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Cancers emerge from an on-going Darwinian evolutionary process, often leading to multiple
competing subclones within a single primary tumour-4. This evolutionary process culminates in
the formation of metastases, which is the cause of 90% of cancer-related deaths®. However,
despite its clinical importance, little is known about the principles governing the dissemination of
cancer cells to distant organs. Although the hypothesis that each metastasis originates from a
single tumour cell is generally supported®-8, recent studies using mouse models of cancer
demonstrated the existence of polyclonal seeding from and inter-clonal cooperation between
multiple subclones® 10, In this study, we sought definitive evidence for the existence of polyclonal
seeding in human malignancy and to establish the clonal relationship among different metastases
in the context of androgen-deprived metastatic prostate cancer. Using whole genome sequencing,
we characterised multiple metastases arising from prostate tumours in ten patients. Integrated
analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented
detail. Metastasis-to-metastasis spread was found to be common, either through de novo
monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple
tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur
as single events, whereas mutations in genes involved in androgen receptor signalling commonly
involve multiple, convergent events in different metastases. Our results elucidate in detail the
complex patterns of metastatic spread and further our understanding of the development of
resistance to androgen deprivation therapy in prostate cancer.

To characterise the subclonal architecture of androgen-deprived metastatic prostate cancer,
we performed whole genome sequencing (WGS) of 51 tumours from 10 patients to an
average sequencing depth of 55X, including multiple metastases from different anatomic
sites in each patient and, in 5 cases, the prostate tumour (Supplementary Table 1). We
identified a set of high-confidence substitutions, insertions/deletions, genomic
rearrangements and copy number changes present in each tumour sample (Extended Data
Figure 1 and Supplementary Information, Section 3). To portray the populations of tumour
cells within each patient, we employed an n-dimensional Bayesian Dirichlet process to
group clonal and subclonal mutations, i.e. those mutations present in all or a fraction of
tumour cells within a sample, respectively. The fraction of tumour cells carrying each
mutation was calculated from the mutant allele fraction, taking into account the tumour
purity and local copy number state, as described previously?11. Each of the mutations
assigned to a single cluster is present in a fixed proportion of cells in each sample and hence
belongs to a separate subclone, i.e. a genetically distinct population of cells.

By plotting the cancer cell fractions of mutations from pairs of samples, we determined the
clonal relationship between the constituent subclones and found evidence for polyclonal
seeding of metastases, the most striking example of which is seen in patient A22 (Figure 1).
Each of the plots in Figure 1a contains a cluster of mutations at (1,1), indicative of truncal
mutations that were present in the most recent common ancestor (MRCA) of both
metastases. However, in many of the plots, there are additional clusters at subclonal
proportions in both samples plotted. For example, the cluster of mutations indicated by the
purple circles in Figure 1a are present in 40% of cells in A22-G, 62% of cells in A22-H,
37% of cells in A22-J and 92% of cells in A22-K. A metastasis seeded by a single cell must
carry a set of mutations present in all tumour cells, representing the complement of lesions
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in that founding cell. In some cases, this set of mutations will be subclonal in the originating
site. However, mutation clusters present subclonally in two or more samples can only occur
as the result of multiple seeding events by two or more genotypically distinct cells. A
graphic illustration of the clonal and subclonal clusters and their representation in all of the
10 samples from A22 is shown in Figure 1b. Where one subclone is present in the same or a
lower fraction of cells than a second subclone in all samples, the subclones are represented
as nested ovals when required by the pigeonhole principle (Supplementary Information,
Section 4b). In contrast, clusters whose relative cancer cell fractions are reversed in different
samples represent branching subclones and are shown as disjoint ovals. The full lineage
relationship between the subclones can be depicted in the form of a phylogenetic tree whose
branch lengths are proportional to the number of substitutions in the corresponding subclone
(Figure 1c).

