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ABSTRACT Microbes dominate the planet’s biodiversity in terms of species number
and by driving essential Earth system functions such as the carbon cycle. Soils con-
tain most of this microbial biodiversity. Only recently, we have started to better
understand the diversity of bacteria and fungi at the global scale. Here, I list my
views on some shortcomings of contemporary soil microbiome studies and potential
solutions to overcome them. In particular, I highlight that (soil) microbiome studies
should become more holistic in terms of (i) taxa and resolution targeted, (ii) by add-
ing functional to taxonomic information, and (iii) by integrating temporal analysis
into spatial analyses. Considering those elements with the methodology that is now
available will advance our understanding on (soil) microbiomes to reliably address
major ecological hypotheses and to advance insights into the importance for life on
Earth.
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What is life on the planet? In the general public, most people consider biodiver-
sity to be represented mainly by plants and animals, with the remaining biodi-

versity mostly being treated as maleficent pathogens. Indeed, the past period has
been shaped by the coronavirus disease 2019 (COVID-19) pandemic. Beyond viruses,
also other microbial groups, including bacteria, fungi, and protists, are mainly known
as pathogens of humans, animals, or plants. These organisms are of direct relevance
for humanity and together with the fact that targeted studies can easily focus on
these individual pathogenic species explain the major interest on pathogens. While
microbial biodiversity has a century long history that started with the invention of
the microscope, microbial ecology has experienced a major burst in research espe-
cially in the last decade. Sequencing techniques have shifted the previously often
individual-based, pathogen-centered approaches to untargeted community-level
analyses that do not require visible host symptoms (1). Starting with host-associated
microbiome studies, microorganisms are now studied in all imaginable systems,
including soils (2).

Still, a bias remains toward microbial studies in hosts. This contrasts with the
actual diversity of microbes in different systems, which in host-associated systems is
by far lower than in the environment (3). It has become evident that soils contain the
highest diversity, abundance, and biomass of microbes (4, 5). Most research in hosts
and soils is also not equally spread among microbial groups but focused predomi-
nantly on bacteria and to some extend fungi (6). Among the major achievements
were knowledge gains on different spatial patterns, including global distribution
based on surrounding physicochemical properties (7, 8), but increasing evidence
hints to the importance of biotic interactions in driving bacterial and fungal com-
munities, such as competition (9) and especially top-down predation (10). Yet, knowl-
edge on microbiome predators strongly lags behind knowledge on their microbial
prey.
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A PARADIGM SHIFT TOWARDS INTEGRATED MICROBIOME STUDIES

I strongly believe that most knowledge gains in the field of soil biology can be
obtained by more integrative studies that include a range of aspects that I will compile
in the following sections.

THE BENEFIT OF REAL MICROBIOME STUDIES BEYOND THE FOCUS ON
BACTERIAL COMMUNITIES

Currently, most “microbiome” studies study only bacteria and thereby use the term
microbiome synonymously for bacteria. As such, alternative terms for other microbial
groups have evolved; these terms include mycobiome to focus on fungi (11), virome to
focus on viruses (12), and eukaryome to focus on microbial eukaryotes (13). While there
is some use of these terms, the many omes arguably represent buzzwords that could
endlessly be broken down to smaller and smaller units. I propose using microbiome
only if at least several microbial groups are studied simultaneously, ideally all. In fact,
arguably in almost any environment from the gut to the deep sea to Antarctic soils,
some bacterial interactions with other microbiome groups occur, such as competition
with fungi, infection with viruses, or predator-prey interactions with protists. At least
the presence of other microbiome groups should be investigated before a study cen-
tered on bacteria claims to be a true microbiome study (Fig. 1).

There are more reasons for integrated taxon approaches in microbiomics than
semantics: microbial groups interact and shape another often in ways comparable to
abiotic factors. Indeed, competition between fungi and bacteria shape their commun-
ities (9), while predation by protists and lysis by viruses accelerate turnover and com-
munity composition of bacteria (10, 14). Beyond these direct interactions, integrative
microbiome studies have the advantage of detecting environmental differences that
might not be visible for one group of microbes. For example, we revealed that protists
showed severe community fluctuations over time and due to fertilization, whereas
communities of bacteria and fungi did not vary (15). We also revealed that bacterial
and especially protistan communities and protistan species predict plant health unlike
fungal communities (16). Therefore, microbiome studies should include multiple

FIG 1 Overview of envisioned microbiome work that profoundly steps beyond the current focus
mostly on describing bacterial communities. I envision integrative microbiome studies to cover
different microbial groups (left). Furthermore, added value will come from linking the microbiome to
its function such as its effect on plant growth, greenhouse gas emissions, or host performance (top
right), from environmental studies both through space and time (middle right), and from other
advances such as cross-system comparisons, using novel methods or statistical approaches (bottom
right). The figure was created with BioRender.com.
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microbial groups, as otherwise misleading conclusions on bacterial community assem-
bly, ecological patterns, or treatment effect sizes might be drawn.

Last, all large-scale microbiome studies in soils and even hosts have a major disad-
vantage: they focus on community metrics that deviate from biogeographic studies on
individual species-based studies of plants and animals. Given these limitations, how can
we target basic ecological questions and real species-level biogeography and even mon-
itor potential biodiversity declines such as those evident from macroscopic plants and
animals (17)? Furthermore, species-level analyses are crucial to finally increase the known
biodiversity of species in soils that remain below 10% (18). We now have the tools avail-
able to make a step forward from the mostly performed short-read community-based
sequencing profiles to tools that allow differentiation of individual microbial species,
such as long-read sequencing tools such as PacBio, Nanopore, or LoopSeq (19, 20).

