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Abstract: The increasing demands for real-time marine monitoring call for the wide deployment
of Marine Monitoring Networks (MMNs). The low-rate underwater communications over a long
distance, long propagation delay of underwater acoustic channel, and high deployment costs of
marine sensors in a large-scale three-dimensional space bring great challenges in the network
deployment and management of MMN. In this paper, we first propose a multitier, hierarchical
network architecture of MMN with the support of edge computing (HMMN-EC) to enable efficient
monitoring services in a harsh marine environment, taking into consideration the salient features of
marine communications. Specifically, HMMN-EC is composed of three subnetworks, i.e., underwater
acoustic subnetwork, the sea-surface wireless subnetwork, and the air wireless subnetwork, with a
diversity of network nodes with different capabilities. We then jointly investigate the deployment
diverse network nodes with various constraints in different subnetworks of HMMN-EC. To this end,
we formulate a Multiobjective Optimization (MO) problem to minimize the network deployment
cost while achieving the maximal network lifetime, subject to the limited energy of different marine
nodes and the complex deployment environment. To solve the formulated problem, we present an
Ant-Colony-based Efficient Topology Optimization (AC-ETO) algorithm to find the optimal locations
of nodes in different subnetworks of MMN in a large-scale deployment. The time complexity of the
proposed algorithm is also analyzed. Finally, extensive simulations are carried out to validate the
superior performance of the proposed algorithm compared with some existing solutions.

Keywords: marine monitoring networks; multiobjective optimization; network deployment; ant
colony algorithm; gurobi

1. Introduction

With the deepening of humans’ understanding of the ocean, as well as the rapid development of
science and technology, great attention has been paid to the ocean because of its huge economic
potential and strategic importance. The increasing demand for the exploitation and utilization
of marine resources calls for the wide deployment of marine monitoring networks. For example,
a large number of drilling platforms have been built at sea to extract oil from the sea [1]. However,
the exploitation of offshore oil resources also brings pollution risk to the marine environment. In 2010,
the Gulf of Mexico oil spill accident led to serious harm to the marine ecosystem [2]. In such case,
an underwater monitoring network is helpful to detect the oil spill and report the detection results
in a timely manner. Another application is real-time monitoring for marine ranching, which is
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heavily dependent on the quality of marine environment to foster the marine fishery resources [3].
Thus motivated, a real-time Marine Monitoring Network (MMN) has become an important research
topic for both academia and industry. Node deployment is one of the fundamental tasks for MMN,
and also is an attractive research topic. During the past decade, many technologies and systems related
to marine monitoring have been developed, such as a buoy for marine monitoring [4,5], a prediction
model of battery life [6], and a data acquisition and transmission system [7], which build a foundation
for the implementation of the real-time MMN. According to the requirements of marine monitoring,
various types sensors are deployed to monitor and measure different physical and chemical parameters
such as water temperature, pressure, water direction and speed, salinity, turbidity, pH, oxygen density,
and chlorophyll levels [4], and then the acquired data are transmitted back to the data center on land by
relay nodes. The data acquired from the seabed far away from the coast needs to be relayed back to the
data center through multi-layer relays. Compared with terrestrial monitoring networks, deployment of
an MMN is more costly and complex due to the harsh marine environment in three-dimensional space.

Most existing works of the deployment of marine monitoring sensor networks in the literature
proposed different algorithms to improve the network coverage. In [8], a distributed node deployment
algorithm was proposed to utilize the mobility of the anchor nodes to maximize the coverage of 3D
underwater wireless sensor networks in dynamic ocean environments. In [9–12], different algorithms
were proposed to deploy sensors and surface gateways in a underwater sensor network. These
works mainly focus on the deployment of underwater acoustic networks (UANs). To enable marine
monitoring service, it is also critical to forward the data of the UAN towards the Base Station (BS)
which is usually deployed in the shoreline of ocean. For efficient data communications over the
large area of ocean, a multitier network that incorporates both underwater acoustic communications,
radio communications above the water, and aerial relay over the air, is highly desirable. To the best
of our knowledge, no existing work on the deployment of marine monitoring network study the
deployment of an integrated multitier hierarchical network architecture, which includes underwater
acoustic subnetwork, sea-surface wireless subnetwork, and air wireless subnetwork.

In this paper, we first propose a three-tier hierarchical network architecture of MMN with
support of edge computing (HMMN-EC), as shown in Figure 1, for an integrated sea–air–ground
monitoring system. In the HMMN-EC, the underwater acoustic subnetwork consists of a number of
battery-powered sensors with limited energy [13]—Autonomous Underwater Vehicles (AUVs) [14]
and buoys [15] with acoustic receiving devices and RF transmitting devices; the sea-surface wireless
subnetwork consists of unmanned ships which carry RF communication devices; and the air wireless
subnetwork [16,17] consists of Aerial Relay Nodes (ARNs), such as Unmanned Air Vehicles (UAVs)
with RF communication equipment. Under the proposed network architecture, the node deployment
problem is further investigated to achieve the minimum network cost while ensuring the maximum
network lifetime. Specifically, a Multiobjective Optimization (MO) problem is formulated to minimize
the costs and maximize the network lifetime by deploying different types of nodes in different
tiers of the network, considering the energy and capacity constraints of each node. The formulated
optimization problem can be solved by Gorubi. As Gurobi does not work well when the network
is scaled up, we propose a swarm-intelligent-based optimization approach to find the near-optimal
solution of the formulated optimization problem. The main contributions are summarized as follows.

