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Abstract: Deep learning has gained immense attention from researchers in medicine, especially in
medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets
required for the good performance of deep learning models. This paper proposes a new framework
consisting of one variational autoencoder (VAE), two generative adversarial networks, and one auxil-
iary classifier to artificially generate realistic-looking skin lesion images and improve classification
performance. We first train the encoder-decoder network to obtain the latent noise vector with the
image manifold’s information and let the generative adversarial network sample the input from this
informative noise vector in order to generate the skin lesion images. The use of informative noise
allows the GAN to avoid mode collapse and creates faster convergence. To improve the diversity
in the generated images, we use another GAN with an auxiliary classifier, which samples the noise
vector from a heavy-tailed student t-distribution instead of a random noise Gaussian distribution.
The proposed framework was named TED-GAN, with T from the t-distribution and ED from the
encoder-decoder network which is part of the solution. The proposed framework could be used in a
broad range of areas in medical imaging. We used it here to generate skin lesion images and have
obtained an improved classification performance on the skin lesion classification task, rising from 66%
average accuracy to 92.5%. The results show that TED-GAN has a better impact on the classification
task because of its diverse range of generated images due to the use of a heavy-tailed t-distribution.

Keywords: variational autoencoder; generative adversarial networks; melanoma detection; skin
cancer classification; student t-distribution; heavy-tailed distribution; t-distribution; informative
noise vector; deep learning; convolutional neural networks; GANs; VAE

1. Introduction

Melanoma is the least common but most brutal of all skin lesions, with the highest
mortality rate per year worldwide [1]. With effective early-stage diagnoses, the survival
rate of patients increased substantially; reported to be 98.5% [2]. In contrast, the 5-year
survival rate decreases to 19.9% only, with the failure of timely detection of melanoma [2].
Patients’ skin color and similarities among various skin lesions make it hard for medical
experts to diagnose it correctly at the initial stage. Highly expert dermatologists can
diagnose melanoma visually with an accuracy of 60% only [3].

A technique with better accuracy commonly used by dermatologists is dermoscopy.
It is an in-vivo and non-invasive technique that eliminates skin surface reflection and
magnifies it up to 400% for better examination. Dermoscopy is also called epiluminescence
microscopy or dermatoscopy. In this method, the diagnosis accuracy of melanoma is up
to 84% [4,5]. It is a technique with better accuracy but is time and resource-consuming,
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and the diagnosis efficiency is easily affected by various physical and human factors [6].
Therefore, it is necessary to develop more accurate and faster computer-aided diagnosis
(CAD) systems to reduce the burden on healthcare systems and assist dermatologists in
making better decisions.

In classic CAD and machine-based systems, researchers use several image processing
filters to extract an image’s characteristics and features. For example, the Harris Corner
detector is a Gaussian window function for detecting the edges and corners of the image.
Median or averaging filters were used to reduce the noise. Such methods were difficult,
time-consuming, and useful for small data sets only. In addition, it was difficult to transfer
the algorithm’s learning to another unseen challenge.

Recently, Convolutional Neural Networks (CNNs) and image processing techniques
gained tremendous attention from researchers of all the fields of science due to their good
performance, especially in medical imaging applications [7–12]. Deep learning models are
composed of many layers and can have millions of parameters. The deeper the model, the
more data is needed to train it. Otherwise, the model starts to exhibit overfitting. Overfitting
is a common problem in deep learning architectures that are trained on small datasets.

A CNN-based end-to-end system requires a large quantity and high quality of labeled
data to function well. Having a high-quality labeled dataset, especially in medicine, is
expensive and time-consuming. Melanoma, for example, is the most serious type of skin
cancer. In actual practice, only 20% of patients are diagnosed with melanoma following
a biopsy, and not all patients go for a biopsy in the first place [6]. This indicates that if a
biopsy is not recommended to the patient in the first place, the odds of melanoma growing
and progressing to the worst stage increase; conversely, recommending a biopsy for each
patient increases the burden on the healthcare system. To address the limited availability
of medical data and overfitting, researchers focus on testing and proposing novel ways to
use deep learning models with small datasets.