In 5/10 cases (A34, A22, A31, A32, A24), we found clusters of mutations present
subclonally across multiple metastases, suggesting that polyclonal seeding between different
organ sites is a common occurrence in metastatic prostate cancer (Figure 2). Mutations
selected from these clusters (181-429 mutations per patient) were validated by deep
sequencing (median coverage 471X) of additional aliquots of DNA from each WGS sample
and extra metastatic and/or prostate samples, confirming these findings (Extended Data
Figures 2-7, Extended Data Table 1 and Supplementary Information, Section 4e).

Analysis of known driver events found in the subclones provides important insights into
polyclonal spread of prostate cancer during therapy. Androgen-deprivation therapy (ADT) is
the standard of care for metastatic prostate cancer and initially induces tumour regression in
most patients. However, ADT inevitably results in castration-resistance through various
mechanisms, including androgen receptor (AR) amplification, increased AR sensitivity as a
result of mutation, AR phosphorylation and bypass of the AR pathway!2:13, It is currently
unknown whether castration resistance is generally acquired via a single event or more
commonly appears in multiple cells independently. Two of the subclones implicated with
polyclonal seeding in A22 carry different oncogenic alterations associated with ADT
resistance, suggesting that clonal expansion has been driven by distinct resistance
mechanisms: MYC amplification1 in the purple cluster and a pathogenic AR substitutionl®
in the mid blue cluster. Overall, in all five patients with polyclonal seeding, subclones
carrying either alterations in AR or genes involved in AR signalling (such as FOXAL), or
alternative mechanisms of castration resistance such as MYC amplification and CTNNB1
mutation8, were found to have re-seeded multiple sites. This suggests that the tumour cell
populations with a significant survival advantage are not confined within the boundaries of
an organ site but can successfully spread to and reseed other sites (Figure 2).

Precise relationships between metastatic sites reveal the patterns of metastasis-tometastasis
seeding. In all 7 cases for which the prostate tumour was sequenced (A10, A22, A29, A3l
and A32; by targeted deep sequencing in A21 and A34), multiple metastases were more
closely related to each other than any of them were to the primary tumour (Figure 2;
Extended Data Figures 2-5 and 7; Supplementary Information, Section 4e). In the 5 cases
with polyclonal seeding, this relationship resulted from multiple subclones shared
subclonally by different metastases, raising the possibility of interclonal co-operativity, in
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agreement with recent studies using mouse models!®17, or remodelling of metastatic niches
by initial colonising prostate cancer clones, making them attractive habitats that other clones
can colonise later!8. Further, for those patients where multiple metastases from the same
tissue type were analysed (A22, A34, A21), metastases located in the same tissue are more
closely related than those in different tissues, as previously observed in pancreatic cancerl®.
Intriguingly, samples within close physical proximity were often more similar to each other
than to more distant samples. This raises the question whether the similarity between
metastases in the same tissue type arises as a result of geographical proximity or from tissue-
specific seeding.

In order to explore further the relationships between samples, we considered the order of
acquisition of mutations. Starting from the MRCA, we observe the accumulation of
additional clusters of mutations representing subsequent “selective sweeps’2. Phylogenetic
trees give clear pictures of the order of events, allowing the creation of ‘body maps’ that
represent emergence and movement of clones from one site to another (Figure 3). The
observed representation of subclones across different sites may be explained by two
different patterns of spread: linear and branching. A22 demonstrates both patterns (Figure
3a). The red and light green subclones are present in all metastases and indicate linear
spread from the prostate to the seminal vesicle and thence to the remaining metastases. The
remaining inter-site subclones have a more complex pattern demonstrating the emergence of
branching lineages, each with demonstrated metastasis-to-metastasis seeding. The stepwise
accumulation of clonal mutations in A21, on the other hand, displays a simple linear pattern
of metastasis-to-metastasis spread (Figure 3b). Finally, in A24, a period of sequential
metastasis-to-metastasis spread was followed by parallel polyclonal spread of subclones
between multiple metastases (Figure 3c). Overall, these patterns of seeding from one
metastasis to the next are seen in 8 of the 10 patients (all but A12 and A29). We cannot
formally exclude an alternative explanation for the observed patterns, that each of these
metastases has seeded from an undetected subclone in the primary tumour. However,
targeted re-sequencing of a subset of mutations failed to detect any such subclones, despite a
median sequencing depth of 471X (Supplementary Information, Section 4e).