(1) A novel integrated multitier hierarchical network architecture of MMN with support of edge
computing is proposed, namely, HMMN-EC which integrates the UAN, the sea-surface wireless
network with edge computing, and the air wireless network.

(2) Based on the hierarchical network architecture, a multiobjective optimization framework
is formulated to minimize the network deployment cost while maximizing the network lifetime
by determining the deployment locations of network nodes, including ARNs, Edge Computing
Nodes (ECNs), Sea-Surface Nodes (SSNs), and Underwater Relay Nodes (URNs), and the data
transmission links between network nodes, subject to various constraints of the network topology,
network connectivity, and the battery capacity.
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Figure 1. The HMMN-EC model.

(3) An Ant-Colony-based Efficient Topology Optimization (AC-ETO) algorithm is presented to
solve the formulated MO problem in various network scenarios of different numbers of nodes.

(4) Extensive simulations are conducted to validate the performance of the proposed algorithm.
The results show that the proposed algorithm approaches the optimal solution and outperforms some
existing solutions.

The rest of this paper is organized as follows. In Section 2, we review the related works about the
deployment of MMN. Section 3 describes the network model and presents the problem formulation.
In Section 4, an AC-ETO algorithm is proposed. Section 5 shows the numerical analysis, followed by
concluding remarks in Section 6.

2. Related Works

Most researches of deployment of MMN focus on node deployment of UAN networks, i.e.,
sensors and/or surface gateways. Ibrahim S., Cui J., and Ammar R. formulated the optimal gateway
deployment problem as an Integer Linear Programming (ILP) problem in [10]. They propose an
algorithm to deploy multiple surface-level gateways in [12], and use a greedy algorithm to select
gateway positions among candidate locations. In these works, they mainly study sensor deployment
under 2D space. In [18], Song X. and Gong Y. et al. proposed a 3D node deployment algorithm for
underwater sensor networks. The proposed algorithm can achieve a large coverage area with the
minimal number of nodes. In [19], Jiang P., Wang X., and Jiang L. proposed a depth adjustment
algorithm based on connected tree (CTDA), in which the sink node is used as the first root node of
a connected tree, and the whole network is organized as a forest that comprises many connected
subtrees. To maximize the network coverage, coverage overlaps between the parent node and the child
node are reduced within each subtree. In addition, in [9,20,21], Han G. and Pompili D. et al. presented
2D and 3D communication architectures, and review deployment algorithms and strategies for UANs
from different perspectives. It is found that most existing works focus on the node deployment of
underwater subnetwork nodes, and few works jointly consider the network deployment of underwater
network and network above the water surface.

With the popularity of Swarm Intelligence (SI), a number of researches propose to use SI- and
SI-based algorithms (SIAs) to tackle the optimization problems in node deployment of traditional
wireless sensor networks and communication networks. Ant Colonies Optimization (ACO) is one of the
well-known representative SIAs, where complex collective behavior emerges from the behavior of ants.
ACO is effective for solving Non-deterministic Polynomial (NP) hard discrete optimization problems,
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and has been successfully applied to a number of scientific and engineering problems, including
grid-based deployment for wireless sensor networks [22–24]. ACO is also applied to the topology
optimization [25,26] and routing algorithm [27,28] for wireless networks. An ACO algorithm coupled
with a local search heuristic is proposed in [29] to deploy a WSN under a certain reliability constraint
at the minimum deployment cost. However, algorithms for traditional WSN or communication
networks cannot be directly applied for MMNs due to the different characteristics of the deployment
environment of ocean in three-dimensional space. To this end, we are motivated to apply ACO for the
MMN deployment under three-tier architecture, and formulate a multiobjective optimization problem
characterizing the 3D marine environment.

3. Network Model and Problem Formulation

3.1. Network Model

The hierarchical network model of HMMN-EC is composed of three subnetworks: (1) the
underwater acoustic subnetwork, (2) the sea-surface wireless subnetwork, and (3) the air wireless
subnetwork, as shown in Figure 1.

In an underwater acoustic subnetwork, multiple sensors deployed at representative Monitoring
Points (MPs) are deployed to monitor the target areas. The MP then transmits the monitoring data to
a SSN, typically via one or multiple URNs, when communication distance is beyond the transmission
range of sensors at MPs. URN is a buoyancy-driven device which can hover and select a specified
position to acquire and transmit data over acoustic communication channels [30–32]. The location of
URN should be carefully decided as it is dependent on the influence of ocean flow and undercurrent.
SSU is equipped with a wireless communication radio installed on the buoy, an acoustic–electric
conversion device, and an underwater acoustic receiver located under the sea surface. After receiving
the underwater acoustic signals from URNs, it converts them into radio signals and then transmits
radio signals to an ECN or other SSN within its communication distance.

