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A mitotic function for the high-mobility group protein HMG20b regulated

by its interaction with the BRC repeats of the BRCA2 tumor suppressor

M Lee, MJ Daniels, MJ Garnett and AR Venkitaraman

Department of Oncology and the Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University
of Cambridge, Cambridge, UK

The inactivation of BRCA2, a suppressor of breast,
ovarian and other epithelial cancers, triggers instability
in chromosome structure and number, which are thought
to arise from defects in DNA recombination and mitotic
cell division, respectively. Human BRCA2 controls DNA
recombination via eight BRC repeats, evolutionarily
conserved motifs of B35 residues, that interact directly
with the recombinase RAD51. How BRCA2 controls
mitotic cell division is debated. Several studies by different
groups report that BRCA2 deficiency affects cytokinesis.
Moreover, its interaction with HMG20b, a protein of
uncertain function containing a promiscuous DNA-bind-
ing domain and kinesin-like coiled coils, has been
implicated in the G2–M transition. We show here that
HMG20b depletion by RNA interference disturbs the
completion of cell division, suggesting a novel function for
HMG20b. In vitro, HMG20b binds directly to the BRC
repeats of BRCA2, and exhibits the highest affinity for
BRC5, a motif that binds poorly to RAD51. Conversely,
the BRC4 repeat binds strongly to RAD51, but not to
HMG20b. In vivo, BRC5 overexpression inhibits the
BRCA2–HMG20b interaction, recapitulating defects in
the completion of cell division provoked by HMG20b
depletion. In contrast, BRC4 inhibits the BRCA2–RAD51
interaction and the assembly of RAD51 at sites of DNA
damage, but not the completion of cell division. Our
findings suggest that a novel function for HMG20b in
cytokinesis is regulated by its interaction with the BRC
repeats of BRCA2, and separate this unexpected function
for the BRC repeats from their known activity in DNA
recombination. We propose that divergent tumor-suppres-
sive pathways regulating chromosome segregation as
well as chromosome structure may be governed by the
conserved BRC motifs in BRCA2.
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Introduction

Germline mutations in the BRCA2 tumor suppressor
predispose with high penetrance to cancers of the breast,
ovary, pancreas and other organs (Rahman and
Stratton, 1998; Breast Cancer Linkage Consortium,
1999; Nathanson et al., 2001; Welcsh and King, 2001;
Antoniou et al., 2003; King et al., 2007). BRCA2
inactivation triggers instability in the structure and
number of chromosomes during cell division (Patel
et al., 1998; Yu et al., 2000). There is mounting evidence
that BRCA2’s tumor-suppressive activity in preserving
chromosome structure is mediated through its function
in regulating RAD51, an enzyme essential in eukaryotic
cells for the repair of DNA breaks by homologous DNA
recombination (Chen et al., 1999; Yuan et al., 1999;
Pellegrini et al., 2002; Venkitaraman, 2002; Carreira
et al., 2009; Shivji et al., 2009). BRCA2 binds directly to
RAD51 via the BRC repeats, evolutionarily conserved
motifs of B35 residues, eight copies of which occur in
mammalian BRCA2 orthologues. The eight mammalian
BRC repeats are conserved not only in their protein
sequence but also in their spacing within the protein,
suggestive of conserved function(s) (Bork et al., 1996).
Each of the eight BRC repeats (BRC1–BRC8) found in
human BRCA2 exhibits a varying capacity to bind
RAD51 in vitro (Wong et al., 1997). Peptides encoding
individual BRC repeats, or the B1123 residue domain
encoding the region of BRCA2 containing all eight
repeats, regulate the ordered assembly of RAD51 on
DNA substrates (Shivji et al., 2006). Thus, they enhance
the loading of RAD51 onto single-stranded DNA
substrates, while suppressing double-strand DNA bind-
ing, and these opposing activities promote the reactions
that lead to homologous recombination (Carreira et al.,
2009; Shivji et al., 2009).