Data augmentation and transfer learning are two clear strategies that academics
are increasingly employing to handle the challenge of limited data. In these methods,
researchers extend the training set in data augmentation by modifying the training images
by scaling, cropping, and rotating them. Transfer learning involves using a pre-trained
model that has already been trained on a big dataset and retrains a few layers of the model
on a small training set. It works well for classification tasks involving common generic
species such as cats, dogs, trees, etc. Naturally, this is not the case with a medical dataset.
We do not usually have pre-trained models that can be employed for transfer learning in
medical image classification tasks because of the restricted availability and difficulty of
obtaining medical datasets [13,14].

One of the possible solutions recently adopted by the researchers to solve the limited
availability of medical datasets is to generate artificial data. Among several generative mod-
els, Generative Adversarial Networks (GANs) [15] have gained the attention of medical
image processing researchers. Recently, GANs were used in medical image (MI) gener-
ation [16,17], medical image editing in latent space [18], MI segmentation [19], and MI
classification [20], because of their better performance among all generative models. A
typical GAN consists of a generator (G) and a discriminator (D) network. The generator’s
job is to produce more realistic images from random noise by learning the distribution of
real images. In contrast, the discriminator’s job is to differentiate whether the images fed
to it are real or fake (generated by the generator). They are trained alternatively to reach
the final convergence. Its popularity is mainly because it automatically learns the image
distribution in an unsupervised manner without employing, for example, a Markov Chain
Monte Carlo (MCMC) approximation. Another beauty of GANs which makes them stand
out in several traditional generative models is that they generate the image as a whole, not
pixel by pixel, which provides more diversity in the generated images.

Mode collapse, on the other hand, is a common issue in GANs. They need a significant
amount of training data to avoid this. In the event of mode collapse, a GAN is unable to
generate clear images. Some scholars have addressed these issues and proposed GAN
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extensions [21]. All of them used random Gaussian noise as an input to sample the noise
vector for the generator. Because random Gaussian noise does not have a strong tail, the
image distribution learned from it cannot guarantee diverse image production.

Heavy-tailed distributions such as the Cauchy, log-normal, and t-distributions have
been utilized to replace the random noise Gaussian distribution with excellent results.
Student t-distribution is an infinite mixture of Gaussian distribution. The t-distribution
was utilized in machine learning research as a replacement for the random noise Gaussian
distribution [22,23]. Because of its extended tail features, it achieves excellent results in
terms of diversity and low computational cost. For example, among all other income
distributions, log t-distribution provides the greatest fit for predicting the income distribu-
tion of European Union countries [22]. Van et al. presented a modification to Stochastic
Neighbor Embedding that uses the t-distribution to show high-dimensional data in a
low-dimensional latent space by assigning a place in a two-dimensional map to each data
point. This modification was much faster to optimize because of the t-distribution instead
of Gaussian noise [23].

Even though numerous enhancements to GANs have been developed, the noise
distribution it uses to sample the input noise vector is still random Gaussian distribution.
This area, input noise distribution, has not yet been explored in generative models.

We used two generative adversarial networks (GANs) and one variational autoencoder
(VAE) in the proposed methodology in this paper. As VAEs are easy to train compared to
GANs, we first train the variational autoencoder (VAE) separately on our training dataset.
Then, we swapped the encoder-decoder network into a decoder-encoder network and let
the GAN1 (the first generative model of our framework) sample the input from the output
of VAE. This way, GAN1 has fewer chances to collapse and tends to adopt the domain
information easily. For the training of our main generative adversarial network GAN2,
we used student t-distribution instead of random Gaussian noise. GANs tend to perform
better generally if we have a large amount of training data. We increased the training data
of GAN2 by using the images generated by GAN1 at the previous stage. Furthermore, we
added an auxiliary classifier network to the discriminator. The main generative adversarial
network (GAN2) and the auxiliary classifier were trained together. The block diagram of
the proposed methodology is presented in Figures 1 and 2. The main contributions of this
work can be summarized as follows:

• We used the VAE network to produce a noise vector that has the domain information.
• We used heavy-tailed student t-distribution to add diversity in the generated medical

images.
• We used an auxiliary classifier to push the network to produce images from a specific

category.
• To the best of our knowledge, this is the first time that, instead of using random

noise, a separate network was trained to obtain domain information and used that
informative noise for the generation of medical images.