The sea-surface wireless subnetwork is comprised of multiple ECNs, which are responsible for
receiving radio signals from the underwater acoustic subnetwork, processing the data in an edge device,
and sending the processed data to the air wireless subnetwork. Generally, unmanned ships with
communication equipment and small edge servers are used as ECNs.

The air wireless subnetwork further relays the received data from the the sea-surface wireless
subnetwork to the BS. This subnetwork consists of multiple ARNs that transmit the received data to
the BS over one or multiple hops through other ARNs. Finally, the BS transmits the data from the
HMMN-EC network to the data center through the terrestrial wireless networks.

In the HMMN-EC, the BS is the destination node; ARNs, ECNs, SSNs, and URNs are the
intermediate nodes; and MPs are source nodes. All nodes are organized hierarchically within the
communication radius of nodes, and an efficient tree architecture will finally be formed to achieve an
effective communication.

In summary, various nodes involved in the HMMN-EC have a certain communication radius,
by using either radio or acoustic communications; and each node only communicate with other nodes
of the same subnetwork or nodes of the upper subnetwork within their communication distance.
In addition, the ARN and ECN nodes may have sufficient power supply with no stringent capacity
limitation, but battery-powered SSN and URN nodes are typically of small sizes and thus are subject
to certain battery constraints, which should be taken into consideration for network deployment.

3.2. Energy Model

In the HMMN-EC, ARNs and ECNs usually have sufficient energy supply with no stringent
capacity limitation; while battery-powered underwater nodes, i.e., SSNs, URNs, and MPs, are typically
of small sizes with limited battery capacity. Thus, to provision quality marine monitoring services of
the HMMN-EC, it is of critical importance to improve the operation time of the underwater nodes.
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Generally, the states of the battery of a node include sending, receiving, idle, and sleeping. It is
reported in [33] that the communication module consumes the most energy, i.e., around 80% of the
total energy consumption. Energy consumption during idle and sleep modes is only related to time.
In our system model, energy consumption per unit of time during idle and sleep mode is regarded as
a constant. Here, an URN communicates to other URNs or SSNs over underwater acoustic channels.

The transmission and receiving energy consumption of node i over a communication channel, i.e.,
either an acoustic channel [34] or a radio channel [35], are denoted as Ei

tr and Ei
re, respectively, which

are given by

Ei
tr(lij, dij) =

 E0dk
ij10dij

α( f )
10 lij, acoustic channel,

Eeleclij + εamplijd2
ij, radio channel,

(1)

and

Ei
re(lti) =

{
Erlti, acoustic channel,
Eeleclti, radio channel,

(2)

where Eelec is the energy consumption of the transmitter circuit; εamp is the energy consumption
of power amplifier; E0 is the energy consumption of transmitting one bit of data with a certain
communication radius; Er is the energy consumption of receiving one bit of data; k is the energy
diffusion factor; lij is the size of the data packet from node i to node j in bits; and dij is the transmission
distance from node i to node j. α( f ) is the Doppler frequency-absorption coefficient of signal frequency
f , which is given by Throp [34],

α( f ) =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75× 10−4 f 2 + 0.003.

Thus, the communication energy consumption of node i is

Eci = ∑
j∈V

Ei
tr(lij, dij)eij + ∑

t∈V
Ei

re(lti)eti, (3)

where eij = 1 indicates that node i can directly communicate with node j and vice versa. The total
energy consumption of node i is

Ei = Eci + Ei
idle + Ei

sleep, (4)

where Ei
idle and Ei

sleep are the energy consumption of node i during idle and sleep mode, respectively.

3.3. Problem Formulation

We model the HMMN-EC as a directed graph
→
G= (V,

→
E), where V represents the set of nodes,

i.e., BSs, ARNs, ECNs, SSNs, URNs, and MPs, and
→
E represents directed edges between two nodes

that are within the communication radius. To differentiate nodes, the subsets of BSs, ARNs, ECNs,
SSNs, URNs, and MPs are denoted as VBS, VARN, VECN, VSSN, VURN, and VMP. Thus, the whole set of
nodes V = VBS ∪ VARN ∪ VECN ∪ VSSN ∪ VURN ∪ VMP. The edge eij ∈

→
E is a binary variable, eij = 1

indicates there exists a direct communication link from node i to node j, and vice versa. |Vx| represents
the number of nodes in set Vx. The main notations used in the paper are listed in Table 1.

As the marine monitoring devices—especially the battery-powered underwater monitoring
devices—are expensive, it is desirable to reduce the total number of devices for deployment to
minimize the total deployment cost. In the meantime, it is hard if not impossible to replace batteries of
underwater nodes, and thus, it is important to maximize the operation time of network nodes. In this
paper, we will formulate MO problem under the HMMN-EC architecture. The primary objectives are
to minimize the total deployment cost while maximizing the network lifetime subjected to the limited
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node communication radius and battery capacities. Here, the network lifetime is defined as the time
until the first node runs out of energy [36].

Table 1. Table of Notations.