How BRCA2 may work to maintain chromosome
number is less clearly understood, although roles have
been proposed in the transition between the G2 and
M phases of the cell cycle (Marmorstein et al., 2001),
and in the completion of cell division by cytokinesis
(Daniels et al., 2004; Jonsdottir et al., 2009; Vinciguerra
et al., 2010; Rowley et al., 2011), which have recently
been questioned (Lekomtsev et al., 2010). A protein
previously reported to bind to BRCA2–HMG20b or
BRAF35 (Marmorstein et al., 2001)–has been impli-
cated in the G2–M transition. HMG20b was first
isolated (Sumoy et al., 2000) as a novel member of the
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high-mobility group (HMG) of non-sequence-specific
DNA-binding proteins, which at its C terminus also
contains two kinesin-like coiled coil regions, a distinctive
structural feature shared with the HMG protein BAF57
(Wang et al., 1998). HMG20b can be copurified with
BRCA2 in a high-molecular-weight complex of 42
Mda from asynchronous cell cultures, and interacts
directly with a region spanning residues 1648–2190 in
the human BRCA2 sequence. HMG20b was reported to
decorate condensing chromosomes; and injection of an
anti-HMG20b antibody was found to delay the transi-
tion from G2 into mitosis (Marmorstein et al., 2001).
However, subsequent studies on HMG20b reveal that it
interacts with KIF4 (Lee and Kim, 2003), a kinesin
protein localized predominantly to mitotic microtubules
rather than interphase chromatin (Zhu and Jiang, 2005).

Here, we have investigated the function of HMG20b
and the significance of its interaction with BRCA2. We
report that HMG20b depletion by RNA interference
provokes abnormalities in the completion of cell
division, delaying mitosis and triggering the formation
of binucleate daughters. In vitro, HMG20b interacts
directly with BRC5, a repeat that interacts poorly with
RAD51, whereas, conversely, BRC4 interacts strongly
with RAD51 but not HMG20b. In vivo, BRC4 over-
expression inhibits the BRCA2–RAD51 interaction
and the ability of RAD51 to assemble at sites of
DNA breakage, but has no discernible effect on the
completion of cell division. In contrast, BRC5 disrupts
the BRCA2–HMG20b interaction, and phenocopies
the mitotic effects of BRCA2 deficiency or HMG20b
depletion. These observations suggest that HMG20b has
a novel function in the completion of cell division by
cytokinesis that is mediated via its interaction with the
BRC repeats of BRCA2, delineating two dichotomous
pathways for the tumor-suppressive activity of BRCA2
controlled by the BRC-repeat motifs.

Results

Depletion of HMG20b delays and disrupts the
completion of cell division
To better define the function of HMG20b during
mitosis, we depleted the protein from HeLa cells by
small interfering RNA (siRNA) transfection and exam-
ined mitotic progression using time-lapse microscopy
(Daniels et al., 2004). The extent of HMG20b protein
depletion after the exposure of cells to specific siRNAs,
or control oliognucleotides, was determined by western
blotting (Supplementary Information, Supplementary
Figure S1a). We find that HMG20b depletion signifi-
cantly delays the time taken from anaphase onset to
the completion of cell division, a phenotype we have
previously detected in BRCA2-deficient cells (Daniels
et al., 2004). Typically, HMG20b-depleted cells initiate
cleavage furrowing and undergo significant furrow
ingression, but frequently fail to complete cell division
(49% of HMG20b-depleted mitotic cells (n¼ 67) com-
pared with 15% of controls (n¼ 79). Many exit mitosis

to form binucleate cells (37% of mitotic cells). Less
frequently, HMG20b-deficient cells remain with ad-
vanced furrow ingression without undergoing abscission
during a 6-h observation period (12% of mitotic cells;
Figure 1a).

About half (51%) of HMG20b-depleted cells do
ultimately complete cell division, but the majority is
significantly delayed in progression. Thus, the time
taken from anaphase onset to the completion of division
increases markedly from a median value of 85min
(control siRNA, n¼ 67) to 143min (HMG20b siRNA,
n¼ 34) (Figure 1b). Representative frames from time-
lapse experiments with HeLa cells expressing green
fluorescent protein-tagged histone H2B are shown in
Figure 1c, supplemented by movies demonstrating the
defects induced by HMG20b depletion (Supplementary
Movies 1 and 2). Similar defects are observed when using
multiple individual siRNAs targeting HMG20b, further
substantiating that it is specifically due to loss of HMG20b
function (Supplementary Information, Supplementary
Figures S1b–d). Collectively, these data demonstrate that
HMG20b depletion delays the completion of mitotic cell
division, and triggers abnormalities in the process.

The BRC5 repeat of BRCA2 binds directly to HMG20b
but not RAD51, in contrast to BRC4
Human BRCA2 and HMG20b can be reciprocally
coimmunoprecipitated with one another from HeLa
nuclear extracts (Marmorstein et al., 2001). We con-
firmed this using extracts of asynchronously dividing
293T cells and rabbit polyclonal antibodies against
BRCA2 or HMG20b, coupled to protein A beads. We
found that only a small fraction (o5%) of each protein
was present in the complex (Figure 2a). Interestingly,
complex formation was increased (Supplementary
Information, Supplementary Figure S2) when cells were
enriched in prometaphase (by nocodazole exposure,
lanes 2 and 6) or in cytokinesis (by purvalanol A
treatment after nocodazole exposure, lanes 3 and 7).
These findings are consistent with a role for the
HMG20b–BRCA2 complex in mitotic cell division.