The rest of this paper is organized as follows. Section 1.1 reviews some previous work
related to generative models, including GANs and their applications in medical image
generation. Section 2 reports the proposed TED-GAN and experiment settings in detail.
Results, discussion, and conclusion are presented in Sections 3–5, respectively.

1.1. Related Work

Before the dawn of generative adversarial networks (GANs), Deep Belief Networks
(DBNs), Restricted Boltzmann Machines (RBMs), Deep Boltzmann Machines (DBMs), Gen-
erative Stochastic Network (GSN), Autoencoders (AE), Denoising Autoencoders (DAEs),
and variational autoencoders (VAEs) were heavily used for generating new samples of
image data. Among them, several generative models are modeled by Markov Chain Monte
Carlo (MCMC) based approximations. When the gradient vanishes during the training
process, MCMC-based algorithms approximate the gradient of log-likelihood [24]. In
image and video datasets, the likelihood-based approaches face the curse of dimensional-
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ity. Moreover, the Markov chain approximation in high dimensional spaces is inaccurate,
blurry, and computationally slow [25].
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In 2007, Hays et al. [26] proposed a scene completion algorithm that uses huge data of
non-annotated images. The algorithm was efficient enough to find similar images from the
database to complete the task of scene completion in the host image.

These traditional algorithms have a limited capacity of image estimation, as they
generate the new images pixel-to-pixel instead of estimating the image as a whole.
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Deep Autoencoders are based on deep learning in which the encoder converts the
input images into a latent representation. It reduces the dimensionality of an input rep-
resentation, and the decoder tries to reconstruct the original images from their latent
representation. The objective of the autoencoders is to reduce the reconstruction error.

A variation of autoencoders was proposed in 2013 by Kingma et al. [27], named
variational autoencoders (VAEs). In a variational autoencoder, the encoder maps the image
representation into a Gaussian vector, and the decoder maps the noise vector to the new
image. These generative models suffer from the problem of generating blurry images.

However, with the advent of deep neural networks, image generative models have
been revitalized in recent years. Particularly, Generative Adversarial Networks (GANs)
have shown promising results in synthesizing realistic images [15]. To improve the image
generating capability of GANs, researchers proposed various variations of GANs.

In a deep convolutional generative adversarial network (DCGAN), Radford et al.
integrated a convolution operation into the GAN to improve GAN’s performance [15,21].
Moreover, DeLiGAN samples the noise vector from random noise and inputs it into
the generator to improve the diversity of generated images [28]. Ma et al. combined
the meta-learning with CGAN and proposed a new variant of GAN called MetaCGAN.
MetaCGAN can transfer the information and style it learned during training on a large
dataset to the new task with a small dataset [29]. Recently, some researchers used recurrent
and convolutional neural networks (RNNs, CNNs) to generate high-resolution images.
However, the algorithms generate the images pixel by pixel instead of generating images
as a whole [30,31].

GAN Applications in Medical Imaging

The GAN and GAN-based networks that generate synthetic medical images have
become very popular recently, as they solve the problem of limited availability of medical
datasets. Liu et al. [32] proposed a variant of Cycle GAN that uses the Pseudo Cycle
consistent module and the domain control module to generate the Computed Tomography
(CT) images. In this approach, the Pseudo Cycle consistent module controls the consistency
of generated images, and the domain control module provides additional information of
the domain.

Jiang et al. [33] proposed a Fused Attentive GAN (FA-GAN) for generating and
reconstructing super-resolution magnetic resonance (MR) images. He introduced local and
global feature extraction modules at different levels to extract useful features. In FA-GAN,
they used 40 sets (consisting of 256 slices) of 3D magnetic resonance (MR) images for
training the network, and PSNR and SSIM are used as performance measure matrices.