Symbols Definition

gi The amount of data of MPi(per unit time).
RMP The perceived radius of MPs.
DARN The communication distance of ARNs.
DECN The communication distance of ECNs.
DSSN The communication distance of SSNs.
DURN The communication distance of URNs.
CARN The cost of ARNs.
CECN The cost of ECNs.
CSSN The cost of SSNs.
CURN The cost of URNs.
Eelec Energy consumption for sending and receiving data per bit.
PUR The reception power of URNs.
PUT The transmission power of URNs.
EIi The initial energy of node i.
Eci The energy consumption of node i per unit time.
K K-coverage: each MP must be covered by K URNs.
→
E= {eij}|V|×|V|, ∀i, j ∈ V The matrix of edge variables, where eij ∈ {0, 1} is a binary variable and

eij = 1 denotes node i can directly communicate with node j; and vice versa.
A = {am}1×|VURN|, ∀m ∈ VURN The location incidence vector of nodes, where am ∈ {0, 1} is a binary

variable and am = 1 denotes that the candidate location m is selected to
deploy a URN; and vice versa.

B = {bn}1×|VSSN|, ∀n ∈ VSSN The location incidence vector of nodes, where bn ∈ {0, 1} is a binary variable
and bn = 1 denotes that the candidate location n is selected to deploy a SSN;
and vice versa.

H = {hl}1×|VECN|, ∀l ∈ VECN The location incidence vector of nodes, where hl ∈ {0, 1} is a binary variable
and hl = 1 denotes that the candidate location l is selected to deploy an ECN;
and vice versa.

Z = {zt}1×|VARN|, ∀t ∈ VARN The location incidence vector of nodes, where zt ∈ {0, 1} is a binary variable
and zt = 1 denotes that the candidate location t is selected to deploy an
ARN; and vice versa.

fij, ∀i, j ∈ V The data flow from node i to node j.

3.3.1. Minimization of the Total Network Deployment Cost

The first objective is to minimize Cnet, the total deployment cost of the network, i.e., the sum
deployment cost of ARNs, ECNs, SSNs, and URNs. The MPs are predeployed based on the marine
areas of interest, while other types of nodes are deployed to collect and forward the information
from MPs to the Internet servers. Denote the unit deployment cost of ARN, ECN, SSU, and URN as
CARN,CECN,CSSN, and CURN. Thus, we have

Cnet = CURN ∑
m∈VURN

am +CSSN ∑
n∈VSSN

bn +CECN ∑
l∈VECN

hl +CARN ∑
t∈VARN

zt, (5)

where am, bn, hl , zt are binary variables of Candidate Locations (CLs) of URNs, SSNs, ECNs,
and ARNs, respectively. The value of 1 indicates that the CL is selected to place a corresponding node,
and vice versa.

3.3.2. Maximization of the Network Lifetime

Besides the network deployment cost, it is also critical to ensure that the HMMN-EC provisions
quality marine monitoring services as long as possible. The network lifetime is defined as the operation
time of the network until the first battery-powered node exhausts the energy supply and become out
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of service. Given the initial battery of a battery-powered node i, EIi, and the energy consumption of
node i, Ei per unit time, the lifetime of node i is then given by

Ti =
EIi
Ei

, ∀i ∈ VURN ∪VSSN. (6)

Therefore, the network lifetime Tnet is defined as

Tnet = min
∀i∈VURN∪VSSN

Ti = min
∀i∈VURN∪VSSN

EIi
Ei

. (7)

Notice that Ei is dependent on the communication distance and the communication data volume
shown as (1)–(4). Thus, the network lifetime is determined by Eci of the first energy-exhausted node i.
Accordingly, to maximize the network lifetime, it is equivalent to minimize the energy consumption
of the first energy-exhausted node. According to (3) and 4), the energy consumption of the first
energy-exhausted node is given by

Emax = max
i∈VURN∪VSSN

(∑
j∈V

Ei
tr(lij, dij)eij + ∑

t∈V
Ei

re(lti)eti, + Ei
idle + Ei

sleep). (8)

Without the loss of generality, the initial energy of node (EI) is regarded as 100% in the
following formulation.

Thus, the MO problem is formulated as follows:

P1 : minimize Cnet + ωEmax, (9)

s.t. ∑
j∈VURN

eij ≥ K, ∀i ∈ VMP, (10)

∑
i∈VMP∪VURN

eim ≥ am, ∀m ∈ VURN, m 6= i, (11)

∑
j∈VURN∪VSSN

emj = am, ∀m ∈ VURN, m 6= j, (12)

∑
j∈VURN∪VSSN

ejn ≥ bn, ∀n ∈ VSSN, n 6= j, (13)

∑
q∈VSSN∪VECN

enq = bn, ∀n ∈ VSSN, n 6= q, (14)

∑
q∈VSSN∪VECN

eql ≥ hl , ∀l ∈ VECN, l 6= q, (15)

∑
u∈VECN∪VARN

elu = hl , ∀l ∈ VECN, l 6= u, (16)

∑
u∈VECN∪VARN

eut ≥ zt, ∀t ∈ VARN, t 6= u, (17)

∑
s∈VARN∪VBS

ets = zt, ∀t ∈ VARN, t 6= s, (18)

∑
i∈VURN

fij + ∑
k∈VMP

gkekj = ∑
l∈VURN

f jl + ∑
m∈VSSU

f jm, ∀j ∈ VURN , i 6= j, j 6= l, (19)

∑
i∈VSSN

fij + ∑
k∈VURN

fkj = ∑
l∈VSSN

f jl + ∑
m∈VECN

f jm, ∀j ∈ VSSN, i 6= j, j 6= l. (20)
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Equation (9) is the weighted sum of the two main objectives, where the network cost Cnet and the
energy consumption of the first exhausted node Emax are defined in (5) and (8), respectively, and ω is
the weight to strike a balance of the two objectives.