Mutations found subclonally in the prostate tumour but clonally in all metastases expose the
metastasizing subclone in four cases: A22, A29, A31 and A32. In each of these patients,
phylogenetic reconstruction indicates that the metastases are derived from a minor subclone,
encompassing <50% of tumour cells. In three cases (A32, A10 and A34), more than one
subclone from the primary tumour was involved in seeding of metastases, indicating that
multiple subclones achieved metastatic potential (Supplementary Information, section 4e).
In the case of A31 and A32, driver alterations that could confer selective advantage on the
metastasising subclone(s) were identified (Figure 2). In A32, both copies of TP53 as well as
one copy of PTEN, RB1 and CDKN1B2! were inactivated early in tumour evolution (Figure
2). Additional aberrations occurred separately in the purple and mid blue subclones to
achieve homozygous inactivation of these tumour suppressor genes via independent
mechanisms (Supplementary Information, section 4e). In A31, a PPP2R5A deletion and an
AR duplication occurred in the metastasising subclones (purple or orange) while,
interestingly, the pink cluster, displaying many important oncogenic alterations including
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events affecting TP53 and MLL3, showed no evidence of metastatic spread (Figure 2,
Extended data Figures 3a and 8a).

Annotation of oncogenic/putative oncogenic alterations (Supplementary Information,
section 4c; Supplementary Table 2; Extended Data Table 2) on the phylogenetic trees
provides some insight into the sequence of oncogenic events that take place during
metastatic progression under ADT. The tumour cells in each patient share a common clonal
origin (Figure 2, grey clusters). In all patients but one (A34), this mother clone represents
the largest cluster of mutations (range 40-90% of all mutations) and contains the majority of
driver mutations (Figures 2 and 4a-b) similar to previous observations in pancreatic
cancer?2, In contrast, oncogenic alterations disrupting genes important for AR signalling
were rarely on the trunk. All patients had at least one alteration directly affecting the AR
locus or genes involved in AR signalling, with widespread heterogeneity and convergent
evolution observed across multiple samples from the same patient.

In the great majority of cases, aberrations in AR signalling seem to have occurred after
metastatic spread, although A21 and A24 are exceptions. The former has a large tandem
duplication including the AR locus present in all samples, suggesting this was an early event.
The latter harbours a truncal T878A mutation, which was also detected in two additional
metastases (A24-F and A24-G, interrogated by targeted sequencing). Interestingly, though, a
series of complex rearrangements between chromosomes 2 and X resulting in AR
amplification was not detected in these samples (Figure 4c). Since such amplification is
selected for by ADTZ3, it is likely that spread from the falciform ligament (A24-G) to the
right axillary lymph node (A24-A) took place after ADT, which commenced 2 years and 9
months prior to death (Figure 3c). Across the whole cohort, only one out of 17 AR
amplifications was truncal, with the remainder present only in a subset of metastases.
Furthermore, in five patients, copy number had increased on more than one occasion within
the same sample (Figure 4c and Extended Data Figure 8) implying continuous selective
pressure on the AR pathway, in line with recent reports of persistent AR signalling in
castration resistant prostate cancerl®.