To identify the region of BRCA2 that mediates
the interaction, we split its coding sequence into
nine overlapping GST-fusion proteins, B2-1 to B2-9,
and incubated them with extracts from 293T cells
overexpressing FLAG-tagged HMG20b (Figure 2b
and Supplementary Information, Supplementary Fig-
ures S3a and b). The B2-4 fragment, spanning BRCA2
residues 1338–1781, pulls down both endogenous
HMG20b and the overexpressed FLAG-tagged form
(bands marked by arrows). Whereas the overexpressed
form of HMG20b also binds weakly to other fragments
(B2-2, -3 and -5, see Supplementary Information,
Supplementary Figure S3a), pull down of the endogen-
ous form is undetectable with these fragments. Collec-
tively, these results suggest that the major site of
interaction between endogenous HMG20b and BRCA2
lies within the B2-4 region.

Further dissection of the B2-4 region reveals
(Figure 2c and Supplementary Information, Supple-
mentary Figure S3c) that the portion responsible for
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HMG20b binding lies between BRCA2 residues 1613–
1781, which span the BRC5 repeat. Indeed, incubation
of cell extracts with biotinylated peptides encoding the
BRC4 (1517–1551) or BRC5 (1661–1695) repeats shows
that BRC5 binds strongly to HMG20b, whereas binding
to RAD51 is negligible. By contrast, BRC4 binds
strongly to RAD51 as previously reported (Wong
et al., 1997), but binding to HMG20b is undetectable.
The BRC5–HMG20b interaction is direct, as indicated
by the ability of recombinant His-tagged HMG20b to
bind to a synthetic peptide encoding BRC5 (Figure 2d).

Thus, our findings provide the first evidence that the
BRC repeat motifs of BRCA2 bind to a protein other
than the RAD51 recombinase, and in particular, suggest
a functional dichotomy between BRC4 and BRC5 in
their ability to bind RAD51 and HMG20b.

BRC5 inhibits the interaction in cells between BRCA2 and
HMG20b but not RAD51, in contrast to BRC4
To analyze the functional significance of the BRCA2–
HMG20b interaction, we established stable cell lines
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Figure 1 HMG20b is required for the completion of cell division. (a) Frequency of failure to complete cell division after depletion of
HMG20b. Cells which either became binucleate or did not complete cell division within a 6-h observation period were counted from
time-lapse images. The mean±s.e.m. is shown. (b) Box-and-whisker plot showing time taken from anaphase onset to completion of cell
division measured from time-lapse images. The median value is shown; the bottom and top of the box represent the 25 and 75th
percentiles respectively. (c) Representative frames from a time-lapse experiment with HeLa cells stably expressing green fluorescent
protein-H2B. Cells of interest are marked with black arrows. See also Supplementary Movies 1 and 2.
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expressing tetracycline-inducible, myc-tagged fragments
encoding BRC4 (spanning BRCA2 residues 1481–1553)
or BRC5 (residues 1636–1715), respectively, in the cell
line HeLa TetOn. Two clones expressing similar levels of
myc-tagged BRC4 or BRC5 (clones 4.23 and 5.10,
respectively) upon treatment with doxycycline were
chosen for further study (Figure 3a).

Next, we determined whether or not the expression
of myc-BRC4 or myc-BRC5 affects the interaction
between BRCA2 and HMG20b. We pulled down
BRCA2 complexes using an anti-BRCA2 antibody from
cells induced to express either myc-BRC4 or myc-BRC5,
and probed the immunoprecipitates for HMG20b or
RAD51 (Figure 3b). In myc-BRC5-expressing cells
(5.10), the amount of HMG20b coimmunoprecipitated
with BRCA2 was less than in cells expressing
myc-BRC4 (4.23) or control HeLa TetOn cells (compare
lanes 5, 6 and 7). In contrast, the amount of RAD51
coimmunoprecipitated with BRCA2 was not affected
by myc-BRC5 expression, but was decreased by myc-
BRC4 (lanes 5, 7 and 6). These results show that the
expression of BRC4 or BRC5 can specifically inhibit
the endogenous interaction of BRCA2 with RAD51 or
HMG20b, respectively.