Constraint (10) specifies that each MP must be covered by at least K URNs. Different monitoring
tasks have different requirements of K. Equation (11) indicates that if CL j is selected to deploy a URN,
then aj = 1, and there exists at least one link of receiving data, e.g., between a MP or URN node i and
j. Equation (12) indicates that when an URN j is deployed, there exists one link of forwarding data,
e.g., between node j to another URN or SSN nodes l. Similarly, SSNs, ECNs, and ARNs are subject to
the constraints (13)–(18), respectively. Equations (13) and (14) specify that if a SSU n is deployed, i.e.,
bn = 1, the SSU n has one link of forwarding data and at least one link of receiving data. Similarly,
Equations (15) and (16) specify that if CL l is selected to deploy an ECN, i.e., hl = 1, there exists one
link of forwarding data and at least one link of receiving data. Equations (17) and (18) specify that if
CL t is selected to deploy an ARN, i.e., zt = 1, there exists one link of forwarding data and at least one
link of receiving data. Equations (19) and (20) specify the flow constraint that the output data should
be the same as the input data.

4. Ant-Colony-Based Efficient Topology Optimization (AC-ETO)

4.1. Algorithm Description

As the formulated optimization problem is an integer linear programming problem, which
is known to be NP-hard [37]. The ant colony is widely used to solve various NP-hard problems.
especially [38]. Thus, in this section, we propose an Ant-Colony-based efficient topology optimization
algorithm, namely, AC-ETO, to solve the proposed problem in P1.

In a traditional ACO algorithm, ants choose the next city through a probabilistic rule, and then
iteratively construct the best path [39]. The probability for an ant to move from city i to city j is

pij =
(τij)

αη
β
ij

∑
j∈Vallowed

(τis+τ′is)
αη

β
is

, (21)

where τij is the amount of pheromone deposited for a transition from city i to j; α is a parameter to
control the influence of τij; ηij is a heuristic factor for the transition from city i to j and is typically
inversely proportional to the distance between cities i and j, i.e., ηij = 1/dij; β is a parameter to control
the influence of ηij; and Vallowed is the feasible neighborhood of an ant in city i.

In AC-ETO, we select data forwarding paths in the hierarchical HMMN-EC step-by-step. In each
step, a probabilistic transition rule is applied to select a deployment location. For example, at node i,
the probability that the deployment location j (j = 1,2,...|Vi

FCL|) is selected is given by

pij =
(τ′ij+τ′′ij )

α
η′ij

β

∑
j∈Vi

FCL

(τ′ij+τ′′ij )
αη′ij

β , (22)

where τ′ij given in Formula (23) is the global pheromone trail value between node i and node j; τ′′ij
given in Formula (24) is the local value between the two nodes i and j; η′ij is the heuristic value of
adding node j to the connected cover currently being built by the ant, which is defined as Formula (25);
and α and β are parameters that control the influence of the pheromone trail values and heuristic
information on pij, respectively. Vi

FCL is the Feasible Candidate Location (FCL) set of node i, and FCL
is defined as CLs within the communication range of a node.

τ′ij = (1− ρ1)τ
′
ij + ∆τ′ij, (23)

τ′′ij = (1− ρ2)τ
′′
ij + ∆τ′′ij , (24)
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η′ij =

{
1

Ei
tr

i ∈ VURN ∪VSSN

1 otherwise
(25)

where Ei
tr is given by Formula (1). ∆τ′ij and ∆τ′′ij are defined as follows:

∆τ′ij =

{
Q−Cj

Cbestnet
eij = 1

0 otherwise
(26)

∆τ′′ij =

{
Q−Cj

Cpath
eij = 1

0 otherwise
(27)

where Cj is the cost of node j, Cbestnet is the current minimum network cost, and Cpath is the
cost of the path. Q is a constant greater than 1, and ρ1 and ρ2 are the rates of global and local
pheromone evaporation.

The process of AC-ETO is divided into two phases. The first phase is the initialization phase,
which reduces the search space so that only FCLs are selected and stored by certain nodes. The second
phase is the planning phase, where the optimization process is iteratively performed to construct the
network topology and remove the redundant edges until the desired result is reached.