Ting et al. used the GAN synthesized ultrasound images of the breast and used them
at the augmentation stage in the classification problem of breast lesions [20].

Ali et al. proposed Cascade Ensemble Super-Resolution CESR-GAN to reconstruct the
high-resolution skin lesion images from low-resolution images. They introduced a new
lossfunction based on features of the images [16].

Simulation of medical images in diverse areas of medicine is a very challenging and
hot area of research these days. Synthesizing mass images in mammograms is one of
them. Shen et al. used GANs to produce mass images and then fill them with contextual
information by adding the synthetic lesions to healthy mammograms. They claim that
their proposed network could learn the shape, context information, and distribution of
real images [17]. Other researchers used GANs in various fields of medicine, including
Mahapatra et al. [34], who generated retinal fundus images; Shin produced abnormal MRI
images [35]; Han et al. used two-step GAN to produce MR images of brain segments with
and without tumors [36]; Nie et al. generated pelvic CT images [37].

GANs have been used widely in various fields of medical imaging. Researchers try to
make improvements in results by using heavy and deep architectures. Playing around the
input noise of GANs is still unexplored in medical imaging.
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2. Materials and Methods
2.1. Proposed Method

In this section, we introduce our proposed framework, TED-GAN, in detail. As VAEs
are easy to train compared to GANs, we first train the variational autoencoder (VAE) on
our training dataset to let the network store the information of the image manifold. Then
we swap the network from an encoder-decoder to a decoder-encoder network. When the
random Gaussian noise vector passes through this trained decoder-encoder network, it
now produces a noise vector that is no longer random, but has the information of the
domain. Zhong et al. [38] proved mathematically that the noise produced by swapping the
encoder-decoder network has the information of image manifold. GAN1 would sample
the noise vectors from this informative noise to produce realistic images. GAN1 now has
a very minute chance of collapse and tends to adopt the domain information easily as its
input is sampled from a latent vector of trained VAE instead of random noise.

For the training of our main generative adversarial network GAN2, we used student
t-distribution instead of random Gaussian noise. GANs tend to perform better generally if
we have a large amount of training data. So, we used the images generated by GAN1 along
with real images of the training set (images from the HAM10000 dataset [39]) to feed the
discriminator. Furthermore, we added a classifier network in front of the discriminator that
shares the feature layer of the discriminator. This is called an auxiliary classifier. The main
generative adversarial network (GAN2) and the auxiliary classifier are trained together.
In the end, generated skin lesion images passed through a high pass filter to improve the
imperceptibility. The small step of adding the high pass filter enhanced the quality of
images significantly. The whole framework consists of one decoder-encoder network, two
GANs, and one classifier. We name it TED-GAN; T from t-distribution, and ED from the
encoder-decoder network.

The TED-GAN is used to generate skin lesion images only. We built a separate CNN
classifier consisting of a few layers for the fair comparison of classification results with
other generative models. This classifier was used to compare the performance of various
generative models with the proposed one. The architecture details of the TED-GAN and the
block diagram of the CNN classifier are presented in Figure 3a,b and Figure 4, respectively.
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generative models. Here P, Max. P, F, and S represent the parameters, maximum pooling, number of
filters, and filter size, respectively.

2.1.1. Variational Autoencoders (VAEs)

The variational autoencoders (VAEs) consist of two parts; the encoder and decoder.
The encoder consists of a separate network that samples the data x from original data and
tries to learn the latent representations (z), whereas the decoder network tries to reconstruct
the original image x’ from the latent representation z [40].

z→ Enc(x) = q(z|x)
∼
x→ Dec(z) = P(x|z)

(1)

Typically, z is sampled from Gaussian distribution N(0,1). The VAE objective func-
tion consists of two terms, reconstruction error and a regularization term, given in the
following equation.