BRC5 inhibits the completion of cell division but not
damage-induced RAD51 assembly, in contrast to BRC4
We therefore examined the effect of myc-BRC4 or myc-
BRC5 expression on the assembly of RAD51 at sites of
DNA damage, a function of BRCA2 mediated through
its RAD51-binding BRC repeats including BRC4 (Chen
et al., 1999; Yuan et al., 1999; Pellegrini et al., 2002).
Cells induced to express either myc-BRC4 or myc-BRC5
were exposed to 5Gy ionizing radiation, and stained
4 h later with an anti-RAD51 antibody to enumerate
the formation of damage-induced RAD51 foci (Figures
4a and b). Consistent with the lack of biotin-BRC5
binding to RAD51 (Figure 2d) as well as the failure of
myc-BRC5 expression to inhibit the BRCA2-RAD51
interaction in cells (Figure 3b), cells induced to express
myc-BRC5 were still capable of forming damage-induced
RAD51 foci (Figures 4a and b). In contrast, myc-BRC4
expression suppressed the induction of RAD51 foci,
commensurate with its ability to bind RAD51.

These results prompted us to determine whether cells
induced to express myc-BRC5 would exhibit defects in
the completion of cell division similar to those induced
by HMG20b depletion. We induced myc-BRC4 or myc-
BRC5 expression in the stable clones and quantified
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binucleate cells for a 72 h period (Figure 5a, n4500 for
each sample). In myc-BRC5-expressing cells, the
binucleate cell population increases up to 28.2% after
72 h, whereas there was no significant increase in HeLa
TetOn cells or myc-BRC4-expressing cells (5.6 and
4.9%, respectively) treated in a similar manner.

We further analyzed progression through mitosis
using serial time-lapse microscopy in cells induced to
express the myc-BRC repeats (Figure 5b, see also
Supplementary Movies 3 and 4). The myc-BRC5-
expressing cells (5.10) initiate cleavage furrowing and
undergo furrow ingression, but the time taken from
anaphase onset to the completion of division is delayed
from the median value of 125min (HeLa TetOn, n¼ 54)
to 145min (5.10, n¼ 64). By contrast, expression
of myc-BRC4 has no significant effect on the time
taken to complete mitosis (median¼ 125min, n¼ 71).
Several further controls also suggest that defects in the
completion of cell division are triggered specifically by
myc-BRC5 expression. First, 5.10 cells did not exhibit
any delay in the completion of mitosis when myc-BRC5

expression was not induced (Figure 5c, median¼ 130
min, n¼ 84) compared with untreated HeLa TetOn cells
(median¼ 125min, n¼ 57). Moreover, doxycycline
treatment itself did not affect the completion of mitosis
in HeLa TetOn cells (Figure 5d, median¼ 125min,
n¼ 57 or 54). Similar results were obtained using two
additional, independently derived cell clones inducibly
expressing BRC5 under TetOn control (Supplementary
Information, Supplementary Figures S4 a–c). Taken
together, these results show that myc-BRC5 expression
perturbs the completion of cell division without
preventing furrow ingression, recapitulating the
abnormalities provoked by HMG20b depletion. Thus,
our findings provide evidence that the novel role we
have identified for HMG20b in the completion of cell
division is regulated by its interaction with the BRC5
repeat of BRCA2.

Discussion

Our work suggests a novel biological function for the
poorly characterized HMG20b protein. We observe
using serial time-lapse imaging that HMG20b depletion
delays the completion of cell division by cytokinesis.
Most HMG20b-depleted cells that show a cytokinesis
defect can initiate cleavage furrow formation and ingres-
sion as observed by phase-contrast microscopy, but are
delayed in completing cell division, and frequently fail to
separate. The mechanism by which HMG20b regulates
cytokinesis warrants further investigation. Interestingly,
in a fraction of the HMG20b-depleted cells that become
binucleate, we occasionally observe rapid oscillation of
the daughter nuclei through the contractile ring (Supple-
mentary Movie 2). This is reminiscent of anillin function
in the stabilization of the cleavage furrow (Straight
et al., 2005; Zhao and Fang, 2005), raising the possibility
that HMG20b may perform a similar role. However, the
HMG20b binding-partner KIF4 has been implicated in
spindle mid-zone formation and the progression of
cytokinesis (Lee and Kim, 2003; Zhu and Jiang, 2005),
and so perturbations in KIF4 function could also contri-
bute to the defects that we observe in HMG20b-depleted
cells.

