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Abstract
Background: The importance of network-based approach to identifying biological markers for
diagnostic classification and prognostic assessment in the context of microarray data has been
increasingly recognized. To our knowledge, there have been few, if any, statistical tools that
explicitly incorporate the prior information of gene networks into classifier building. The main idea
of this paper is to take full advantage of the biological observation that neighboring genes in a
network tend to function together in biological processes and to embed this information into a
formal statistical framework.

Results: We propose a network-based support vector machine for binary classification problems
by constructing a penalty term from the F∞-norm being applied to pairwise gene neighbors with the
hope to improve predictive performance and gene selection. Simulation studies in both low- and
high-dimensional data settings as well as two real microarray applications indicate that the
proposed method is able to identify more clinically relevant genes while maintaining a sparse model
with either similar or higher prediction accuracy compared with the standard and the L1 penalized
support vector machines.

Conclusion: The proposed network-based support vector machine has the potential to be a
practically useful classification tool for microarrays and other high-dimensional data.

Background
The past two decades have witnessed rapid advances in
gene expression profiling with the microarray technology,
which not only brighten the prospect of deciphering the
complexity of disease genesis and progression at the
genomic level, but also revolutionize the diagnostic, ther-
apeutic, and prognostic approaches. Up to recently, diag-

nostic classification and prognostic assessment have been
based on conventional clinical and pathological risk fac-
tors, such as patient age and tumor size, many of which
are believed to be secondary manifestation [1]. The advent
of microarray technology allows researchers to explore
primary disease mechanisms by comparing gene expres-
sion profiles for malignant and normal cells. The regular-
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ity and aberration in the expression patterns of certain
genes shed light on their functions and pathological
importance [2]. Studies that seek to identify gene markers
to refine diagnostic classification and improve prognostic
prediction in the context of gene expression data have
enriched the literature [3-5]. In recent years, researchers
have realized that gene markers identified from microar-
rays drawn from difierent studies on the same disease
across similar cohorts lack consistency [6,7]. A possibly
more effective means to resolve this problem is to employ
a network-based approach, that is, to identify markers as
gene subnetworks, defined as groups of functionally
related genes based on a gene network, instead of treating
individual genes as completely independent and identical
a priori as in most existing approaches [1]. A novel net-
work-based approach proposed recently [1,8] can be sum-
marized as follows: (1) randomly searching subnetworks
and assigning a score to each subnetwork that character-
izes the subnetwork-wise gene expression level; (2) iden-
tifying significant subnetworks that can well discriminate
the clinical outcome; (3) constructing a classifier based on
the significant subnetworks with a conventional statistical
tool, such as logistic regression. Essentially such a net-
work-based approach aggregates gene expression data at
the subnetwork level and then identifies and utilizes some
significant subnetworks. It has been shown that such a
network-based approach not only improves predictive
performance and reproducibility, but also sheds biologi-
cal insights into molecular mechanisms underlying the
clinical outcome. However, the above method is largely
heuristic without a formal statistical framework; more
importantly, it involves a random search over subnet-
works, leading to possibly different results from different
runs with no guarantee of the optimality of the final
result. Because of the ever-increasing popularity of penal-
ization methods for high-dimensional data, we propose a
novel network-based penalty to be used with the hinge
loss, leading to a network-based support vector machine.
While maintaining some desirable properties of support
vector machine (SVM) with the hinge loss function, the
network-based penalty directly integrates a biological net-
work to realize more effective variable selection, as com-
pared with generic methods, such as the standard SVM
(STD-SVM) or L1-penalized SVM (L1-SVM).

The support vector machine (SVM) is one of the most
popular supervised learning techniques with wide-rang-
ing applications [9,10]. In particular, previous studies
have demonstrated its superior performance in gene
expression data analysis, especially its ability to handle
high dimensional data [11,12]. Nevertheless, with cate-
gorical predictors, both the STD-SVM and the L1-SVM
may have some shortcomings. Zou and Yuan [13] applied
the concept of grouped variable selection and developed
an F∞-norm penalized SVM to realize simultaneous selec-

tion/elimination of all the features derived from the same
categorical factor (or a group of variables). Their numeri-
cal examples showed that the F∞-norm SVM outper-
formed the L1-SVM in factor-wise variable selection. We
extend the idea of variable grouping to gene networks:
rather than grouping all the dummy variables created
from the same categorical factor, we treat two neighboring
genes in a network as one group. The network-based pen-
alty is constructed as the sum of the F∞-norms being
applied to the groups of neighboring-gene pairs. With the
hinge loss penalized by such a network-based penalty as
our objective function, we obtain our network-based
SVM. The later sections are organized as follows. We begin
with a brief review of the SVM, and then introduce our
proposed network-based SVM. We evaluate its perform-
ance by simulation studies in both low dimensional and
high dimensional data settings as well as two real data
applications. The last section concludes the paper with a
brief summary.