L(VAE) = −Eq(z|x)
[

log
P(x|z)P(z)

q(z|x)

]
(2)

= −Eq(z|x)[logP(x|z)] + Dkl
(
qϕ(z|x)

∣∣∣∣P(z)
)

(3)

where the term−Eq(z|x) logP(x|z)] is called reconstruction error (L(Rec)) and Dkl(qϕ(z|x)‖
P(z)) is the Kullback-Leibler divergence.

2.1.2. GAN with Student T-Distribution

As we discussed in the introduction, heavy-tailed t-distribution tends to produce better
results than random Gaussian noise. In this section, we will discuss the reparameterization
trick of t-distribution. In generative models, backpropagation does not hold as it is. To
sample the noise from a student t-distribution instead of a standard normal distribution
and to reduce the generative and discriminative loss, we propose a reparameterization of
the latent generative space, using a mixture of students’ t-distributions. The probability
density function (pdf) of multivariate student t-distribution is given by

f (x) =
Γ
[

1
2 (d + n)

]
Γ
(

d
2

)
(dπ)

n
2 |Σ∗|

1
2

1 +

(
x− µ

)′
(Σ∗)−1

(
x− µ

)
d


− d+n

2

(4)
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f (x) =
Γ
(

d+n
2

)
Γ
(

d
2

)
d

n
2 π

n
2 |Σ∗|

1
2

[
1 +

1
d

(
x− µ

)′
(Σ∗)−1

(
x− µ

)]− d+n
2

(5)

where µ, n, d & Σ∗ represents its parameters and is given by:
Mean vector µ = (µ1, µ2, . . . , µn)
Number of variables = n
Degree of freedom = d
Positive-definite symmetric matrix Σ∗ o f size = n× n, respectively.
Covariance matrix (Σ∗s ) of variables that follow the pdf of t-distribution with a degree

of freedom d > 2 is given by
Σ∗s = d

′
Σ∗ where d

′
= d(d− 2)−1 f or d > 2. Therefore, multivariate student t-

distribution can be written as t
(

µ, d′Σ∗
)

with parameters definite matrix (Σ∗), degree of

freedom (d
′
) and mean vector (µ).

A t-distribution t
(

µ, d′Σ∗
)

is said to be a standard t-distribution if it has a mean vector
equal to zero (µ = 0), covariance matrix equal to the identity matrix (Σ∗ = I), and can be
written as t(0, d′I). Where 0 is a vector with all zeros and I is an identity matrix.

To sample a noise vector, we first randomly select one of the t-distributions and then
sample an n-dimensional vector from the selected t-distribution. Thus, as [41] claimed
as well, sampling of noise vector and linear transformation of t-variable still follows the
t-distribution. Thus, sampling a noise vector z*→t

(
µi, d

′
Σ∗i
)

from the general t-distribution

becomes equivalent to sampling ε*→t
(

0, d
′
I
)

and calculating z* according to Equation (6).

z∗ = µ + Σ∗i ε∗, ε∗ ∈ t
(
0, d′I

)
(6)

So, the distribution Pz∗(z∗) of latent noise can be written as:

Pz∗(z∗) =
N

∑
i=1

πiti(µi, d′Σ∗i ) (7)

where N represents the number of t-distributions and πi is the weight of each element.
We assume Σ∗i is a diagonal matrix and each diagonal element is initialized with non-zero
value of 0.03, close to the suggestion of Sun et al. [42]. We initialize each element of µi
by sampling from a uniform distribution of range from −1 to 1. So, this way, µi and
Σ∗i , both can be learned during the learning process of other parameters of the proposed
network TED-GAN.

2.1.3. The Loss Function

To push TED-GAN to produce an image from a particular category, we need to
put some extra information or condition to both generator (G) and discriminator (D). We
represent the output of the generator as G(z′|l) where ‘l’ represents the label of the category
to push the network to produce the images from a specific class. So, the generator loss Gl
and the discriminator loss Dl is given in Equations (8) and (9), respectively.