Our work also provides fresh insight into the
mechanism of tumor suppression by BRCA2. BRCA2
inactivation in mouse models or in human cancers
causes the accumulation of aneuploid cells (Patel et al.,
1998; Tutt et al., 1999), suggesting that BRCA2 directly
or indirectly regulates chromosome segregation. Indeed,
multiple studies by different groups have shown that
BRCA2-deficient cells exhibit defects in the G2–M
transition (Marmorstein et al., 2001; Ayoub et al.,
2009) or in the completion of cytokinesis (Daniels et al.,
2004; Jonsdottir et al., 2009; Vinciguerra et al., 2010). By
contrast, one recent study reported no evidence of
mitotic delays or cytokinetic defects in human cells with
compromized BRCA2 function, and suggested that
BRCA2 might not be involved in the control of cell divi-
sion at all (Lekomtsev et al., 2010). Notably however,
Lekomtsev et al. found that a small percentage of HeLa
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(Kyoto) cells (which we estimate from their data to
approximate B5–10%) exhibited bi- or multinucleation
after exposure to two out of three individual siRNAs
against BRCA2; this effect was low in comparison with
their positive control, an siRNA against the well-known
cytokinetic mediator, MgcRacGAP (Lekomtsev et al.,
2010). Nevertheless, a similarly low percentage of multi-
nucleation recently reported in HeLa cells depleted of
FANCD1/BRCA2 was found to be statistically different
from controls (Vinciguerra et al., 2010). Moreover,
multi-nucleate cell divisions also occur in tissues and
cultures of cells obtained from transgenic mice carrying
mutant Brca2 (Daniels et al., 2004; Rowley et al., 2011).
Consistent with these findings, we too observe a modest
but statistically significant increase in failure to complete
cell division, and in the time taken for the process, when
BRCA2 is depleted from HeLa (Kyoto) cells using
multiple distinct siRNAs created with the algorithms

developed by different manufacturers (Supplementary
Information, Supplementary Figures S5a–c). Moreover,
we find that a murine monoclonal antibody against
BRCA2 stains the cytokinetic mid-body in HeLa
(Kyoto) cells, and that this staining is reduced but not
entirely ablated after BRCA2 depletion by siRNA
(Supplementary Figures S6a-c).

Collectively, these results support the possibility that
BRCA2 participates in mitotic cell division. That the
division defects induced by its depletion affect only a
fraction of cells suggests that BRCA2 is not essential for
cytokinesis, but instead, may directly or indirectly affect
the efficiency of its completion, as previously proposed
(Daniels et al., 2004). One possible explanation is that
BRCA2 depletion exerts its effects on cytokinesis by
modulating the function of other proteins with stronger
roles in cell division. Moreover, these functions may
indirectly affect cytokinesis, for instance, by perturbing
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other steps in mitosis upon which efficient cell division is
contingent. For example, the BRCA2-associated protein
BCCIP has been reported to regulate mitotic spindle
formation and centrosome number, as well as cytokin-
esis (Meng et al., 2007).

The findings we report here indicate that BRCA2 may
also regulate cell division through its interaction with
HMG20b. We show for the first time that the BRC
repeats of BRCA2, previously implicated in the control of
DNA recombination via their interaction with RAD51,
also bind to HMG20b. Interestingly, the BRC5 repeat
binds strongly to HMG20b but not RAD51, whereas the
BRC4 repeat exhibits the converse properties. Moreover,
BRC5 overexpression in cells provokes defects in cell
division but not RAD51 assembly, whereas BRC4 elicits
the converse effects. The dichotomous roles of BRC4 and
BRC5 argue that BRCA2 has functions in the completion
of cell division mediated via HMG20b that are separable
from its known functions in DNA recombination
mediated by RAD51 (Figure 6).

Proteins other than RAD51 that bind to the BRC
repeats of BRCA2 have not hitherto been identified.
However, the human BRC5 repeat exhibits only a
limited capability to bind RAD51; indeed, one of the
two tetrameric clusters of hydrophobic residues essential
for RAD51 interaction is poorly functional in BRC5
because of the occurrence of a polar Ser residue
(Rajendra and Venkitaraman, 2010). The results we
report here provide evidence that the human BRC5
repeat may, instead, be specialized for binding

HMG20b. Given the poor affinity of human BRC5 for
RAD51 in comparison with HMG20b in vitro, the
BRC5–HMG20b interaction may be preferred under
physiological conditions. Indeed, BRC5 overexpression
in cells decreases the interaction of BRCA2 with
HMG20b but not RAD51.