Methods
Existing methods

Suppose we have training data  with xi ∈ �p

and yi ∈ {1, -1}. Define a hyperplane {x : f(x)= xTβ + β0 =

0}. The classification rule induced by f (x) is sign [ (x)].

SVM searches for such a hyperplane  that

maximizes the margin between the training data points
for class 1 and class -1:

where ξi are slack variables, and C is a tuning parameter to
be determined. The STD-SVM has an equivalent hinge loss
+ penalty formulation as an optimization problem [13-
15]:

where the subscript "+" denotes the positive part, i.e., z+ =

max{z, 0}, , and λ is the tuning

parameter. The solution to (1) is the same as that to (2).
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The above STD-SVM forces all nonzero coefficient esti-
mates, which leads to the problem of its inability to con-
duct variable selection. The L1-SVM was proposed to
accomplish the goal of variable selection. It can be formu-
lated as

where . The L1-SVM wins over the

STD-SVM when the true model is sparse, while the STD-
SVM is preferred if there are not many redundant noise
features [16].

Zou and Yuan [13] pointed out the shortcoming of the L1-

norm penalty: even though it encourages parsimonious
models, it fails to guarantee successful models in cases of
categorical predictors due to the fact that each dummy
variable is selected independently. They applied the con-
cept of grouped variable selection and proposed an F∞-

norm SVM to realize simultaneous selection/elimination
of features derived from the same factor so as to accom-
plish automatic factor-wise variable selection. Suppose we
have G factors F1,...,FG. From each factor Fg, we generate a

feature vector .

Correspondingly we have the coefficient vector

. Therefore,

Define the F∞-norm of Fg as

The F∞-norm SVM is formulated as

The most noteworthy property of the F∞-norm SVM is its
guarantee of sparsity at the factor level. Due to the singu-
larity property of the infinity norm: || β(g) ||∞ is not differ-
entiable at β(g) = 0, β(g) will be exactly zero if the

regularization parameter λ is properly chosen [13]. There-
fore, the F∞-norm SVM automatically eliminates factors
that are completely irrelevant to the response, and thus
achieves the goal of factor-wise selection. The empirical
evidence shows that the F∞-norm SVM often outperforms
both the L1-SVM and the STD-SVM.

New method
Biological observations reveal that neighboring genes in a
network tend to function together in biological processes.
To incorporate this prior information, a network-based
SVM for binary classification is proposed to facilitate gen-
erating models that extract more biological insight from
gene expression data. The penalty term that characterizes
the network structure can be specified by implanting the
F∞-norm into the context of known functional interrela-
tionships among genes by considering each pair of the
functionally related genes as one group.

Consider a gene network with S denoting the set of all
edges, i.e., the pair of connected genes.

S = {(j1, j2) : gene j1 and gene j2 are connected}

Define wk as some weight for gene k. For example, wk =

 where dk is the number of direct neighbors of gene k,

or wk = dk, or simply wk = 1 for all genes. We propose a

novel penalty in the form of

Thus the network-based SVM solves the optimization
problem as follows.

Four properties of the penalty term are noteworthy. First,
the regularization is performed at the level of grouped
genes with each group containing two neighboring genes
in the network. In the case of penalized linear regression,
it has been proven that this penalty achieves the goal of

eliminating both  and  simultaneously if (j1, j2) ∈

S [17]. The automatic selection of grouped features is due
to the singularity of function max{|a|, |b|} [13]. This for-
mulation satisfies our assumption that neighboring genes
tend to (or not to) contribute to the same biological proc-
ess at the same time. Second, the choice of the weight
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depends on the goal of shrinkage and influences the pre-
dictive performance. Consider a network comprised of
several subnetworks, each with one regulator and ten tar-
get genes. Because of the singularity of function max(|a|,
|b|) at a = b, the weighted penalty in the context of penal-

ized regression, encourages [17].