Our analyses allow us to view with unprecedented clarity the genomic evolution of
metastatic prostate cancer, from initial tumorigenesis through the acquisition of metastatic
potential to the development of castration resistance. A picture emerges of a diaspora of
tumour cells, sharing a common heritage, spreading from one site to another, while retaining
the genetic imprint of their ancestors. After a long period of development prior to the most
recent complete selective sweep, metastasis usually occurs in the form of spread between
distant sites, rather than as separate waves of invasion directly from the primary tumour.
This observation supports the ‘seed and soil” hypothesis in which rare subclones develop
metastatic potential within the primary tumour’, rather than the theory that metastatic
potential is a property of the primary tumour as a whole2423, Transit of cells from one host
site to another is relatively common, either as monoclonal metastasis-tometastasis seeding or
as polyclonal seeding. Clonal diversification occurs within the constraining necessity to
bypass ADT, driving distinct subclones towards a convergent path of therapeutic resistance.
However, the resulting resistant subclones are not constrained to a single host site. Rather, a
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picture emerges of multiple related tumour clones competing for dominance across the
entirety of the host.

Extended Data
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Extended Data Figure 1. Variantsidentified in 51 whole-genome sequenced samples from 10
patients
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Number of (a) insertion/deletions, (b) high-confidence substitutions and (c) chromosomal
rearrangements are plotted across all the samples from the 10 patients that were whole-
genome sequenced.
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Extended Data Figure 2. Validation of the subclonal hierarchiesin A22
The primary means of validation was a deep sequencing validation experiment that included

selected substitutions and indels from each sample, as described in Extended Data Table 2
and Supplementary Information, section 2b. In addition, indels and rearrangements
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identified in WGS represent datasets orthogonal to the substitution data from which the
subclones were identified. The subsets of samples in which validated substitutions, indels
and rearrangements are found correlate strongly with the subclonal clusters identified from
the clustering of substitutions from WGS, providing support for the existence of these
subclones. For each patient, hierarchical clustering of the variant allele fraction (VAF) was
performed separately for substitutions (a) and indels (b). VAFs are represented as a heatmap
with deeper shades of red indicating a higher proportion of reads reporting the mutant allele.
Above each heatmap, mutations are colour-coded according to the subclone they were
assigned to by Dirichlet process clustering of WGS data in the case of substitutions or by
VAF for indels. Indels that could not be assigned to any cluster are annotated with black.
For A22, additional samples not subject to WGS were included in the validation experiment.
For these patients the phylogenetic tree from Figure 2 was modified to incorporate these
additional samples (c). Number of substitutions assigned to each subclone (d) and numbers
of indels (€) and rearrangements (f) present in different subsets of samples are plotted as bar
charts. VAFs from WGS and validation data, plotted as scatter plots (g), are very highly
correlated. Subclone colour key (h).
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Extended Data Figure 3. Validation of the subclonal hierarchiesin A31 and A32
Validation strategy as described in Extended Data Figure 2. For A31 and A32, hierarchical

clustering of the VAF was performed separately for substitutions (a) and (j) and indels (b)
and (k). Heatmaps are annotated as described in Extended Data Figure 2. Additional
samples for A31 and A32 are incorporated into the phylogenetic trees (c) and (I). Subclones
for A31 CD and A32 CE are annotated in the corresponding 2d-DP plots (d) and (m).
Numbers of substitutions in WGS data assigned to each subclone are plotted in (€) and (n).
VAFs from WGS and validation data, plotted as scatter plots (f) and (0), are very highly
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correlated. Number of indels (g) and (p) and rearrangements (h) and (q) present in different
subsets of samples are plotted as bar charts. Subclone Colour keys for A31 and A32 (i and

r) respectively.
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Extended Data Figure 4. Validation of the subclonal hierarchiesin A24 and A34
Validation strategy as described in Extended Data Figure 2. For A24 and A34, hierarchical

clustering of the VAF was performed separately for substitutions (a) and (i) and indels (b)
and (j). Heatmaps are annotated as described in Extended Data Figure 2. Indels that could
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not be assigned to any cluster (if any) are annotated with black. Additional samples for A24
and A34 are incorporated into the phylogenetic tree (c) and (k). The additional cluster in
A24, supported by rearrangements only, is indicated by a light green branch in the tree.
Numbers of substitutions in WGS data assigned to each subclone are plotted in (d) and (1).
VAFs from WGS and validation data, plotted as scatter plots (e) and (m), are very highly
correlated. Number of indels (f) and (n) and rearrangements (g) and (o) present in different
subsets of samples are plotted as bar charts. Subclone Colour keys for A24 and A34 (h and
p) respectively.
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Extended Data Figure 5. Validation of the subclonal hierarchiesin A10 and A29
Validation strategy as described in Extended Data Figure 2. For A10 and A29, hierarchical