MICROBIOMES NEED FUNCTIONAL INFORMATION

Much knowledge gains on the biogeographic distribution of microbial groups, par-
ticularly bacteria and fungi, have been obtained at different spatial scales up to the
global level (2, 7–9). More recently, protists and nematodes have also been added to
the list of globally studied minute organisms (4, 21, 22). As such, we now understand
the basic physicochemical properties that determine microbial biogeography. Yet, we
have now reached a point where pure diversity comparisons have little additive value,
and we need to acknowledge and better study the immense functional importance of
microbes (Fig. 1). Tools to assign functions from taxonomic identities can be a start for
conserved functions and include programs such as PICRUSt2 and Tax4Fun (23) for bac-
teria, FUNGuild (24) and FungalTraits (25) for fungi, and NINJA for nematodes (26).

However, DNA-based efforts can distort the real functioning of organisms in the
environment as inactive organisms are part of the recovered diversity. Furthermore,
taxonomy-based functional annotations can be misleading (e.g., soil bacteria do not
necessarily function as related gut bacteria; fungi with identical marker gene sequen-
ces can range from pathogenic to mutualistic). The next steps in functional studies are
omics approaches that provide direct information on functional genes and actively
transcribed genes (27). Classical cultivation-based interaction studies are also experi-
encing a comeback, as they are used to provide ultimate evidence for the functioning
of individual microorganisms alone and in combination. This fact is evidenced by
increasing efforts in cultivation techniques (28) that will further possibilities for func-
tional assays. These include phytometer-based studies to investigate microbial effects
on plant growth and classical (soil) biological methods like greenhouse gas measure-
ments and functional gene measurements. Generally, more blended studies that
include multiple experimental and analytical approaches are ideal to provide a more
cumulative understanding of microbial functioning; these approaches include the ones
above at different scale (e.g., field to greenhouse to laboratory), from molecular to bio-
chemical ones (e.g., metagenomics, metatranscriptomics, metaproteomics, metabolo-
mics, and stable-isotope-based methods), and analytical approaches (e.g., indicator
analyses, network analyses, and structural equation). Obviously, cost constraints do not
allow the application of all methods simultaneously nor would they always make sense
to include. I am instead proposing tailored method combinations to back up some of
the often standardly performed sequence-based approaches, which should be defined
based on the research question and also in terms of availability and cost-effectiveness.
I believe that everyone that can do deep metagenomics can afford some additional
functional experiments or analyses even if that would mean to sequence less deeply.

MICROBIOME STUDIES NEED BOTH A SPATIAL AND TEMPORAL DIMENSION

As introduced above, we have gained a thorough understanding of the global bio-
geography of microbes, but all these studies have one major drawback: all contempo-
rary large-scale soil biodiversity inventories have been obtained at a single point in
time, whereas local-scale studies revealed the importance of seasonal factors in shap-
ing soil biodiversity (29). These temporal changes are predictable, as constant
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fluctuations in physicochemical factors, such as moisture, temperature, or the availabil-
ity of different carbon and nutrient substrates, largely determine the global distribu-
tion of soil biodiversity (7, 8, 21, 22). For example, considering that protists are mostly
determined by soil moisture (21) and that protists determine the community, abun-
dance, and functioning of bacteria and fungi (10), short-term temporal variations in
precipitation might cause serious shifts in the soil microbiome. Also, the functioning of
soil biodiversity can hardly be extrapolated from single time point sampling schemes
especially in nontropical regions, as microbial activity is strongly dependent on tem-
perature. How can we then predict general microbial communities and their function
from a single time point while constant changes are expected? To increase the mean-
ingfulness of large-scale surveys in terms of microbial communities and their function-
ing, we need a better understanding of temporal changes through multiple intra- and
interannual sampling approaches (Fig. 1).

MY VISION ON FUTURE MICROBIOME STUDIES

Above, I listed some of the options to increase the meaningfulness and scope of micro-
biome research, with many other potential improvements available. These include meth-
odological improvements and integration, links between systems, many of which are listed
by G. Berg et al. (6). What is really needed in (soil) microbiome studies? Considering all
these aspects simultaneously (Fig. 1)! Obviously, this is not the task of individual studies,
but more to give researchers a better framework for all the aspects that exist in micro-
biome research. Furthermore, the above points should help to better and more reliably
interpret observed patterns in distinct microbiome studies, as all multidimensional aspects
around the field of microbiomes can never be targeted in individual research.

In my ongoing and future research, I will try to increase the knowledge on different
aspects on (soil) microbiomes with a focus on aspects that remain hardly known, such as
including diverse microbial groups at a taxonomic resolution of species ideally, add multi-
ple functional information to taxon-based ones, and include a temporal axis to most
microbiome studies. My vision is that other researchers also aim at expanding their
research interest to step away from the standard analyses that seem to be inherent to
many current microbiome analyses, i.e., sequencing a short barcoding region of the 16S
rRNA gene at different spatial scales or systems, analyze these data with the same bioinfor-
matic pipelines and R scripts to eventually publish very similar papers—with differences
mainly in systems studied or increased analyses based on the same data. Obviously, this
point of view is highly provocative and does not capture many ongoing highly innovative
studies. I am convinced that by incorporating some of the approaches mentioned above,
microbiome research will become more honest, holistic, integrative, and meaningful.
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