Here we examine three weight functions in particular: wk

= 1, wk = , and wk = dk, where gene k has dk direct

neighbors. The new method encourages  if wk

= 1,  if wk = , and  if wk =

dk. Therefore, heavier weights (from wk = 1, wk = , to

wk = dk) favor genes with more direct neighbors to have

larger coefficient estimates; in other words, heavier
weights relax the shrinkage effect for those regulators,
which are known to be biologically more important. Due
to this property, the choice of a heavy weight, as a simple
strategy, enables us to alleviate the bias in the coefficient
estimates from the penalization method and possibly
improve the p predictive performance. Our default weight

is wk = . The weight, considered as another tuning

parameter, can be determined from cross-validation or an
independent validation data set, though we do not con-
sider it here. Third, the penalty term, under certain condi-
tions, tends to encourage a grouping effect, where highly
correlated predictors tend to have similar coefficient esti-
mates [17-20]. Fourth, the penalty is linear, which allows
the solution to be found by the linear programming (LP)
technique that is computationally convenient.

As usual, the fitted classifier is , and the

classification rule is sign( (x)). We employ LP to obtain

the solutions to (8) by

subject to

where

and , in which  and  denote the pos-

itive and negative parts of βj. The calculation of the new

method can be easily implemented by the R package
lpsolve, so is the computation of the L1-SVM. The R pack-
age e1071 (with linear kernel) is used to obtain the solu-
tion to the STD-SVM.

Results and discussion
Simulation
We conducted several simulation studies to numerically
evaluate the performance of the network-based SVM
along with the STD-SVM and L1-SVM. The simulation set-
ups were similar to those in [18]. We started from a simple
network consisting of 5 subnetworks, each having a regu-
lator gene t (t = 1,...,5) that regulated 10 target genes, lead-
ing to a total of 55 genes (p = 55). We assumed that two
out of the five subnetworks were informative; that is, the
coefficients of 22 genes were nonzero and thus informa-
tive to the outcome, while the remaining 33 noise genes
had no effect on the outcome. We generated a simulated
data set by the following steps:

• Generate the expression level of regulator gene t, Xt ~ N
(0, 1), t = 1,..., 5, independently.

• Assume that the expression level of regulator gene t and
each of its regulated genes follow a bivariate normal dis-
tribution with correlation 0.7. Thus, the expression level

of each target gene regulated by gene t,  ~ N(0.7Xt,

0.51), l = 1,..., 10 and t = 1,..., 5.
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• Generate the outcome Y from a logistic regression

model: Logit (Pr(Y = 1|X)) = XTβ + β0, β0= 2, where X is the

vector of the expression levels of all the genes, and coeffi-

cient vector .

Four sets of true coefficients, β 's, were specified to reflect
four scenarios:

1. .

The effect of one informative subnetwork was the same as
the other in magnitude but with an opposite direction.

2. .

Both informative subnetworks had positive effects but in
different magnitudes.

3.

Target genes in the same informative subnetworks had
both positive and negative effects.

4.

It was similar to but more extreme than scenario 3.

Five methods, STD-SVM, L1-SVM, and network-based

SVM with wk = 1, wk = , and wk = dk, were compared

based on the results averaged over 100 runs under each of
the above four scenarios. For each run, 100 observations
were simulated as training data to build a classifier (with

any given λ), another 100 for tuning the regularization

parameter λ, and the last 10,000 as test data. Each predic-
tor was normalized to have mean 0 and standard devia-

β β β β β= ( ,..., , ..., , ..., )( ) ( ) ( ) ( )
1

1
10

1
1

5
10

5

β = − − −
( , , , , , , , , , , ).5

5
10

5
10

5
5

10
5

10
0 0

10 10

β = ( , , , , , , , , , , ).5
5
10

5
10

3
3
10

3
10

0 0

10 10

β = − − −
( , , , , , , , , , , ,5

5
10

5
10

5
10

5
10

5
10

3
3
10

3
10

7 7

−− − −3
10

3
10

3
10

0 0, , , , ).

β = − − − − −
( , , , , , , , , , ,5

5
10

5
10

5
10

5
10

3
3

10
3

10
6 4 6

, , , , , , ).
3
10

3
10

0 0

4

dk

Table 1: Simulation results for p = 55. The simulation results were averaged over 100 runs for p = 55 (22 informative and 33 noise 
genes).