We first use a small-scale network with 2 MPs as an example to describe the algorithm. In the
initialization phase, the distances between nodes are calculated based on the location of nodes. Each
node then constructs a FCL table which includes all nodes in its communication coverage. For instance,
the FCL table of MP0 includes URN0 and URN1. In the planning phase, a number of iterations are
involved. In each iteration, a number of ants are placed on each MP to construct paths to the BS
by using the probabilistic rule, the local pheromone, and the global pheromone defined in (22)–(24).
An ant placed on MP0 moves to the next node, e.g., URN0 in the FCL table according to the pheromones
and the transition probability until it arrives at the BS. After the ant reaches the BS, the BS informs all
nodes along the path to update the local pheromone and selects the best path from multiple ants, e.g.,
MP0-URN1-SSN0-ECN0-ARN1-BS0 and MP1-URN2-SSN2-ECN0-ARN0-BS0 in the 2-MP example,
as shown in Figure 2a. Notice that the two paths are independently found by ants and there may be
multiple links between two nodes, e.g., ECN0-ARN1-BS0 and ECN0-ARN0-BS0. In such case, the two
links are compared and the path with higher energy consumption, e.g., ECN0-ARN0-BS0, is removed
to obtain a tree with Cnet + ωEmax = 68.417, as shown in Figure 2b. The iteration repeats until no better
tree with a smaller Cnet + ωEmax can be found.

(a) (b)

Figure 2. The topology of the network with 2 MPs; (a) Before removing; (b) After removing.

The pseudo code of the proposed AC-ETO is elaborated in Algorithm 1.
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Algorithm 1 The pseudo code of AC-ETO algorithm
Input:VMP, VURNVSSN, VECN, VARN, VBS

1: Phase I: Initialization
2: Input positions of nodes and other parameters;
3: N ← |V|;
4: DN×N ← the distance between nodes;
5: for i = 1 to N do

6: Ti
Feabile ← FCLtable_Bld(i);

7: end for
8: Phase II: Multi-objective planning
9: M_GlobalN×N ← {1};

10: Vstart ← VMP, M← |VMP|;
11: repeat

12: Step 1-Network construction
13: for i = 1 to M do

14: Take a MP j randomly from Vstart;
15: Place m ants on j; \\ m is a constant integer
16: for each ant r = 1 to m do

17: M_LocalN×N ← {1};
18: Put j into node_list of r: Vr

list ← Vr
list ∪ {j};

19: k← j;
20: M_probN×N ← {0};
21: while (l /∈ VBS) do

22: Choose and move to next node k from Tk
Feabile;

23: Vr
list ← Vr

list ∪ {k};
24: end while
25: Calculate the cost of Vr

list;
26: Calculate the energy consumption of each node t:ECt ;
27: end for
28: Choose the best path for MP j from {V1

list, ..., Vm
list} → listj;

29: The Cost of listj → Cj;
30: Calculate the energy consumption of each node t:ECt ;
31: Update M_LocalN×N ;
32: end for

\\ Step 2-Redundant edge removal
33: Remove redundant edges from the initial constructed network;
34: Update M_GlobalN×N ;
35: until iterative number > ψ)
36: Output: the optimal solution, total cost, and energy consumption;

4.2. Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed (AC-ETO) algorithm.
Phase I: Initialization (Lines 1–7): In the initialization phase, the locations of a number of network

nodes, including BS, MPs, CLs of ARNs, ECNs, SSNs and URNs, are imported. Accordingly, the
network parameters such as communication distance, initial energy, and transmit and receive power
are set. The complexity of initialization is O(N), where N is the network size. Then, the distance
matrix between neighboring nodes are calculated first, and the complexity is O(N2). According to the
distance matrix, each node maintains an FCL table that includes the list of nodes that it can directly
communicate with. For example, an URN list a set of other URNs and/or SSNs in its communication
coverage. The worst-case complexity is O((N − 1)(N −M)). Therefore, the complexity of Phase I is
O(2N2 −MN − N + M).

Phase II: Topology planning (Lines 8–34): Based on the FCL tables calculated in phase I,
an AC-basedoptimal method is used to find the placement of the minimum cost and the energy
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consumption. The algorithm is iteratively performed for network construction and redundant edge
removal until a desirable result is reached. In Lines 9–10, the matrix of global pheromone is initialized
to 1 by the memset function with a complexity of O(N), and the subset VMP, which has M elements,
is set as the set of starting points Vstart and the complexity is O(M), where M is the number of MPs. In
Lines 11–34, the iterative optimization process is executed, where Lines 12–31 are for Step 1—Network
construction, and Lines 32–33 are for Step 2—Redundant edge removal. In Step 1, an ant colony is
placed on a MP which is randomly selected from VMP, and then moves to construct paths towards the
BS. By comparing the values of (9) for each feasible path, the best one—the one with the minimum value
of (9)—is selected and stored. When M ant colonies complete path construction, the sequences of M best
paths are selected to construct a network. Step 1 yields the worst case complexity O(MN2 + MN + M2).
In Step 2 (Lines 32–33), the result of Step 1 is modified by removing some redundant edges according to
the characteristics of the tree structure constraints, and the complexity of this step is O(N2 + M2 + M).
Figure 2 shows an example of Step 2. Figure 2a shows the constructed network topology after step 1.
It can be seen that the structure is not a tree topology as the out degree of ECN0 is 2. In Figure 2b, two
redundant edges are removed from the network to form a tree topology. Thus, the complexity of Lines
12–33 is as follows.

O(MN2 + MN + M2) + O(N2 + M2 + M) = O(MN2 + N2 + MN + 2M2 + M).