We estimate that only a small fraction of the total
cellular pools of HMG20b and BRCA2 (o5%) is
involved in complex formation. Nonetheless, disruption
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Figure 5 BRC5 overexpression inhibits the completion of cell division. (a) BRC4 (4.23) and BRC5 (5.10) clones were treated with
doxycycline, and bi- or multinucleated cells were counted from phase-contrast images taken at the indicated time points. The
mean±s.e.m. from three independent experiments is shown. The number of cells enumerated in each experiment was X500 cells.
Similar results were obtained with two additional, independently derived myc-BRC5-expressing clones (Supplementary Figure S4).
(b) Myc-BRC4- or -BRC5-expressing clones were followed by time-lapse imaging. The time taken from anaphase onset to the
completion of cell division was measured and plotted in a box-and-whisker graph. The median value is shown; the bottom and top of
the box represent the 25 and 75th percentiles, respectively. Statistical comparisons in this and the subsequent panels were by one-way
analysis of variance using the Kruskal–Wallis test. See also Supplementary Movies 3 and 4. (c) Clone 5.10 is compared with HeLa
TetOn cells before they were treated with doxycycline. (d) HeLa TetOn cells are compared before/after doxycycline treatment.

N C

RAD51

BRC repeatsBRCA2

3418 aa

RAD51

HMG20b
DNA recombination

Cytokinesis

Figure 6 A model for the divergent tumor-suppressive functions
of the BRC repeats of BRCA2. In a schematic depiction of human
BRCA2, the gray circle highlights the evolutionarily conserved
region that contains eight BRC repeats whose sequence and
spacing are preserved among mammalian orthologues. Most BRC
repeats, including BRC4, are known to bind and control the
RAD51 recombinase in reactions that lead to homologous DNA
recombination. BRC5 (but not BRC4) binds directly to HMG20b,
and this interaction regulates an unrecognized function for
HMG20b in the efficient completion of cell division by cytokinesis.
Thus, divergent tumor-suppressive functions maintaining chromo-
some segregation as well as chromosome structure may be
mediated by the conserved BRC repeats of BRCA2.
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of the HMG20b–BRCA2 interaction by overexpression
of BRC5 but not BRC4 suffices to induce defective
cytokinesis. From this, we suggest that it is the BRCA2-
associated fraction of HMG20b that most likely
participates in cell division.

In conclusion, our findings suggest a novel biological
function for HMG20b in the completion of cell division,
and provide evidence that this function is regulated by
its interaction with BRCA2. By showing that HMG20b
binds to the BRC5 repeat of human BRCA2, and that
the inhibition of the BRCA2-HMG20b interaction via
BRC5 overexpression can phenocopy the effects of
HMG20b depletion on cell division, our work suggests a
model (Figure 6) in which the conserved BRC repeats
of BRCA2 may control divergent tumor-suppressive
pathways that preserve chromosome number as well as
chromosome structure.

Materials and methods

Protein expression and purification
Glutathione S-transferase (GST)–BRCA2 fragments were
prepared as described before (Lee et al., 2004). Human
HMG20b complementary DNA was cloned into pET21a
vector (Merck4Biosciences, Darmstadt, Germany). His-
HMG20b was expressed in BL21 cells and purified using
Ni-NTA agarose beads (Qiagen, Crawley, UK).

GST pull-down assay
GST–BRCA2 fragments bound to Glutathione Sepharose
Beads (GE Healthcare, Chalfont St Giles, UK) were incubated
with 293T cell extracts expressing Flag-HMG20b in the binding
buffer (50mM Tris–HCl (pH 7.4), 150mM NaCl, 1% NP-40,
5mM EDTA, 1mM PMSF, 10mM NaF, Complete protease
inhibitor cocktail (Roche, Burgess Hill, UK)) for 30min at
room temperature. The beads were washed extensively with the
binding buffer and analyzed by western blotting.

Streptavidin pull-down assay
Biotinylated BRC peptides were synthesized by Cancer
Research UK, Protein and Peptide Chemistry Service. BRC4
peptide corresponds to human BRCA2 residues 1517–1551,
and BRC5 corresponds to residues 1661–1695. For the pull-
down assay, 1 nmol of biotinylated BRC4 and BRC5 peptides
were preincubated with Dynabeads M-280 Streptavidin
(Invitrogen, Paisley, UK) in the binding buffer (50mM

Tris–HCl (pH 7.4), 150mM NaCl, 1% NP-40, 5mM EDTA,
1mM PMSF, 10mM NaF, 0.1% bovine serum albumin,
Complete protease inhibitor cocktail (Roche)). In all, 300 mg
of 293T cell extracts expressing Flag-HMG20b or 1mg of
His-HMG20b were incubated with the beads for 30min at
room temperature and washed with the binding buffer using a
magnetic separation unit. Bound proteins were eluted in
sample buffer and analyzed by western blotting.