Test Error (SE) # False Negative (SE) Model Size (SE)
Scenario Method n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

1 STD 0.122 (0.002) 0.096 (0.001) 0.0 (0.0) 0.0 (0.0) 55.0 (0.0) 55.0 (0.0)
L1 0.134 (0.003) 0.094 (0.002) 13.1 (0.3) 10.9 (0.4) 12.3 (0.6) 15.3 (0.7)
New (w = 1) 0.156 (0.003) 0.105 (0.002) 9.3 (0.4) 2.4 (0.3) 17.0 (0.6) 24.3 (0.6)

New (w = )
0.111 (0.003) 0.068 (0.002) 1.0 (0.3) 0.1 (0.1) 24.7 (0.5) 25.1 (0.4)

New (w = d) 0.081 (0.002) 0.059 (0.002) 0.0 (0.0) 0.0 (0.0) 28.6 (0.8) 28.2 (0.8)

2 STD 0.121 (0.002) 0.099 (0.001) 0.0 (0.0) 0.0 (0.0) 55.0 (0.0) 55.0 (0.0)
L1 0.133 (0.003) 0.096 (0.001) 13.6 (0.3) 11.1 (0.4) 11.4 (0.5) 15.1 (0.7)
New (w = 1) 0.156 (0.003) 0.105 (0.002) 9.6 (0.4) 3.9 (0.3) 16.3 (0.7) 24.7 (0.6)

New (w = )
0.121 (0.003) 0.075 (0.002) 3.0 (0.4) 0.3 (0.1) 22.3 (0.6) 25.2 (0.5)

New (w = d) 0.083 (0.002) 0.064 (0.002) 0.0 (0.0) 0.0 (0.0) 28.6 (0.8) 29.0 (0.8)

3 STD 0.162 (0.002) 0.138 (0.001) 0.0 (0.0) 0.0 (0.0) 55.0 (0.0) 55.0 (0.0)
L1 0.166 (0.003) 0.131 (0.001) 13.9 (0.2) 11.0 (0.3) 11.2 (0.5) 16.6 (0.7)
New (w = 1) 0.177 (0.003) 0.140 (0.002) 12.4 (0.4) 7.7 (0.4) 13.5 (0.6) 19.9 (0.8)

New (w = )
0.164 (0.003) 0.127 (0.002) 4.4 (0.5) 1.2 (0.3) 21.5 (0.6) 26.3 (0.7)

New (w = d) 0.137 (0.003) 0.114 (0.001) 0.4 (0.2) 0.1 (0.1) 29.8 (0.9) 33.2 (0.9)

4 STD 0.189 (0.002) 0.157 (0.002) 0.0 (0.0) 0.0 (0.0) 55.0 (0.0) 55.0 (0.0)
L1 0.186 (0.002) 0.155 (0.002) 14.2 (0.3) 10.5 (0.3) 11.5 (0.6) 18.1 (0.8)
New (w = 1) 0.198 (0.003) 0.160 (0.002) 13.8 (0.3) 8.6 (0.4) 11.8 (0.5) 20.9 (0.9)

New (w = )
0.190 (0.003) 0.147 (0.002) 7.2 (0.6) 1.8 (0.4) 18.8 (0.7) 30.1 (0.9)

New (w = d) 0.163 (0.002) 0.139 (0.002) 0.2 (0.2) 0.03 (0.03) 32.2 (1.0) 34.8 (1.0)

d

d

d

d
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tion 1. Given any value of λ, we obtained the coefficient
estimates from the training set, then applied the classifier
to the tuning set to find the classification error. We

searched for , from a wide range of prespecified values,
which produced the smallest classification error. The clas-

sifier corresponding to  was identified as the fitted clas-

sifier . Then we applied  to the test set and calculated

the test error, the number of misclassifications divided by
the test sample size. Table 1 reports the mean classifica-
tion error of the test set and its standard error (SE in paren-
theses), the standard deviation of the classification errors
divided by the square root of the number of runs, for each
method over 100 runs under each scenario. To evaluate
each method's ability to select informative genes, we
examined the false negatives, defined as the number of
informative genes whose coefficients were estimated to be
zero. In addition, we also considered a smaller sample
size: we repeated the entire process with 50 training data
points, 50 tuning data points, and again 10,000 test data
points. The network-based SVM is named as "New" in the
table.

According to our simulation setups, the correct weight

function should be w = . However, we find that the

new method with w = d overwhelmingly beat all other
methods in all the setups. It consistently made the most
accurate classifications and missed no informative genes.

