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Abstract

The network architecture of an ecological community describes the structure of species

interactions established in a given place and time. It has been suggested that this architec-

ture presents unique features for each type of ecological interaction: e.g., nested and modu-

lar architectures would correspond to mutualistic and antagonistic interactions, respectively.

Recently, Michalska-Smith and Allesina (2019) proposed a computational challenge to test

whether it is indeed possible to differentiate ecological interactions based on network archi-

tecture. Contrary to the expectation, they found that this differentiation is practically impossi-

ble, moving the question to why it is not possible to differentiate ecological interactions

based on their network architecture alone. Here, we show that this differentiation becomes

possible by adding the local environmental information where the networks were sampled.

We show that this can be explained by the fact that environmental conditions are a con-

founder of ecological interactions and network architecture. That is, the lack of association

between network architecture and type of ecological interactions changes by conditioning

on the local environmental conditions. Additionally, we find that environmental conditions

are linked to the stability of ecological networks, but the direction of this effect depends on

the type of interaction network. This suggests that the association between ecological inter-

actions and network architectures exists, but cannot be fully understood without attention to

the environmental conditions acting upon them.

Author summary

It has been suggested that different types of species interactions lead to ecological net-

works with different architectures. For example, mutualistic and antagonistic interaction

networks have been shown to have nested and modular architectures, respectively. Impor-

tantly, this differentiation can provide clues about the link between the dynamics and

structures shaping ecological communities. Recently, Michalska-Smith and Allesina

(2019) turned this assumption into a serious computational challenge for the scientific

community. Here, we embrace this challenge. We confirm that network architecture

alone is not enough to differentiate interaction networks. However, we show that network
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architectures can differentiate between mutualistic and antagonistic interaction networks

by using information about their local environmental conditions. In other words, ignor-

ing environmental information throws out the predictable patterns of network architec-

tures along environmental gradients. Thus, this response is also a reminder that ecological

networks may only make sense in the light of environmental information.

Introduction

A local ecological community is the ensemble formed by the co-occurring and interacting spe-

cies in a given location and time [1]. Each of these ecological communities forms a network

with an architecture defined by the species (nodes) and their interactions (links) [2]. Over the

last decades, ecologists have intensively documented the architecture of antagonistic interac-

tion networks (e.g., host-parasite and plant-herbivore interaction networks) and mutualistic

interaction networks (e.g., plant-ant, plant-pollinator, and plant-dispersal interaction net-

works) [3, 4]. It has been shown that the network architecture of antagonistic and mutualistic

interactions tend to be more modular and nested than expected by chance alone, respectively

[3, 5–7]. However, it has also been shown that this potential generality can be easily broken

[8–10]. These contrasting ideas have raised the question of whether interaction networks can,

in fact, be differentiated based on their network architectures. If true, these architectures can

be used to better understand the patterns shaping the biodiversity that we observe in nature

[10, 11].

To answer the questions above, a recent study has proposed a computational perspective

[12]. Specifically, this research has posed a relatively simple question: do the network architec-

tures of antagonistic and mutualistic interactions differ consistently and detectably? Before we

introduce their answer, let us walk through some background of what answers are typically

expected. It is well established that antagonistic and mutualistic interactions generate qualita-

tively different dynamical behavior [13–18]. Therefore, if the network architectures ought to

reflect the underlying ecological dynamics, we should anticipate important architectural differ-

ences between antagonistic and mutualistic interactions. These differences have been empiri-

cally found even among different classes of non-ecological networks [19], and theoretically

predicted between antagonistic and mutualistic interactions [3]. Yet, despite the wide-held

expectation about these differences in ecology, the few general comparison studies have suf-

fered either from ill-defined methodologies or small data sets [12, 20].