Accordingly, if N is sufficiently large, the complexity of Phase II is approximately O(ψMN2 +

ψMN + ψM2 + ψM), where ψ is the maximum number of iterations.
Therefore, the overall computation complexity of the algorithm is O(2N2 − MN − N +

M)+O(ψMN2 + ψMN + ψM2 + ψM) ≈ O(ψMN2 + ψMN + ψM2). The AC-ETO is efficient and
achieves a polynomial time complexity.

5. Simulations and Discussion

In this section, we validate the performance of the proposed algorithm and compare it with
benchmark algorithms in different network scenarios. MPs are pre-defined carefully in the monitoring
sea area according to sea state conditions and needs. Specifically, we first validate the performance
in a small-scale network. Then, we show the performance of MO problem solved by Gurobi [40] in
small-scale networks and compare it with our proposed algorithm. A greedy algorithm is further
presented and compared with the proposed AC-ETO algorithm. We set up multiple experiments of
eleven network scenarios of different scales, as shown in Table 2. The main parameters used in the
experiments are listed in Table 3. Without loss of generality, the generic cost unit (gcu) and the generic
time unit (gtu) are defined to simplify the evaluation of deployment costs and network lifetime in the
case studies. The impacts of ω on the results are tested in different scenarios under various network
scales, as shown in Figure 3. It can be seen that the deployment cost shows little variance, but the
energy consumption may decrease significantly when ω increases. In other experiments, the value of
ω is set to 2 × 106.
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Table 2. The setting of simulated scenarios. CLs—Candidate Locations.

Scenario Index
Number of

BS MP CLs of ARN CLs of ECN CLs of SSN CLs of URN

0 1 2 2 3 4 6
1 1 2 1 2 10 15
2 1 4 1 2 20 25
3 1 6 2 8 20 30
4 1 8 2 8 25 40
5 1 10 3 5 35 50
6 1 12 3 10 40 60
7 1 15 3 9 50 70
8 1 20 4 12 80 100
9 1 25 5 16 100 120
10 1 35 7 25 125 150
11 1 50 7 25 170 200

Figure 3. The impacts of ω: DC stands for Deployment Cost, and EC stands for Energy Consumption.
Sce. is the abbreviation of Scenario.

Table 3. Parameter Setting.

Parameter Value

EISSN, EIURN 2, 3 (J)
Er, Eo 10, 50 (nJ)
Eelec 50 (nJ)
DURN, DSSN, DECN, DARN 5, 10, 25, 30 (km)
RMP 0.2 (km)
CURN,CSSN,CECN,CARN 15, 10, 9, 9 (gcu)
εamp 0.84
ω 2 × 106

5.1. Performance Validation in Small-Scale and Medium-Scale Networks

We first evaluate the network performance of small-scale network scenarios with a small number
of nodes, i.e., Scenario 0 and Scenario 1. Let us take Scenario 0 as an example. The results obtained by
Gurobi in Figure 4 show the deployment solution of Scenario 0. The deployment cost of this solution is
68, which is the minimum cost in Scenario 0. Similarly, the energy consumption is 8.18 × 10−5, which
is also the lowest one among all deployment plans. In this simple case, the optimization solution
obtained by Gurobi is optimal, compared with the results obtained from the exhaustive search.
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Figure 4. The optimal solution of Scenario (Cnet = 68 gcu, Emax = 8.18× 10−5%).

We then compare the solutions of the MO problem (P1) with each of the subproblems of MO,
i.e., to minimize the cost (P2) or to minimize the energy consumption (P3) under different scenarios
from scenario 1 to 7. The results are compared in Figure 5. As shown in Figure 5a, the deployment
cost of P1 is slightly greater than that of P2, but smaller than that of P3. Figure 5b shows that the
energy consumption of P1 is similar to that of P3, but much smaller than that of P2. Correspondingly,
the network lifetime of P1 is much greater than that of P2, while smaller-than or equal-to that of
P3, as shown in Figure 5c. Thus, using P1, a longer network lifetime can be achieved with a lower
deployment cost. Again, Gurobi can achieve the optimal solution.

(a) Deployment Cost (b) Energy Consumption

(c) Network Lifetime

Figure 5. Comparison of P1, P2, and P3 in terms of the deployment cost, energy consumption, and
network lifetime.
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Based on the above process, a series of small-scale network simulation are carried out to verify
the performance of the algorithm and compare it with the exhaustive search and Gurobi. As shown
in Figure 6, the results of the proposed algorithm in Scenarios 0–2 approaches that of the exhaustive
search and Gurobi. For instance, the optimal solution of the AC-ETO in Scenario 0 is 68.818, which
equals to that of the exhaustive search. Thus, the solutions of the algorithm in small-scale networks
are close to optimal. As the scale of the network increase, it is difficult to obtain the optimal
solutions by the exhaustive search. We further compare the solutions of the algorithm with that
of the Gurobi in Scenarios 3–4. Figure 6 shows that the results of the algorithm is very close to that of
gurobi. Therefore, the optimization solution of the AC-ETO are close to optimal in small-scale and
medium-scale networks.

Figure 6. Comparison of the exhaustive search, Gurobi and the AC-ETO in terms of the
optimization objective.