The new method with w =  performed the second best:

in most cases, it improved the classification accuracy over
STD-SVM and L1-SVM; and under all the settings, it pro-
duced models that identified more informative genes than
the L1-SVM. In contrast, w = 1 did not bring much gains
over the STD-SVM or the L1-SVM. The L1-SVM led to
models that were too sparse, missing about 14 and 11
informative genes for n = 50 and n = 100 respectively. The
superior performance and the larger model size of the
heavy weight (w = d) compared with its counterparts (w =

1 and w = ) is presumably due to its relaxation of the

shrinkage effect. The penalization methods shrink the 

toward zero by imposing the constraints (the penalty

term) and therefore introduces bias to . By grouping

neighboring genes, the new method encourages the pair-
wise weighted absolute coefficients to be equal. Therefore,

a heavy weight leads to larger | | for regulator genes. By

choosing a heavier weight, we may overcome over-shrink-
age, alleviate biases, and achieve better classification accu-

racy to some extent at the expense of model sparsity. As

shown by Table 2, w = d produced the largest | | for reg-

ulators than its two counterparts. The L1-SVM estimates
were treated as a yardstick for comparison as to provide an
idea of the extent of shrinkage by each weight function.

For example, w = 1 and w =  overly shrank all the reg-

ulators under all scenarios as compared with the L1-SVM
estimates. Note that the binary outcome Y was generated

from a logistic regression model while  was estimated

from a linear model, hence E( ) may be different from β

even for an unbiased estimator  of the linear model.

Next, we evaluated the performance of the new method
for high-dimensional data with large p. We used the setup
of 50 observations for training, 50 for tuning, and 10,000
for test data. We assumed that (1) the network was com-
posed of either 50 or 100 subnetworks, each having one
gene regulating 10 target genes; (2) the first 2 subnetworks
were informative resulting in 22 informative genes; (3)
the rest of the genes had no effect on the outcome, leading
to 528 noise genes when p = 550 and 1,078 noise genes

when p = 1, 100; and (4) the true β was specified as in sce-
nario 3. Table 3 shows the simulation results averaged
over 100 runs. Again, we see the gains from using a heavy
weight (w = d). It prevailed over all the other methods in
making accurate classifications and selecting informative

genes. The w =  ranked the second. However, w = d

generated models much larger than those from other
methods except STD-SVM. In this case, the performance of
w = 1 is no better than L1-SVM possibly due to over
shrinkage of the effects of the regulator genes.

Applications to microarray data
To evaluate its performance in the real world, we applied
the new method to two microarray gene expression data
sets related to the Parkinson's disease (PD) [21] and breast
cancer metastasis (BC) [1,4] respectively.

Parkinson's disease

The data set includes the Parkinson's disease status and
the expression levels of 22,283 genes from 105 patients
(50 cases and 55 controls) [22]. We used the same net-
work structure as [18]. The network combines 33 Kyoto
Encyclopedia of Genes and Genomes (KEGG) regulatory
pathways and contains a total of 1,523 genes and 6,865
edges. The data were randomly split into training (40
observations), tuning (20 observations), and test (45
observations) sets. The expression level of each gene was

λ̂

λ̂

f̂ f̂

d

d

d

β̂

β̂

β̂

β̂

d

β̂

β̂

β̂

d
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normalized to have mean 0 and standard deviation 1
across samples. The tuning parameter was identified from
the tuning set and the performance of the method was
evaluated on the test set by the mean classification error
and its standard error averaged over 10 runs. Five methods

were compared: STD-SVM, L1-SVM, network-based SVM

with w = 1, w = , and w = d. To obtain a final model

based on the new method with w = , we combined, for

each run, the previous tuning and test data as the new tun-
ing set leading to a sample size as large as 65 observations,

d

d

Table 2: Coefficient estimates of selected informative genes for p = 55 and n = 100. The mean and the standard deviation (SD) of the 
coefficient estimates for selected informative genes were calculated from 100 runs.

L1 New (w = 1)
New (w = )

New (w = d)

Scenario β Mean SD Mean SD Mean SD Mean SD

1 β1 = 5 0.53 0.29 0.04 0.04 0.27 0.26 0.67 0.35
0.11 0.17 0.14 0.15 0.10 0.10 0.07 0.08

β2 = -5 -0.55 0.30 -0.04 0.05 -0.28 0.32 -0.68 0.35
-0.08 0.15 -0.18 0.15 -0.11 0.09 -0.08 0.08

2 β1 = 5 0.76 0.33 0.09 0.06 0.34 0.16 0.91 0.40
0.09 0.14 0.20 0.14 0.14 0.11 0.09 0.08

β2 = 3 0.29 0.23 0.01 0.03 0.15 0.10 0.48 0.23
0.08 0.12 0.11 0.13 0.07 0.08 0.04 0.04