In contrast to the expectation above, after trying out many sophisticated computational

methods, Michalska-Smith and Allesina [12] could not find a systematic difference in the

binary network architecture of antagonistic and mutualistic interactions. These new results

have shown that the idea that mutualistic interactions are nested and antagonistic interactions

are modular is an oversimplifying representation of nature [21]. However, a question remains:

why there was no difference? One possibility, of course, is that simply there is no systematic

difference whatsoever. Another explanation is that we need a more powerful algorithm to tell

these interaction networks apart. However, given that these algorithms can easily tell apart dif-

ferent classes of non-ecological networks [12, 19], it is unlikely that this is the right explana-

tion. A third explanation is that there is a key missing factor that systematically affects the

network architecture and interactions of ecological communities, which needs to be taken

into account in order to differentiate such architectures.

Ecological research has always stipulated that the occurrence of species does not only

depend on the biotic factors described in ecological communities, but also depends on the

PLOS COMPUTATIONAL BIOLOGY How to tell ecological networks apart

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007787 April 23, 2020 2 / 15

https://doi.org/10.1371/journal.pcbi.1007787


abiotic factors established by the environment [22, 23]. This explanation is rooted upon the

general idea of environmental filtering—the environment is a major force shaping almost all

ecological systems [1, 24, 25]. For example, temperature variability affects both species interac-

tions [26, 27] and network structures [21, 28, 29]. Thus, under this rationale, the network

architecture itself may not carry enough information about the interaction types if the envi-

ronment is unknown [30]. That is, a locked box (network architecture) is useless unless one

also has the right key (environmental conditions). In statistics, this issue is known as the omit-

ted-variable bias [31]. Note that because non-ecological networks may not depend as strongly

on the environment as ecological networks do, this explanation may also reveal why non-eco-

logical networks can be easily told apart. In this direction, previous work has already shown

that incorporating environmental conditions (such as temperature variability) can explain the

diversity of architectures found in mutualistic communities [32]. Therefore, we speculate that

the reason why Michalska-Smith and Allesina [12] failed to differentiate the network architec-

ture of mutualistic and antagonistic interactions is because they did not consider environmen-

tal conditions. Note that this explanation does not invalidate the fact that ecological

interactions cannot be differentiated based on their architectures alone as Michalska-Smith

and Allesina [12] have already shown.

To test whether adding environmental information can help us to differentiate the architec-

ture of ecological interaction networks, we analyze a world-wide collection of antagonistic and

mutualistic communities together with their local environmental conditions. Following the

methodology proposed by Michalska-Smith and Allesina [12], we show that antagonistic and

mutualistic interactions can, in fact, be told apart by adding environmental information. We

then show that environmental information alone (i.e., removing the observed network archi-

tecture by randomizing interactions) cannot differentiate between antagonistic and mutualis-

tic interactions, confirming that both network architecture and environmental conditions are

essential components of ecological communities. Finally, we show the relationship between

environmental information and the stability properties of ecological networks, providing an

explanation of why environmental conditions can be a key confounding factor.

Methods

Empirical datasets and choice of metrics

The original data set used by Michalska-Smith and Allesina [12] did not include the location

where each of the ecological networks was sampled. Hence, we based our analysis on the data

set of ecological networks found in the public repository web-of-life.es, which has

this type of information. We then extracted the environmental data of each location from

the public repository WorldClim [33] using the geographical information provided in

web-of-life.es. Using these repositories, we compiled 177 mutualistic interaction net-

works and 75 antagonistic interaction networks together with their environmental data (see

S1 Supporting Information for details).

To describe the network architecture of our compiled data set, we used the same network

metrics as in Michalska-Smith and Allesina [12]: the largest eigenvalue (λ1) of the binary inter-

action matrix as an indicator of nestedness [34], and the second largest eigenvalue (λ2) of the

binary interaction matrix as an indicator of modularity [35]. The details of the computations

can be found in Michalska-Smith and Allesina [12] or in S1 Supporting Information. Addi-

tionally, because network size and connectance are biased by how networks are sampled,

Michalska-Smith and Allesina [12] computed null expectations in order to control for the bias.