clustering of the VAF was performed separately for substitutions (a) and (h) and indels (b)
and (i). Heatmaps are annotated as described in Extended Data Figure 2. Indels that could
not be assigned to any cluster (if any) are annotated with black. Loci with depth <20X are
coloured in light blue. The additional sample (D) for A29 is incorporated into the
phylogenetic tree (j). Validation experiment for A10-E, the prostate sample, gave very low
coverage (d). Subclones for A29-A and A29-C are annotated in the 2d-DP plot (k).
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Numbers of substitutions in WGS data assigned to each subclone are plotted in (c) and (1).
VAFs from WGS and validation data, plotted as scatter plots (d) and (m), are very highly
correlated. Number of indels (€) and (n) and rearrangements (f) and (o) present in different
subsets of samples are plotted as bar charts. Subclone Colour keys for A10 and A29 (g and

p) respectively.
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Validation strategy as described in Extended Data Figure 2. For A17 and A12, hierarchical
clustering of the VAF was performed separately for substitutions (a) and (i) and indels (b)
and (j). Heatmaps are annotated as described in Extended Data Figure 2. Mutations that
could not be assigned to any cluster are annotated with black. For A12, the C-specific cluster
that is not present in substitutions is shown in very light green. Subclones for A17 AD are
annotated in the 2d-DP plot (c). Numbers of substitutions in WGS data assigned to each
subclone are plotted in (d) and (). VAFs from WGS and validation data, plotted as scatter
plots (€) and (m), are very highly correlated. Number of indels (f) and (n) and
rearrangements (g) and (o) present in different subsets of samples are plotted as bar charts.
Additional samples for A12 are incorporated into the phylogenetic tree (k). Subclone Colour
keys for A17 and A12 (h and p) respectively.
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Extended Data Figure 7. Validation of the subclonal hierarchiesin A21
Validation strategy as described in Extended Data Figure 2. Hierarchical clustering of the

VAF was performed separately for substitutions (a) and indels (b). Heatmaps are annotated
as described in Extended Data Figure 2. Loci with depth <20X is coloured in light blue.
Additional samples L, N, and Q from FFPE material had low coverage. The only loci
present in these samples were all truncal. These samples are incorporated into the
phylogenetic tree (c). Numbers of substitutions in WGS data assigned to each subclone are
plotted in (d). Number of indels (€) and rearrangements (f) present in different subsets of
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samples are plotted as bar charts. VAFs from WGS and validation data, plotted as scatter
plots (g), are very highly correlated. Subclone Colour key (h).
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Extended Data Figure 8. Convergent evolution at the AR locus
Rearrangements and copy number segments in the vicinity of the AR locus are shown for

A31, A21, A29 and A10. (a) In A31, there are three different AR amplification events. In
orange is a tandem duplication whose existence is supported by tumour reads in ADEF but
not C. However PCR-gel validation confirms its existence in the prostate sample C - the
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faintness of the band suggesting that this rearrangement is present subclonally in A31-C - as
well as the prostate sample I, which was not subject to WGS. One tandem duplication is
common to both prostate samples (shown in green) while the other is specific to sample C
(dark pink). (b) In A21, there are 4 different sets of complex rearrangements, one shared by
ACDEGH and the remainder specific to F, | and J. (c) Rearrangements in the vicinity of the
AR locus and inter-mutation distances for A29 plotted on a log10 scale for lesions specific
to the metastasis (left) and specific to the prostate (middle). Each sample has a different set
of complex rearrangements, which are associated with distinct kataegis events. (d) In A10,
one tandem duplication is shared by CD while four others are each specific to a single
sample.