Gl = −Ez′ |l∼Pz′ |l
[log(D(G( x|l )))] (8)

Dl = −Ex∼Pdata [log(D(x)]
−Ez′ |l∼Pz′ |l

[log(1− D(G(x|l)))] (9)

2.1.4. Auxiliary Classifier Loss Function

As the class label information is encoded into the network, we can add an auxiliary
classifier to the discriminator of TED-GAN. In this way, we can push the discriminator to do
two tasks; identifying whether it is a real or fake image and predicting the class label of the
image. Making the network do additional jobs proved good practice for improving network
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performance in the basic tasks. In our case, the auxiliary classifier does the additional
supervisory job to push the generator and discriminator to produce realistic and diverse
skin lesion images.

Our auxiliary classifier Lc shares the feature extraction layers with the discriminator,
and its loss function is given by [43]

Lc = −Ex∼Pdata [log(D(x)] Ez′ |l∼Pz′ |l
[log D(G( z′

∣∣l ))] (10)

2.2. Experiment Settings

For experiments, we used an i7-6850 processor supported by the Graphical Processing
Unit (GeForce Nvidia GTX 1080 GPU), with an operating system, Ubuntu 18.04.2 LTS,
installed on it. We wrote the code in python programming language V3.8 with external
libraries, including Keras, TensorFlow v2.0.0, Sci-kit-learn, Pandas, NumPy, and Matplotlib.

We used the HAM10000 dataset [39] for skin cancer to evaluate the proposed method-
ology and conducted extensive experiments. This is a benchmark dataset for skin cancer
images that consists of more than 10,000 images of 7 types of skin lesions. We used the
four categories, basal cell carcinoma (Bcc, 514 images), benign keratosis (Bkl, 1099 im-
ages), melanocytic nevus (Nv, 6705 images), and melanoma (Mel, 1113 images). The other
three categories of lesions in this dataset do not have enough images to train a GAN. We
split the dataset into training, validation, and test sets with 60%, 20%, and 20% of the
data, respectively.

The training set, i.e., 60% of the dataset, is used for VAE and GAN1 training. After the
training of the encoder-decoder network, the network is swapped into the decoder-encoder
network. Now the output of the decoder consists of a noise vector, not an image. This noise
vector (the output of VAE) that has the information of the image manifold is used in the
training of GAN1. Additionally, the images generated by GAN1 are used in the training
of GAN2. There is no difference in the architectures of the GAN1 and GAN2, except that
the GAN2 has an auxiliary classifier. Moreover, GAN2 samples the noise vector from
the student t-distribution, whereas GAN1 samples from the pre-trained decoder-encoder
latent vector.

The CNN classifier shown in Figure 4 is trained on these images generated by TED-
GAN + 60% images of the HAM10000 dataset. This classifier is trained for an equal number
of epochs (1000 epochs) for various image datasets generated by other generative models,
and classification results are compared. The block diagrams and architecture details of
the proposed framework are shown in Figures 1–4, respectively. We used Adam as an
optimizer, 0.01 learning rate, batch size 10 with categorical cross-entropy.

To generate the images from other generative models, we used their publicly available
code with default parameter settings.

For performance measures, we used precision, recall, average accuracy, and F1-score.
The recall is also called sensitivity. Mathematically, sensitivity, specificity, accuracy, and
F1-score can be written as:

Sensitivity (Recall) =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

Accuracy =
TP + TN

Total
(13)

F1 Score = 2 ∗
(

Sensitivity ∗ Speci f icity
Sensitivity + Speci f icity

)
(14)

where:
FN = False Negatives TP = True Positives
TN = True Negatives FP = False Positives
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3. Results