Specifically, Michalska-Smith and Allesina [12] have used two null models: Erdős-Rényi ran-

domization (denoted as er), where network size and connectance are preserved; and the
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Configuration randomization (denoted as cm), where network size, connectance, and degree

distribution are preserved. Thus, following Michalska-Smith and Allesina [12], we used three

network metrics: the relative error of the largest eigenvalue given the configuration randomi-

zation (1 � l
cm
1
=l1), the relative error of the largest eigenvalue given the Erdős-Rényi randomi-

zation (1 � l
er
1
=l1), and the relative error of the second largest eigenvalue given the Erdős-

Rényi randomization (1 � l
er
2
=l2).

To take into account the environmental conditions of each ecological network of our

compiled data set, we needed to choose an indicator of the environmental conditions. While

WorldClim provides 19 environmental variables [33], many of these variables are strongly

correlated (S1 Supporting Information). For example, temperature variability has a correlation

stronger than 0.7 with 11 out of 19 environmental variables. This introduces the statistical

issue known as multicollinearity [36]. Although some sophisticated statistical methods can

deal with multicollinearity [37, 38], they work only under very limited scenarios and are not

directly interpretable [39]. Thus, to simplify the analysis, we used temperature variability—

defined as the standard variation of the annual temperature fluctuation (units: Celsius). Fig 1

shows the geographical distribution of these ecological networks and their local temperature

variability. This choice is based on the strong empirical evidence that temperature variability is

an important indicator of environmental stress and has profound impacts on both species

interactions and ecological communities. [32, 40–43]. For example, focusing on the interaction

level, the Stress Gradient Hypothesis states that species interactions (e.g. mutualistic or com-

petitive) may switch to a different type under different temperatures [26, 27, 44, 45]. Focusing

on the community level, it has been shown that temperature variability affects almost all

aspects of the community, such as productivity [46, 47], phenology [42, 48], and network

Fig 1. The location and local temperature variability of each of the ecological networks in our data set. The figure shows the location of antagonistic

interaction networks (red circles) and mutualistic interaction networks (blue triangles) extracted from the web-of-life.es. The x-axis and y-axis

represent the longitude and latitude, respectively. The color bar represents the temperature variability measured as the standard deviation of the yearly

temperature in Celsius at a given location (taken from WorldClim). Green and orange colors correspond to higher and lower temperature variability,

respectively. This map was plotted with raster package [76]. This map was published under a CC-BY license. The data are provided as

Supplementary Material.

https://doi.org/10.1371/journal.pcbi.1007787.g001
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architecture [20, 32]. Furthermore, to validate our results, we repeated our main analysis using

other environmental variables in S1 Supporting Information.

Differentiating networks

To differentiate ecological interaction networks, we followed again Michalska-Smith and

Allesina [12] and used Principal Component Analysis (PCA) to map the multiple network

metrics and temperature variability into the plane defined by the first two principal compo-

nents [36]. PCA facilitates visualizing how similar the metrics of the ecological networks are

by looking at the distances between the mapped networks on the plane. Although PCA is a

linear method [36], it has already been shown to perform well in telling apart non-ecological

networks [12]. Note that all variables are scaled to zero mean and unit variance in the PCA

(see details in S1 Supporting Information). We have also replicated our analysis using the

t-distributed stochastic neighbor embedding (t-SNE), a nonlinear dimensionality reduction

method (S1 Supporting Information).

It is also important to mention that in order to move to an environment-dependent

approach, it is necessary to depart from the structural model introduced by Michalska-Smith

and Allesina [12]. Specifically, Michalska-Smith and Allesina [12] studied the capacity to dif-

ferentiate ecological interactions based on network metrics alone (Fig 2A). This structural

model only has one chain: Metrics! Interactions [49]. In comparison, the environment-

dependent approach takes network metrics and environmental information together (Fig 2B).

This is built on the rationale that environmental conditions impact both the type of interac-

tions [26, 27, 45, 50] and the network architecture [32, 51, 52] of ecological interaction net-

works. Hence, this new structural model has two chains (Metrics! Interactions and Metrics

! Temperature! Interactions) and one collider (Metrics! Interactions Temperature).