Extended Data Table 1
Validation of mutation calling

To determine validation rate for mutation calling, a custom capture SureSelect design was
used to sequence selected coding/non-coding loci to an average depth of 360-2000X. For
loci with sufficient depth (>=20X), the validation rate (the proportion of somatic variants)
was calculated as described in Extended Data Table 2 and Supplementary Information,
section 3c. On average 95% and 86% of the substitutions and indels, respectively, were
somatic. Validation for rearrangement calls was performed by PCR-gel electrophoresis, as
described in Supplementary Information, section 3d. PCR-gel experiments yielded a high
validation rate for three of the four patients included in the validation. For A22, there was a
high rate of PCR failure. For this sample, we therefore assessed the veracity of the
breakpoints by visual inspection of the associated copy number segments and confirmed that
82% were high-confidence events resulting in visible copy number changes.

# subs from # total

. . . - # subs with :
Patient # coding subs nc]luutsttel(r)sn uglljtkq)tsje coverage* % somatic
A10 109 163 270 269 90.70%
A22 97 265 356 356 98.60%
A29 76 70 144 143 93.00%
A3l 43 109 150 150 89.30%
A32 74 388 450 450 97.80%
substitutions Al2 54 144 192 191 88.50%
A24 50 147 196 196 97.00%
A34 258 554 800 795 99.20%
A21 72 203 275 273 96.30%
Al7 155 377 523 522 100%
AVERAGE 95.04%
# indels from # total : :
Patient # coding indels mutation unique #clgsgll'z Vgi}“ % somatic
clusters indels g
A10 11 145 156 155 80.70%
indels
A22 9 74 80 79 78.50%
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A29 6
A3l 5
A32 11
Al2 14
A24 9
A34 43
A21 9
Al7 15
AVERAGE

Page 18
44 49 49 87.80%
48 52 51 82.40%
93 101 100 86%
76 84 83 86.80%
66 73 72 83.30%
258 284 282 96.10%
85 89 88 81.80%
123 123 122 99.20%
86.26%

Patient # rearrs validated

PCR failed % somatic

Rearrangements

A22 49
A3l 21
A32 32
A24 27

57% (82% with rearrs confirmed by the visual

21 inspection of copy number changes)
1 95%
1 96%
3 89%

Extended Data Table 2
Copy number genes

To identify potentially oncogenic events within regions of copy number changes, we
intersected the affected genomic segments with genes previously shown to be recurrently
amplified/deleted. The ‘Source’ column indicates the literature source of the gene as
follows: pan_cancer = The Cancer Genome Atlas (TCGA) Pan-Cancer data set (Zach,
2013), prostate = reports of genes specifically amplified/deleted in prostate cancer (Taylor,
2010 and Barbieri, 2012), cancer_gene_census = Cancer gene census (Futreal, 2004),
literature = widely reported in cancer literature.

AMPLIFICATIONS DELETIONS

gene Source gene Source
AKT1 pan_cancer PTEN prostate
AKT2 cancer_gene_census CDH1 prostate
AKT3 pan_cancer TP53 prostate
AR literature RB1 prostate
BRAF prostate CHD1 prostate
CCND1  pan_cancer CDH1 prostate
CCND3  pan_cancer FOXPA1+RYBP  prostate
CCNE1  pan_cancer CDKN1B prostate
CDK4 pan_cancer STK11 pan_cancer
CDK6 pan_cancer ARID1A pan_cancer
EGFR pan_cancer,prostate  NKX3-1 literature
ERBB2 pan_cancer BRCA1 pan_cancer
EZH2 prostate BRCA2 prostate
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AMPLIFICATIONS DELETIONS

gene Source gene Source
FGFR1  cancer_gene_census PDE4D prostate
FGFR3 pan_cancer ERG literature