5.2. Performance Analysis of Gurobi and AC-ETO in Different Network Scenarios

We further study the performance of the proposed algorithm AC-ETO under different network
scales and compare the results with the solutions of P1 obtained by Gurobi. As shown in Figure 7a,
the deployment cost obtained by Gurobi is slightly smaller than that by AC-ETO in Scenarios 5 to 10.
Figure 7b,d compare the energy consumption and network lifetime performance obtained by Gurobi
and by AC-ETO under different scenarios. Similarly, it can be observed that Gurobi slightly outperform
AC-ETO in all these metrics. In Figure 7c, when the network is scaled up with a larger number of
nodes, the time complexity of Gurobi increases drastically, while the running time of AC-ETO does not
vary much. As an example, in Scenario 9, the energy consumption by AC-ETO is 0.69E-4% greater than
that by Gurobi, and the deployment cost by AC-ETO is 9.16% higher than that by Gurobi, but the time
complexity of Gurobi is 1000 times higher than that of AC-ETO. As the network size increases, Gurobi
cannot obtain the results in the last scenario—i.e., scenario 11—within the set time limit of 300,000 s,
yet the proposed AC-ETO algorithm obtains the results efficiently. Thus, the AC-ETO is efficient in
dealing with those large-scale network scenarios at the cost of a slight reduction of the optimality.
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(a) Deployment Cost (b) Energy Consumption

(c) Deployment Cost (d) Running Time

Figure 7. Comparison of Gurobi and AC-ETO in terms of deployment cost, energy consumption,
network lifetime, and time complexity under various network scenarios.

5.3. Performance Comparison of AC-ETO and a Greedy Algorithm

We further compare the performance of the proposed AC-ETO algorithm with a greedy algorithm
shown in Algorithm A1. Initially, the feasible table—i.e., FCL Table of each node—is established
to store the CLs within the communication coverage. All CLs in the table are grouped by type in
increasing order of the communication distance. To set up a path, each node along the path is selected
by checking CLs in the FCL Table of the prior node in an order, until the BS is reached. The network
construction completes when all paths are found for any MP.

As shown in Figure 8a, the deployment cost of AC-ETO is lower than that of the greedy algorithm.
In Figure 8b, it is found that the energy consumption of the greedy algorithm in different scenarios
is higher than that of AC-ETO. Accordingly, the network lifetime of AC-ETO is longer than that of
the greedy algorithm in Figure 8c. In the greedy algorithm, it is favorable to select a path with the
minimum cost and, accordingly, the minimum energy consumption, which does not guarantee the
cost and energy consumption of the overall network. While AC-ETO guides ants to find the optimal
(approximate optimal) solution through two pheromones. Figure 8d shows that running time increases
with the network size. For instance, in Scenario 7, the deployment cost obtained by AC-ETO is 447 gcu
while the deployment cost obtained by greedy algorithm is 841 gcu, and the energy consumption
obtained by AC-ETO is 5% less than that obtained by greedy algorithm. Thus, AC-ETO achieves
better performance than that of the greedy algorithm in different scenarios, at the cost of increased but
affordable time complexity.
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(a) Deployment Cost (b) Energy Consumption

(c) Network Lifetime (d) Running Time

Figure 8. Comparison of AC-ETO and a greedy algorithm in terms of the average deployment cost and
energy consumption of twenty execution times under various scenarios.

Based on the above analysis, it is observed that the AC-ETO algorithm outperforms the greedy
algorithm and approaches the optimal solutions in different scenarios which may be difficult for
Gurobi to solve.

6. Conclusions

In this paper, we have presented a multitier hierarchical network architecture with the support
of edge computing that includes the underwater acoustic subnetwork, the sea-surface wireless
subnetwork, and the air wireless subnetwork. Based on the network architecture, we have formulated
an MO problem to minimize the total network deployment cost and maximize the network lifetime.
To solve the MO problem, we have proposed an efficient algorithm, namely, AC-ETO, and analyzed its
time complexity. The proposed algorithm approaches the optimal solutions under different network
scales with polynomial time. We will jointly study the network deployment of static ocean sensors and
the trajectory design of mobile ocean vehicles in our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

ARN Aerial Relay Node
AUV Autonomous Underwater Vehicle
BS Base Station
CL Candidate Location
ECN Edge Computing Node
FCL Feasible Candidate Location
MO Multi-objectives Optimization
MMN Marine Monitoring Network
RF Radio Frequency
SSN Sea-surface Node
UAN Underwater Acoustic Network
UAV Unmanned Air Vehicle
URN Underwater Relay Node

Appendix A

Algorithm A1 A Greedy Algorithm

Require: VMP, VURN, VSSN, VECN, VARN, VBS;
Initialization: Input positions of nodes and other parameters;
for each i ∈ V do

Build the feasible table FCL table for i;
end for
M← |VMP|
for i = 1 to M do

Find a feasible node l from FCL table of MPi;
while (l /∈ VBS) do

Find a feasible node k from FCL table of l;
l ← k;
path_list of i← k;

end while
end for
for each path do

Vnet ←path;
end for
Calculate the total cost Cnet and the energy consumption EMax;

Ensure: Vnet, Cnet, EMax;
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