As we explain below, this new model carries important statistical constraints that need to be

taken into account when testing cause-effect relationships.

We used the three criteria introduced by Michalska-Smith and Allesina [12] to test whether

an environment-dependent approach can be used to differentiate ecological interactions. The

first criterion is separability: whether the metrics can separate antagonistic and mutualistic

interaction networks. We tested for separability in our data set using both environment-inde-

pendent and -dependent approaches (Fig 2A and 2B). Note that we termed this criterion “sep-

arability” instead of “generality” as used in Michalska-Smith and Allesina [12]. This is because

we only focus on ecological networks here, instead of many other network types as in

Michalska-Smith and Allesina [12]. The second criterion is scalability: whether these metrics

can differentiate ecological networks across hierarchical levels [53]. For example, whether a

plant-pollinator network (a sub-class of mutualistic interaction networks) are closer to other

plant-pollinator networks in the PCA than to other sub-classes of mutualistic interaction net-

works (e.g., plant-ant, seed-dispersal) (see Fig 2C for the illustration). The third criterion is

specificity: whether the randomized network architectures cannot be differentiated in the PCA.

This is rooted on the rationale that a randomized network architecture should not be informa-

tive of underlying ecological processes.

In the first two criteria, the environment-dependent approach of this study and the

approach of Michalska-Smith and Allesina [12] differ only from the perspective of adding or

not a conditional variable (namely Temperature). However, the third criterion imposes addi-

tional constraints not shared between approaches. That is, following the environment-depen-

dent approach, Fig 2D illustrates that randomizing the networks would remove the effect that

the environment has on network metrics, while weakening the effect that network metrics has

on ecological interactions. Yet, if we condition on the collider Interactions, then we will
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establish a spurious association between Temperature and Metrics [49]. Note that Michalska-

Smith and Allesina [12] proposed to use the scaling of the empirical data for the PCA of the

randomized data. While this procedure works as a clever classifier, unfortunately, it cannot be

applied to the environment-dependent approach as it carries the expectation of all variables,

acting effectively as a conditional on the collider (S1 Supporting Information). Importantly,

Fig 2. Illustration of the environment-dependent approach. This figure illustrates the structural graphs that the environment-independent and

-dependent approaches use to test the three differentiation criteria. Panels (A-B) focus on the separability criterion. Panel (A) shows that in the

environment-independent approach, Network Metrics alone are used to differentiate Network Class. Instead, Panel (B) shows that in the environment-

dependent approach, both Network Metrics and Environmental Information are used to differentiate Network Class. Note that Environmental

Information becomes a confounding factor of Network Metrics and Network Class. Panel (C) focuses on the scalability criterion in the environment-

dependent approach. Specifically, whether Network Metrics and Environmental Information can also differentiate Network Class into sub-classes.

Panel D focuses on the specificity criterion in the environment-dependent approach. The Network Metrics are generated from randomized network

architectures, which removes the effect of Environmental Information on Network Metrics. This randomization also weakens the effect of Network

Metrics on Network Class. Note that Network Class becomes a collider between Environmental Information and Network Metrics (see S1 Supporting

Information for further details). That is, Environmental Information and Network Metrics are potentially dependent conditional on Network Class

[49].

https://doi.org/10.1371/journal.pcbi.1007787.g002
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this third criterion (using the scaling of the randomized data) addresses the geographical

sampling bias in our data set: most antagonistic networks are sampled from regions with

higher temperature variability than those from mutualistic networks (Fig 1 and S1 Supporting

Information). Specifically, if the differentiation of ecological networks is an artifact of adding

environmental conditions, then the same analysis should still differentiate the randomized net-

works when the environmental condition is fixed, which would violate the specificity criterion.

To further validate the test on specificity, we have also run additional analysis on specificity

where the environmental conditions are randomized (S1 Supporting Information).