3 β1 = 5 0.51 0.39 0.03 0.07 0.41 0.70 0.95 0.34
0.22 0.21 0.24 0.19 0.20 0.17 0.13 0.11

-0.01 0.07 -0.01 0.11 -0.03 0.21 -0.04 0.12

β2 = 3 0.26 0.27 0.01 0.04 0.15 0.30 0.52 0.27
0.09 0.13 0.13 0.16 0.12 0.16 0.07 0.11

0.001 0.07 0.004 0.06 0.01 0.05 -0.01 0.07

4 β1 = 5 0.40 0.38 0.03 0.06 0.48 0.80 0.97 0.43
0.27 0.26 0.32 0.25 0.30 0.23 0.20 0.20

-0.04 0.12 -0.02 0.14 -0.11 0.24 -0.09 0.16

β2 = -3 -0.23 0.29 -0.004 0.01 -0.21 0.45 -0.56 0.30
-0.15 0.20 -0.16 0.19 -0.17 0.19 -0.09 0.13

0.03 0.08 -0.002 0.10 0.05 0.18 0.06 0.15

d

β1
1 5

10
( ) =

β1
2 5

10
( ) = −

β1
1 5

10
( ) =

β1
2 3

10
( ) =

β1
1 5

10
( ) =

β8
1 5

10
( ) = −

β1
2 3

10
( ) =

β8
2 3

10
( ) = −

β1
1 5
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1 5
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2 3
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on which the classification errors were calculated for
wide-ranging values of the tuning parameter. Then after
10 runs, we had an averaged classification error corre-
sponding to each tuning parameter value. The value that
generated the minimal averaged error was the one we
selected to fit the final model to all the data. Note that the
classification error rate from the final model was likely to
be biased due to the double use of the data for training/
tuning and test; the main purpose of fitting the final
model was to see the selected genes at the end.

First, we focused on the 1,070 genes that appeared in the
network with the largest variations of expression levels

(i.e., SD of expression levels across the 105 samples ≥ 15).
According to the KEGG pathway of Parkinson's disease
[23], 20 genes play a role in the disease progression, five
of which (UBE1, PARK2, UBB, SEPT5, and SNCAIP)
belong to the 1,070 genes. In addition to the classification
error, we added two additional criteria for method com-
parison: the number of disease genes identified, and the
number of genes identified. Table 4 shows that STD-SVM
made the most accurate classification, even though the
difference with other methods was perhaps non-signifi-
cant. The w = d ranked the second in predictive perform-

ance while produced a model including 70.6 genes on

average. In this case, the w =  gained advantage: it

selected more disease genes by a relatively sparse model
with a classification error non-significantly larger than
STD-SVM. From the 1,070 genes, with the final model the
new method identified 75 genes including one disease
gene.

Next, to better integrate the biological observation of the
KEGG pathway and the known network structure of [18],
we restricted our analysis to the first- and second-order-
neighbors of the 8 disease genes on the Parkinson's dis-
ease KEGG pathway whose expression levels and network
structure are available. The first-order-neighbor subnet-
work (PD-1nb-net) was composed of the 8 disease genes
and their 8 direct neighbors. The second-order-neighbor
subnetwork (PD-2nb-net) comprised the PD-1nb-net as
well as the direct neighbors of the 8 direct neighbors of the
disease genes, leading to a total of 26 genes. Figure 1 dis-
plays the two subnetworks. We conducted the analysis in
the same way as described above. The only difference
resided in that this time only genes appearing in the PD-
1nb-net and PD-2nb-net were included in the analysis.
Table 5 shows the results.

We see the gains from employing the new method when
narrowing down our focus on the PD-1nb-net and PD-

2nb-net. For the PD-1nb-net, w = 1 and w =  per-

formed equally well. They had the smallest classification
error and identified one more disease gene through a
model slightly larger than the one obtained from L1-SVM.
The new method with w = d won over in the case of PD-
2nb-net with the best accuracy and most selected disease

genes. The w =  ranked the second in terms of the pre-

diction accuracy while detecting 3 more disease genes by
a model with 3 more genes than that of the L1-SVM. This
means that the new method was able to identify more
clinically relevant genes while keeping the same number
of noise genes in the model as L1-SVM. In both subnet-
works, the final models included all the genes.

d

d

d

Table 4: Parkinson's disease data: 1,070 genes. A total of 1,070 
genes with SD of expression levels across the 105 samples ≥ 15 
had network information. The classification error, number of 
selected disease genes, number of selected genes, and their 
standard errors (SE in parentheses) were obtained by averaging 
over 10 runs. Five disease genes were UBE1, PARK2, UBB, SEPT5, 
and SNCAIP.