Generating medical images with any GAN is tricky and challenging compared to gen-
erating other images, for example, different species images, like dogs, cats, etc. Moreover,
using these synthesized images to train the model for disease diagnosis makes this task
more crucial. The dataset we used in this study was relatively tiny. We tried to leverage
on using the t-distribution that generates diverse images because of its fatter tail. These
artificially generated and diverse images played an important role in improving the results
of deep learning classifiers. The artificial melanoma images generated by various gener-
ative models are shown in Figure 5. We can observe that the imperceptibility of images
generated by TED-GAN is significantly better than other generative models.
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Figure 5. Artificially generated images of most swear type of skin cancer, melanoma by GANS. The top left, right, and
bottom blocks of images represent the melanoma images generated by GAN, DeLiGAN, and TED-GAN (proposed),
respectively. By having a close look at upper two blocks of images, we can observe the repetition of generated images.
The green, blue, and yellow blocks contain similar images. Diversity in the images can clearly be observed visually in the
proposed block (bottom one).
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Moreover, the diversity of generated images by TED-GAN (proposed) can be observed
in Figure 5 (bottom row). Other generative models used in this study for comparison,
GAN [15], DeLiGAN [28], generated several repetitive images highlighted in green, blue,
and yellow color boxes in Figure 5. Although these repetitive images are similar in shape,
they still have different textures, color temperatures, and saturation. These properties can
be observed by having a close look at those highlighted images.

The first convolution layer of CNN learned similar features from both generated
and real images. This phenomenon can be seen in Figure 6, representing the feature
visualization of the real and generated image. This could be the reason that a simple
GAN also has a significant impact on the classification results, though it generates several
repetitive images.
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Figure 6. Features visualization of original and generated melanoma images. Upper and lower rows (original and generated
images, respectively) represent the features that the convolutional layer of the classifier learned during the training process.

A detailed quantitative comparison of average accuracy, F1-score, sensitivity, and
specificity of various generative models with the proposed method are summarized in
Table 1. Table 1 shows that TED-GAN performed best, followed by DeLiGAN [28] and basic
GAN [15]. Some GAN variations like deep convolutional generative adversarial networks
(DCGAN) [21] can generate better images, but require significantly large amounts of training
data (around 60,000 images for training). So, we could not include it in our comparison.

Table 1. Sensitivity, specificity, F1-score, and an average score of individual lesion class for various generative models. Nv,
Mel, Bcc, and Bkl are the abbreviations of skin lesions. Please consult Section 4 for more details about the dataset and skin
lesion names. Augmentation represents the classic augmentation, e.g., rotation, cropping, scaling, etc. Moreover, artificial
images generated by various generative models are included in the training set.

Nv Mel Bcc Bkl Avg. Acc

Without Augmentation

GAN [15]
Precision 0.73 0.88 0.86 0.80

81.0%Recall 0.85 0.70 0.83 0.86
F1-Score 0.78 0.78 0.85 0.83

DeLiGAN [28]
Precision 0.76 0.91 0.86 0.85

83.75%Recall 0.87 0.73 0.86 0.89
F1-Score 0.81 0.81 0.86 0.87

TED-GAN
(Proposed)

Precision 0.87 0.94 0.94 0.84
89.25%Recall 0.92 0.82 0.90 0.93

F1-Score 0.89 0.88 0.92 0.88
With Augmentation

GAN [15]
Precision 81 90 90 81

85.25%Recall 88 81 85 87
F1-Score 0.84 0.85 0.88 0.84

DeLiGAN [28]
Precision 85 94 94 83

89.3%Recall 90 83 89 92
F1-Score 0.87 0.88 0.91 0.87

TED-GAN
(Proposed)

Precision 90 94 93 93
92.5%Recall 94 89 92 95

F1-Score 0.92 0.91 0.92 0.94

Avg. Acc = average accuracy; Bold indicates the maximum value achieved in the respective experiment settings.



Diagnostics 2021, 11, 2147 12 of 16

4. Discussion

Melanoma is the most dangerous type of skin cancer. Dermatologists are always inter-
ested in its sensitivity and specificity. A simple CNN classifier trained on the HAM10000
images only without any generative images achieved only 53% and 75% sensitivity and
specificity, respectively, for the melanoma class. In contrast, for the same class of melanoma,
the sensitivity and specificity results improved to 70% and 88% (Table 1, column 4), respec-
tively, when the images generated by GAN were included in the training of the classifier.
Whereas the proposed generative model (TED-GAN) achieved 82% sensitivity and 94%
specificity values of melanoma. The classification results improved around 3–5% further
for all the models (GAN, DeLiGAN, and TED-GAN) when classic augmentation (crop-
ping, scaling, and rotation) was used along with generative images for the training of
the classifier.