Inferring the effects of temperature variability

The PCA can reveal how to differentiate ecological communities, however, it tells us little

about why the networks can be differentiated. Therefore, to analyze the effects of temperature

variability on network architecture, we investigated the relationship between temperature vari-

ability and three standard stability metrics of ecological networks: the largest eigenvalue (λ1),

the second largest eigenvalue (λ2), and the relative size of the feasibility domain of the intra-

guild competition (O). The first two metrics—λ1 and λ2—are related to dynamical stability

[54]. The larger these eigenvalues are, the more dynamically stable are these networks. The

third metric (O) is related to the structural stability of intra-guild competition [55, 56]. These

metrics measure the overall resource competition among competitive agents [42, 57, 58]. The

stronger the competition among competitive agents, the smaller the structural stability of feasi-

bility of the community [58, 59]. S1 Supporting Information provides details on how to com-

pute these measures. Note that all these metrics can be estimated with the binary information

contained in our data set.

To estimate the effects of temperature variability on these three stability metrics, we per-

formed a multiple regression analysis, where community size and connectance are used as

independent variables. We performed linear regression in order to be able to compare our

results with the PCA, which extracts mostly the linear relationships among variables [36].

We additionally validated the estimation of effects by changing the independent variables

(S1 Supporting Information). Finally, we compared the effects of temperature variability

using the randomized network metrics (S1 Supporting Information).

Results

We found that it is indeed possible to differentiate ecological interactions by combining net-

work metrics and environmental information. Focusing on separability, we confirmed that the

network metrics alone cannot tell apart antagonistic and mutualistic interaction networks. Fig

3A shows that these two classes of interaction networks overlap strongly on the PCA map.

However, once we add the environmental information of temperature variability, the antago-

nistic and mutualistic interaction networks are clearly separated (Fig 3B).

Then we test the scalability and specificity of the environment-dependent approach. Fig 4A

reveals that interaction networks from a sub-class are closer to other network sub-classes from

the same interaction class than from the other interaction class, confirming the scalability of

the approach. Instead, Fig 4B shows that the randomized network architectures strongly over-

lap on the PCA map, confirming the specificity of the approach. Note that for simplicity, we

have only shown one realization of randomization for each network in Fig 4B; a systematic test

of the specificity can be found in S1 Supporting Information. Overall, these results show that

an environment-dependent approach can allow us to statistically differentiate ecological inter-

action networks using network architectures.
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Fig 3. Differentiating ecological interaction networks. This figure examines the separability of network interactions under environment-independent

and -dependent approaches. Using a Principal Component Analysis, mutualistic (blue triangles) and antagonistic (red circles) interaction networks are

mapped into the first two principal components given by the chosen metrics. Each ellipse contains approximately 68% of the networks in each class.

Panel (A) shows that antagonistic and mutualistic interaction networks cannot be differentiated when only network metrics are used (environment-

independent approach). Instead, Panel (B) shows that these interaction networks can be differentiated when both network metrics and environmental

information are used (environment-dependent approach).

https://doi.org/10.1371/journal.pcbi.1007787.g003

Fig 4. Testing the scalability and specificity of the environment-dependent approach. Panel (A) shows that the environment-dependent approach is

scalable. The figure corresponds to the PCA map (first two principal components) using the empirical data following the environment-dependent

approach. Antagonistic class: red circles and red triangles represent host-parasite and plant-herbivore sub-classes, respectively. Mutualistic class: blue

squares, blue crosses, blue crossed squares, and blue stars correspond to anemone-fish, plant-ant, plant-pollinator, and plant-dispersal sub-classes. The

PCA shows that the network sub-classes can be differentiated and they are closer to other network sub-classes within their own interaction class. Panel

(B) shows that the environment-dependent approach follows specificity. This panel shows the PCA map (first two principal components) derived from

the randomized network metrics and following the environment-dependent approach. Each empirical network is randomized using the Erdős-Rényi

model. As expected, the randomized networks cannot be differentiated even with environmental information. Importantly, this panel confirms that the

geographical sampling bias of ecological networks does not strongly influence our results. Note that only one randomization per network is shown here

for simplicity; a systematic test of specificity can be found in S1 Supporting Information. Also note that different from the specificity criterion used by

