intravenous-injection group
and was 9.01 (P<0.01) in intratumoral-injection group
(Figure S2). Therefore, HER2-nanobody also inhibited tumor
growth of HER2-positive breast cancer in vivo.
DISCUSSION

Surgery combined with radiotherapy, chemotherapy, endocrine
therapy and/or targeted therapy is a globally recognized therapy
for breast cancer (4). However, multiple recurrences after surgery
and multiple complications after radiotherapy and chemotherapy
require us to further explore superior treatments. Nanobody is
the smallest molecular binding to target antigen (38–40) and
several kinds of nanobodies were reported to be potential agents
that could be used in tumor therapy. For example, nanobody
based CAR (chimeric antigen receptor) -T cell could better target
the tumor microenvironment and inhibit solid tumor growth
of melanoma (41); EGFR-nanobody produced by DNA
immunization could effectively inhibit EGFR signaling and
inhibit the growth of head and neck squamous cell carcinoma
A

B

FIGURE 5 | HER2-nanobody (HER2-VHH) inhibited phosphorylation of ERK and AKT in HER2-positive breast cancer cells. (A, B), BT474 and SKBR3 cells were
treated with 0, 2.5 or 5 mmol/L HER2-VHH for 72 or 96 hours. Protein levels of p-AKT, t-AKT, p-ERK (1/2), t-ERK (1/2) and house-keeping protein b-actin were
examined by western blot. The quantitative protein levels were showed on the right respectively. **P<0.01.
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(42, 43); The production of CD38-nanobody provided new ideas
for the treatment of multiple myeloma (44); Nanobodies targeting
CEA could be quickly absorbed by non-small cell lung cancer and
targeted specific receptors (45). In this study, we have successfully
constructed a HER2-nanobody that could directly suppress tumor
proliferation in HER2-positive breast cancer.

HER2 is closely related to the occurrence and development of
human breast cancer (9, 46–49). Approximately 15% -20% of
breast cancer patients showed HER2 overexpression (50).
Herceptin, a HER2-targeted drug, is widely used in the
treatment of HER2-positive breast cancer and metastatic breast
cancer (10). Herceptin combined with paclitaxel and docetaxel
has been testified to reduce mortality and improve prognosis in
HER2-positive breast cancer patients (51–53). Irreversible
cardiotoxicity, however, especially congestive heart failure, was
a non-negligible adverse effect after Herceptin administration
(16). Herceptin has also been reported to disrupt the function of
mitochondria in cardiomyocytes (54). The invention of a more
effective targeted drug with fewer side effects and easier access is
imminent. Herein, we have successfully constructed a nanobody
targeting HER2 with smaller molecular weight for HER2-positive
breast cancer inhibition. The obtained HER2-nanobody was
verified and purified by Ni-NTA spin columns affinity
chromatography and gel filtration chromatography. Compared
Frontiers in Oncology | www.frontiersin.org 10
with the traditional HER2 antibody (185kDa) and targeted drug
Herceptin (298kDa), the molecular weight of the HER2-
nanobody was only about 15kDa. Cell total number assay,
MTT assay, and cell colony formation assay showed that the
HER2-nanobody inhibited cell proliferation in HER2-positive
breast cancer cells. HER2-nanobody increased the proportion of
apoptotic cells in both BT474 and SKBR3 cells. HER2-nanobody
also increased the G1 phase cells, decreased the S and G2 phase
cells in BT474 and SKBR3. Moreover, HER2-nanobody inhibited
the growth of solid tumors in vivo. Keyaerts, M. et al. reported
that nanobody labeled with 68Ga-HER2 could be used as a
benign and safe probe in PET/CT molecular imaging (30).
Nikkhoi, S. K. et al. found that nanobodies against HER2
protein covalently coupled to liposomes might become a new
weapon for targeting HER2-positive breast cancer (55). In
addition, fusion of single-domain antibody against HER2 with
human IgG1 Fc had been reported to inhibit the proliferation of
HER2-positive breast cancer cells in vitro and in vivo (56). The
nanobodies targeting HER2 were important tools to carry small
molecular drugs or labeled molecules used for antigen
localization or tumor suppressing. However, these previous
reported HER2-nanobodies could not suppress HER2 positive
cancer cells directly. A HER2-nanobody with direct tumor
suppressive role could be better used for HER2 positive cancer
A

B

FIGURE 6 | HER2-nanobody (HER2-VHH) inhibited tumor growth of HER2-positive breast cancer in vivo. SKBR3 cells (5×106/125 ml/site) were unilaterally injected
into mammary fat pad of 4-week-old female BALB/c-nu/nu mice. After 15 days when palpable tumors were about 200 mm3, the mice were received HER2-VHH
(20 mg/kg) or Vehicle control (PBS) intratumorally or tail-intravenously once a week (↓: The first injection time). Thirty-nine days after cell injection, the mice were
executed and tumors were isolated. (A), physical map of tumor tissues (left) and tumor growth curves (right). (B), the positivity of ki-67 in the tumor sections was
detected by immunohistochemistry. **P<0.01.
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therapy. We herein have successfully constructed a tumor
suppressive HER2 nanobody that inhibited HER2-positive
breast cancer both in vitro and in vivo. Therefore, agents based
on this HER2-nanobody constructed in this study could be better
potentially used for HER2 positive cancer therapy.

RAS-RAF-MAPK and PI3K-AKT-mTOR pathways are two
important signaling pathways involved in HER2 (31, 32). ERK,
also known as mitogen-activated protein kinase 1 (MAPK1),
encodes a member of the MAP kinase family. ERK includes
ERK1 (44kDa) and ERK2 (42kDa). In the RAS-RAF-MAPK
pathway, upstream signaling molecules activate SDS, and the
activated SDS binds to the RAS protein and further binds to
GTP. The SDS-RAS-GTP complex activates MAPKKK,
MAPKK, and MAPK (ERK) in turn. Phosphorylated ERK is
then transported into the nucleus, producing a biological effect
(57). AKT, also known as AKT serine/threonine kinase 1,
encodes serine-threonine protein kinase. In the PI3K-AKT-
mTOR pathway, upstream signaling molecules activate PI3K,
which converts PIP2 to PIP3. PIP3 binds to the intracellular
signaling protein PDK1 to phosphorylate AKT. Phosphorylated
AKT further activates mTOR, thereby activating protein
translation, promoting cell proliferation (58). HER2 is the most
effective activator of the RAS-RAF-MAPK and PI3K-AKT-
mTOR pathway (59, 60). In this study, p-ERK and p-AKT
were found to be specifically reduced by HER2-nanobody.
Therefore, the inhibitory effect of HER2-nanobody on the
proliferation and pro-apoptosis in HER2-positive breast cancer
cells might be achieved by inhibiting the phosphorylation of ERK
and AKT.

In summary, a specific HER2-nanobody was successfully
constructed, screened and verified to inhibit proliferation,
promote apoptosis and suppress mitosis in HER2-positive
breast cancer cells both in vitro and in vivo. HER2-nanobody
suppressed the downstream RAS-RAF-MAPK and PI3K-AKT-
mTOR pathways. Drugs derived from this HER2-nanobody
could be potential treatment methods for HER2-positive
breast cancer.
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