Method Error # Disease Genes # Genes

STD 0.424 (0.016) 5.0 (0.0) 1,070.0 (0.0)
L1 0.464 (0.021) 0.1 (0.1) 19.2 (3.8)
New (w = 1) 0.476 (0.015) 0.1 (0.1) 24.9 (4.3)

New (w = )
0.480 (0.026) 0.2 (0.1) 30.6 (5.2)

New (w = d) 0.451 (0.028) 0.0 (0.0) 70.6 (14.1)

Final Model - 1.0 75.0

d

Table 3: Simulation results for p = 550 or 1, 100. The simulation results were averaged over 100 runs for p = 550 or 1, 100 (22 
informative and either 528 or 1,078 noise genes).

Test Error (SE) # False Negative (SE) Model Size (SE)
Method p = 550 p = 1, 100 p = 550 p = 1, 100 p = 550 p = 1, 100

STD 0.305 (0.003) 0.354 (0.002) 0.0 (0.0) 0.0 (0.0) 550 (0.0) 1,100 (0.0)
L1 0.218 (0.004) 0.235 (0.004) 16.6 (0.2) 17.1 (0.2) 16.1 (1.0) 19.2 (1.2)
New (w = 1) 0.232 (0.003) 0.255 (0.004) 14.9 (0.3) 15.6 (0.3) 20.7 (1.1) 22.6 (1.4)

New (w = )
0.202 (0.004) 0.221 (0.004) 5.7 (0.5) 6.7 (0.6) 32.6 (1.5) 34.6 (1.9)

New (w = d) 0.170 (0.003) 0.180 (0.004) 0.7 (0.3) 1.3 (0.4) 82.6 (5.4) 98.9 (7.2)
d
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Breast cancer metastasis
The breast cancer metastasis data set [1,4] contains expres-
sion levels of 8,141 genes for 286 patients, 106 of whom
were detected to develop metastasis within a 5-year fol-
low-up after surgery. TP53, BRCA1, and BRCA2 are three

human genes that belong to the class of tumor suppressor
genes, which are known to prevent uncontrolled cell pro-
liferation, and to play a critical role in repairing the chro-
mosomal damage. Certain mutations of these genes lead
to increasing risk of breast cancer. We explored the pro-

Table 5: First- and second-order-neighbor subnetworks of Parkinson's disease data. The classification error, number of selected disease genes, 
number of selected genes, and their standard errors (SE in parentheses) were obtained by averaging over 10 runs. Eight disease genes were 
UBE1, PARK2, UBB, SEPT5, SNCAIP, GPR37, TH, and SNCA.

Network Method Error # Disease Genes # Genes

PD-1nb-net STD 0.476 (0.023) 8.0 (0.0) 16.0 (0.0)
L1 0.471 (0.017) 2.8 (0.7) 6.1 (1.5)
New (w = 1) 0.462 (0.016) 3.4 (0.8) 7.3 (1.7)

New (w = )
0.462 (0.014) 3.6 (0.7) 8.4 (1.5)

New (w = d) 0.482 (0.015) 3.0 (1.2) 7.5 (2.1)
Final Model - 8.0 16.0

PD-2nb-net STD 0.444 (0.016) 8.0 (0.0) 26.0 (0.0)
L1 0.449 (0.017) 3.1 (0.5) 10.9 (2.1)
New (w = 1) 0.464 (0.022) 5.3 (0.9) 13.2 (3.2)

New (w = )
0.447 (0.023) 6.1 (0.8) 13.7 (2.7)