Affinity pull-down of BRCA2 and HMG20b complexes
Rabbit IgG, rabbit polyclonal anti-BRCA2 Ab (raised against
human BRCA2 3189–3418, anti-B2-9) and rabbit polyclonal
anti-HMG20b Ab (M10, raised against human HMG20b
138–245) were coupled to protein A beads using DMP (Sigma,
St. Louis, MO, USA). The 293T cells were extracted with
1 volume of buffer A (50mM HEPES (pH 7.4), 420mM NaCl,
0.2% NP-40, 1mM EDTA, 25% glycerol, 1mM DTT and

Complete protease inhibitor cocktail (Roche)) and the extracts
were diluted with 2 volumes of buffer B (50mM HEPES (pH
7.4), 0.2% NP-40, and 1mM EDTA). In all, 2mg of diluted
extracts were incubated with 20mg of protein A-coupled
antibodies. The complexes were washed with the 1:2 mixture
of buffers A and B, and eluted with sample buffer for analysis
with 3–8% Tris-Acetate gel (Invitrogen). For BRCA2 pull-
down from mitotic cell extracts, HeLa (Kyoto) cells were
treated with 40 ng/ml of nocodazole overnight to enrich the
cells in prometaphase. To enrich the cells undergoing
cytokinesis, cells arrested overnight in nocodazole were treated
with 22.5mM Purvalanol A (Merck4Biosciences) for 40min.

Plasmids and transfection
Human HMG20b complementary DNA was cloned into
p3xFLAG-CMV-10 vector (Sigma) and used for transfection
of 293T cells using Lipefectamine2000 (Invitrogen) transfec-
tion reagent.

Western blotting
Whole-cell extracts were made in the NP-40 lysis buffer (50mM

HEPES (pH 7.4), 100mM NaCl, 0.5% NP-40, 10mM EDTA,
20mM b-glycerophosphate, 1mM DTT, 1mM sodium ortho-
vanadate, 1mM PMSF and Complete protease inhibitor
cocktail (Roche)). BRCA2 was resolved by 3–8% Tris-Acetate
gels (Invitrogen) and detected with anti-BRCA2 mouse mAb
Ab-1 (Merck4Biosciences). Other proteins were resolved by 10
or 12% SDS polyacrylamide gel and probed with anti-
HMG20b Ab (rabbit polyclonal M10 or mouse monoclonal
clone 4.21 (anti-BRAF35, Millipore, Billerica, MA, USA)),
anti-Flag mouse mAb (M2, Sigma), anti-6xHis mouse mAb
(Clontech, Saint-Germain-en-Laye, France), anti-RAD51 Ab
(rabbit polyclonal Ab-1, Merck4Biosciences or mouse
mAb14B4 (GeneTex, Irvine, CA, USA) and 9E10 mouse
mAb (anti-Myc, Santa cruz Biotechnology, Santa cruz, CA,
USA). Anti-b-Actin Ab (mouse mAb AC-15, Sigma) and
GAPDH Ab (mouse mAb A-3, Santa cruz Biotechnology)
were used to confirm equal loading of samples.

Immunofluorescence
HeLa cells grown overnight on glass coverslips were fixed in
4% paraformaldehyde (PFA) for 5min, permeabilized with
TBS-T (Tris-buffered saline containing 0.1% Triton-X100)
and incubated in blocking solution (2% bovine serum albumin
in TBS-T). Primary and secondary antibodies were diluted in
blocking solution and incubated for1 h and 30min, respec-
tively. RAD51 was stained with rabbit polyclonal antibody
(Ab-1, Merck4Biosciences, 1:1000). Mouse monoclonal anti-
body (9E10, Santa cruz Biotechnology 1:500) was used to stain
myc-BRC repeats. Secondary antibodies used were Alexa 488
or 568-conjugated goat IgGs from Invitrogen. Images were
acquired with Zeiss (Welwyn Garden City, UK) LSM510
META confocal microscope.
For immunostaining of BRCA2, HeLa (Kyoto) cells trans-

fected with either control or BRCA2 siRNA (non-targeting
siRNA no. 2 and siGENOME SMART pool M-003462-01,
respectively, Thermo Scientific, Lafayette, CO, USA) were fixed
in 4% PFA and incubated with anti-BRCA2 mouse mAb 5.23
(Millipore, 1:50) and anti-Aurora B rabbit polyclonal Ab
(ab2254, 1:1,000, Abcam, Cambridge, UK). DNA was stained
with Hoechst 33342 dye (10mg/ml) and coverslips were mounted
with Mowiol (Merck4Biosciences). Mean intensity was mea-
sured using Image J software (NIH, Bethesda, MD, USA) from
more than 100 cells for nuclear staining and from 40 late-
anaphase cells for mid-body staining in each experiment. The
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results from two independent experiments were analyzed using
GraphPad Prism software (La Jolla, CA, USA; unpaired t-test).