Apart from comparing with other image generative methods, we compare our clas-
sification results with several other studies published in various journals within the last
three years. The average accuracy of the proposed method is better than the others, around
2–7%. The classification results are summarized in Table 2.

Table 2. Comparison of proposed TED-GAN classification results with various studies published within the last three years.

Source Dataset Method No. of
Classes

Sensitivity
(Recall)%

Specificity
(Precision)% F1-Score Accuracy

2019

CNN [44] CNN 2 92.8 68.2 - -

[45] HAM10000
Physicians 5 66 62 - -

CNN 5 86.1 89.2 - -

2020
[46] Private R-CNN 2 - - - 86.3

[47] HAM10000 GoogLeNet
Inception-v3 7 75.57 - - -

2021
[7] HAM10000 KELM 7 90.2 - - 90.67

(TED-GAN)
Proposed HAM10000 TED-GAN &

CNN 4 89 94 0.91 92.5

Figure 7a represents the confusion matrices of the CNN classifier when it is trained on
the images generated by various generative models, including GAn, DeLiGAN, and the
proposed TED-GAN.

All the performance measures indicate that using any GAN improves the classification
performance of the deep learning model. Additionally, if we use the proposed method to
generate the skin lesions, results can significantly be improved because of two reasons.

First, the noise from which the TED-GAN sampled previously is already trained
and contains domain information. It also reduces the training time of the TED-GAN
considerably. We trained the TED-GAN only for 15,000 training steps, which is half of
the time used for the training of other competing GAN models. They trained for 30,000
training steps. Figure 7b depicts the generator loss of TED-GAN. After 10,000 training
steps, the average loss value stays around 1.5, which is approximately equal to 2 log 2, the
convergence value suggested by Goodfellow [15].

Secondly, the use of the heavy tail distribution, t-distribution, gives diversity to the
generated images. The diversely generated images result in better training of the CNN
classifier and prevent it from overfitting on the test set.
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TED-GAN. (b) Training loss of the generator of TED-GAN (GAN2).

4.1. Limitations

Although we tried to leverage the heavy-tailed distribution that tends to generate
diverse images, these generated diverse medical images could be tricky, especially in some
particular medical imaging applications like this one. There is a very minute difference
in the color and texture of various categories of skin lesions. Diverse image generative
models may end up generating skin lesions images that may not belong to that specific
lesion category. This is a common limitation of all generative models when they deal with
medical imaging.

4.2. Future Work

The performance of the proposed method can further be enhanced easily by using a
deep architecture or by making some modifications in the architecture, for example, by
using an attention mechanism or by introducing skip connection. We purposely used very
simple and lightweight architecture as we had to perform extensive experimentation for
a fairly large number of iterations to generate skin lesion images. With a sophisticated
deep classifier network along with the proposed TED-GAN, we can further improve the
classification results.

Moreover, further experiments can be performed to estimate the classifier’s general-
ization capacity for various unseen datasets. The results can be compared when a small
portion of each dataset is included in TED-GAN training and when some of the datasets
are unseen.

5. Conclusions

This paper proposed a framework that consists of three generative models; one VAE
and two GANs. Instead of using random noise for the input of GAN, we trained the
VAE to produce informative noise and let the GAN sample the input noise vector from
this informative noise. This helped the adversarial network avoid mode collapse, and
it converged faster. Moreover, in the second generative network, we used the heavy-
tail student t-distribution. This added diversity to the generated images. The proposed
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framework improved the classification results of skin lesions from 66% average accuracy
to 92.5% average accuracy.

TED-GAN performance was compared with other generative models and existing
studies published within the last three years. It successfully achieved a better average
accuracy of around 2–7% higher than other generative models.
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