New (w = d) 0.433 (0.016) 6.2 (0.9) 20.0 (2.5)
Final Model - 8.0 26.0

d

d

Parkinson's disease gene subnetworksFigure 1
Parkinson's disease gene subnetworks. Left: PD-1nb-net, including 8 Parkinson disease genes (gray) and their 8 direct 
neighbors (white). Right: PD-2nb-net, including 8 Parkinson disease genes (gray), their 8 direct and 10 second-order neighbors 
(white).
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tein-protein interaction (PPI) network previously used by
[1]. The PPI network comprises 57,235 interactions
among 11,203 proteins, obtained by assembling various
sources of experimental data and curation of the literature
[1]. We confined our analysis to the direct or first-order
neighbors (BC-1nb-net) of the three cancer genes, and the
subnetwork composed of two parts (BC-2nb-net): the
direct neighbors of TP53, and the second-order neighbors
of BRCA1 and BRCA2. We fit the final model and com-
pared the four methods in terms of classification error,
cancer genes selection, and model sparsity. The cancer
genes are the 227 known or putative cancer genes with
estimated mutation frequencies in cancer samples ([1]). A
total of 294 genes that fell into the BC-1nb-net had
observed expression levels, among which were 40 cancer
genes and 7 cancer genes (ABL1, JAK2, p53, PTEN,
p14ARF, PTCH, and RB) with mutation frequencies larger
than 0.10. The BC-2nb-net was composed of 2,070 genes,
1,718 of them with observed expression levels, including
107 cancer genes. Besides the 7 included in BC-1nb-net, 7
additional cancer genes (ACH, APC, EGFR, KIT, NICD,
RAS, and CTNNB1) that had mutation frequencies larger
than 0.10 belonged to BC-2nb-net.

For BC-1nb-net, w = d had the advantage in selecting can-
cer genes and those with large mutant frequencies (Table

6). The w =  detected more clinically relevant genes by

a sparser model while reaching a comparable classifica-
tion error rate to that of L1-SVM. Even though the final
model was parsimonious, it included 4 cancer genes, one
of which had a large mutation frequency. For BC-2nb-net,

the new method with w =  detected more cancer genes

with equally accurate predictions while maintaining a

sparse model compared with L1-SVM. The final model
included only 23 genes out of 1,718, two of which were
cancer genes with one having a large mutation frequency.

Conclusion
The advancement in the microarray technology has
enriched the tool kit of researchers to decipher the com-
plexity of disease mechanisms at the genomic level. Stud-
ies have been widely conducted to identify genetic
markers to better the diagnostic classification and prog-
nostic assessment, largely by ignoring biological knowl-
edge on gene functions and treating individual genes
equally and independently a priori. The downside of such
an endeavor has been realized; for example, gene markers
identified across similar patient cohorts for the same dis-
ease in such a way often lack consistency. As a viable alter-
native, the network-based approach has been gaining
popularity. In addition to improving predictive perform-
ance and gene selection, the network-based approach
extracts more biological insights from high-throughput
gene expression data. Here we have proposed a network-
based SVM, with a penalty term incorporating gene net-
work information, as a practically useful classification
tool for microarray data. Our simulation studies and two
real data applications indicate that the proposed method
is able to better identify clinically relevant genes and make
accurate predictions.

List of abbreviations used
SVM: support vector machine; STD-SVM: standard sup-
port vector machine; L1-SVM: L1-penalized support vec-
tor machine; LP: linear programming; PD: Parkinson's
disease; BC: Breast cancer; KEGG: Kyoto Encyclopedia of
Genes and Genomes; PPI: protein protein interaction

d

d

Table 6: Subnetworks of breast cancer data. The BC-1nb-net/BC-2nb-net had 294/1,718 genes in total including 40/107 cancer genes, 
and 7/14 cancer genes with mutation frequencies larger than 0.10. The classification error, number of selected cancer genes with 
mutation frequencies larger than 0.10 (CA-LMF), number of selected cancer genes (CA), number of selected genes, and their standard 
errors (SE in parentheses) were obtained by averaging over 10 runs.

Network Method Error # CA-LMF # CA # Genes

BC-1nb-net STD 0.371 (0.014) 7.0 (0.0) 40.0 (0.0) 294.0 (0.0)
L1 0.357 (0.014) 0.3 (0.2) 4.6 (0.8) 32.3 (4.8)
New (w = 1) 0.360 (0.014) 0.4 (0.2) 3.6 (1.1) 25.0 (7.0)

New (w = )
0.366 (0.012) 0.6 (0.3) 4.7 (1.2) 27.2 (5.2)

New (w = d) 0.399 (0.012) 1.2 (0.2) 7.8 (1.7) 40.2 (6.5)
Final Model - 1.0 4.0 14.0

BC-2nb-net STD 0.351 (0.014) 14.0 (0.0) 107.0 (0.0) 1,718.0 (0.0)
L1 0.360 (0.006) 0.0 (0.0) 2.4 (0.9) 42.9 (11.8)
New (w = 1) 0.374 (0.011) 0.1 (0.1) 1.9 (0.5) 51.4 (12.6)

New (w = )
0.360 (0.007) 0.2 (0.1) 2.5 (0.7) 41.7 (9.2)

New (w = d) 0.385 (0.021) 0.3 (0.2) 0.7 (0.3) 34.2 (10.3)
Final Model - 1.0 2.0 23.0

d

d
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