IGF1R pan_cancer

JUN cancer_gene_census
KRAS pan_cancer

MCL1 pan_cancer

MDM2 pan_cancer

MDM4 pan_cancer

MITF cancer_gene_census
MYC pan_cancer,prostate
MYCL1  pan_cancer

MYCN cancer_gene_census
NKX2-1  cancer_gene_census
NCOA2  prostate

SKP2 prostate

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. n-D Dirichlet process clustering reveals widespread polyclonal seeding in A22
(a) For pairs of metastases, cancer cell fractions (CCF), i.e. the fraction of cells within a

sample containing a mutation, are plotted for all the substitutions detected in the WGS data.
Red density areas off the axes and with CCF >0 and <1 reveal the existence of mutation
clusters present at subclonal levels in more than one metastatic site. Mutation clusters for
each sample are indicated with circles coloured according to the subclone they correspond to
(Supplementary Table 3). The centre of each circle is positioned at the CCF values of the
subclone in the two samples. The clusters at (1,1) correspond to the mutations present in all
the cells in both sites (CCF=1) while those on axes refer to sample-specific subclones. For
example, light blue and dark green clusters absent from sample A are positioned on the y-
axis when H is compared to A but are moved to (0.60,0.08) and (0.60,0.88) when H is
compared to K. (b) Each subclone detected in A22 is represented as a set of colour-coded
ovals across all organ sites (Supplementary Table 3). Each row represents a sample, with
ovals in the far left column nested if required by the pigeonhole principle (SI). The area of
the ovals is proportional to the CCF of the corresponding subclone. Subclonal mutation

clusters are shown with solid borders. Oval plots are divided into three types: trunk (CCF=1
in all samples), leaf (specific to a single sample) and branch (present in >1 sample and either
not found in all samples or subclonal in at least one). (c) Phylogenetic tree showing the
relationships between subclones in A22. Branch lengths are proportional to the number of
substitutions in each cluster. Branches are annotated with samples in which they are present
and with oncogenic/putative oncogenic alterations assigned to that subclone (LOH: Loss of
Heterozygosity). (d) Subclone colour key.
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Figure 2. Subclonal structurewithin 10 metastatic lethal prostate cancers
All the subclones identified in the whole genome sequenced samples are shown as

phylogenetic trees and oval plots (as described in Figure 1). Patients with polyclonal seeding
(A34, A22, A31, A32 and A24) are on the right (amp: amplification).
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Figure 3. Metastasis-to-metastasis seeding occurs either by alinear or a branching pattern of
spread

Body maps show the seeding of all tumour sites from (a) A22, (b) A21 and (c) A24. Sites
shown include samples subject to targeted sequencing (A22-L, A24-F, A24-G) in addition to
WGS samples. Seeding events are represented with arrows colour-coded according to
Supplementary Table 3 and with double-heads when seeding could be in either direction.
When the sequence of events may be ordered from the acquisition of mutations, arrows are
numbered chronologically. Subclones on branching clonal lineages are labelled with the
same number but with different letters, e.g. 4a & 4b. See Supplementary Information
Section 4e for a detailed discussion of the body map in these cases.
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Figure 4. Driversof tumorigenesis are truncal whiledrivers of castration resistance are
conver gent

(a) Proportion of trunk, branch and leaf mutations in each sample. (b) Heatmap of
oncogenic alterations present on the trunk (top) or off the trunk, i.e. on branches or leaves
(bottom). Alterations in oncogenes and tumour suppressors are shown in red and blue,
respectively, with shade indicating the number of events in that patient. Focal deletions and
substitutions/indels are shown with crosses and stars, respectively. Double crosses indicate
homozygous deletions resulting from deletions of both alleles. (¢) Continuous selective
pressure on AR signalling is observed in the form of multiple rearrangements resulting in
multiple copy number increases at the AR locus within the same patient. Chromosomal
rearrangements are plotted on top of the genome-wide copy number for each of the 4 WGS
samples from A24. Rearrangements are coloured according to the colour code in
Supplementary Table 3. Arcs above and below the top vertical line indicate deletion and
tandem duplication events, while arcs above and below the second vertical line are head-to-
head and tail-to-tail inversions, respectively.
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