siRNA-mediated depletion of HMG20b and BRCA2
Control (mock) or HMG20b siRNAs (siGENOME SMART
pool, catalog no. M-020146-01-0005, Thermo Scientific)
were transfected into HeLa cells seeded on a 6-well plate
using Lipofectamine 2000 reagent (Invitrogen). After 24 h of
transfection, cells were plated into a 2-well Lab-Tek chamber
slide (Nunc, Roskilde, Denmark) and followed by time-lapse
imaging from 30 h after transfection.
Similar methods were used to analyze cells exposed to the

following individual HMG20b siRNA sequences (Thermo
Scientific):
#2: D-020146-02 50-GAGAGAAGCAGCAGUACAU-30 and
#4: D-020146-04 50-GGACACAGGGCAGACGAAA-30.
Individual BRCA2 siRNA sequences were used at 20 nM
to transfect HeLa (Kyoto) cells for serial time-lapse imaging.
The sequences are:
Luciferase siRNA (control): 50-CGUACGCGGAAUACU
UCGA-30

Qiagen #6: SI02653434 (Qiagen) (Lekomtsev et al., 2010)
Invitrogen #7: BRCA2HSS101097 (Invitrogen)
(Lekomtsev et al., 2010)
Dharmacon #1: D-003462-01 50-GAAACGGACUUGC
UAUUUA-30

Dharmacon #2: D-003462-02 50-GUAAAGAAAUGCA
GAAUUC-30

Dharmacon #3: D-003462-03 50-GGUAUCAGAUGCU
UCAUUA-30

Dharmacon #4: D-003462-04 50-GAAGAAUGCAGGU
UUAAUA-30 (all from Thermo Scientific).

Serial time-lapse imaging
Cells were changed into Leibovitzs L15 medium before taking
bright-field images using Zeiss Axiovert 200M microscope
equipped with a humidified heated enclosure. Time-lapse images
were collected every 5min using Volocity software (Improvision,
Perkin Elmer, Waltham, MA, USA). Cells were followed from
anaphase onset, when chromosome separation first becomes
visible, until the completion of cell division, for as long as
required up to 6h. Cells that did not complete cytokinesis by the
end of observation period, or formed bi- or multinucleated cells,
were classified as having failed to complete cell division. For
representative time-lapse images, HeLa cells expressing green
fluorescent protein-H2B were transfected with HMG20b siRNA
before differential interference contrast (DIC), and fluorescence
images were captured with an Olympus (Southend-on-Sea, UK)
IX81 microscope and Cell software. The unpaired t-test was
performed using GraphPad Prism software (La Jolla, CA,
USA), except for Figure 5b and Supplementary Figures S1d,
S4b, and S5c where one- way analysis of variance was used.

Inducible expression of BRC repeats
Tet-On Inducible Gene Expression System (Clontech) was
used to express BRC repeats conditionally. BRCA2 fragments
containing BRC repeats (BRC4: residues 1481–1553, BRC5:
residues 1636–1715) were cloned into pTRE2pur vector
together with 3�NLS and Myc epitope from pEF/myc/nuc
vector (Invitrogen). The constructs were used to transfect
HeLa TetOn advanced cell line, and stable clones were selected
with puromycin (1 mg/ml). Selected clones were screened
for similar levels of expression upon addition of doxycycline
(1 mg/ml, Sigma). For pull-downs with anti-BRCA2 antibody,
each clone was treated with doxycycline (1 mg/ml) overnight
before harvesting, and 6mg of cell extracts and 100 mg of
coupled antibody were used for each pull-down. For time-
lapse imaging, doxycycline was added 16 h before the start of
imaging and kept for a further 24 h during imaging.

Bi/multinucleation of BRC-expressing cells
HeLa TetOn, clone 4.23 and clone 5.10 cells were plated in
35mm dishes and treated with doxycycline (1 mg/ml) for 24, 48
and 72 h, respectively. Phase-contrast images were taken at
each time point, and over 500 cells were counted for each
sample. Results from three independent experiments were
analyzed using GraphPad Prism software.

Ionizing radiation-induced RAD51 foci formation
BRC-repeat-expressing clones were grown overnight on cover-
slips in the presence of doxycycline (1mg/ml ), treated with 5Gy
of ionizing radiation and fixed with 4% PFA 4h later. Cells
showing more than 15 RAD51 foci were counted as positive.
The results are from three independent experiments, and in each
experiment, more than 100 cells were counted for each sample.
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