Michalska-Smith and Allesina [12], the PCA map is scaled according to the randomized data. Otherwise, because of the nature of the structural model

(Fig 2), scaling using the empirical data would establish a spurious association between temperature and network metrics (S1 Supporting Information).

https://doi.org/10.1371/journal.pcbi.1007787.g004
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Fig 5. Effect of temperature variability on network stability. Panels (A-C) summarize the results of regressing temperature variability on three

different metrics of network stability: the largest eigenvalue, the second largest eigenvalue, and the structural stability of feasibility. Mutualistic and

antagonistic networks are shown in red circles and in blue triangles, respectively. The adjusted R2 for each regression model is shown on the top. All

variables are scaled. The thick interval indicates 1 standard deviation, whereas the thin interval indicates 2 standard deviations. For all metrics of

network stability, increasing temperature variability significantly decreases (increases) network stability for mutualistic (antagonistic) communities.

Details can be found in S1 Supporting Information.

https://doi.org/10.1371/journal.pcbi.1007787.g005
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Moving to potential explanations about the association of environmental conditions with

network architecture and type of interaction network (Fig 2B), we found that temperature var-

iability has clear opposite effects on the stability of mutualistic and antagonistic networks. Spe-

cifically, Fig 5 (see also S1 Supporting Information) shows that increasing temperature

variability increases the dynamical stability of mutualistic networks but decreases their struc-

tural stability of feasibility. However, this effect is completely in the opposite direction in

antagonistic networks. These opposite effects are robust to different regression models (S1

Supporting Information); and, as expected, disappear in randomized networks (S1 Supporting

Information).

Discussion

Michalska-Smith and Allesina [12] have cleverly framed the problem of differentiating ecologi-

cal interactions by their network architecture under the metaphor “can one hear the shape of a

drum” [60]. That is, whether the sounds from a drum contain enough information to infer the

shape of the drum. But because the sounds change in different media, we cannot infer the

shape of a drum without knowing the surrounding media (a.k.a. environment). The same

logic applies to ecological networks, as they are not merely the product of internal dynamical

processes but also of the external environmental conditions [1, 4]. In other words, the architec-

ture of a network is much less useful without knowing the environmental pressures acting

upon a community [30]. Following this rationale, we have confirmed that antagonistic and

mutualistic communities cannot be differentiated using network metrics alone, but this differ-

entiation becomes possible by adding environmental information.

Our findings are consistent with the literature. For example, it has been theoretically pre-

dicted that all else being equal, the more nested a mutualistic interaction network, the lower its

dynamical stability and the larger its structural stability of feasibility [61–63]. On top of this, it

has been empirically shown that more nested mutualistic interaction networks are typically

located in more variable environments [32]. Hence, it can be naturally expected that tempera-

ture variability is associated with the architecture of ecological networks.

It is worth noting that the heart of the statistical issue presented here is known as the Simp-

son’s paradox [36]. In brief, the Simpson’s paradox states that a given association (positive,

negative, or null) between two separate variables may change when conditioning on a third

variable [64]. It has been shown that network architecture and type of interaction network

have no association; however, when one conditions on environmental variability, this associa-

tion becomes significant. In other words, ignoring temperature variability is throwing out the

opposing and predictable patterns of network architectures along environmental gradients

[21, 32]. Thus, we strongly believe that ecological networks should be analyzed under an envi-

ronment-dependent approach [30].

An important limitation of our statistical analysis is that we have only proved the associa-

tion but not the causation. That is, environment is only one out of many confounding factors

that affect both species interactions and network architectures. Thus, we cannot rule out the

possibility that the patterns between temperature variability and network architectures are

caused by some other external factor. For example, another possible interpretation of the sta-

tistical results reported here is that network architectures vary along the latitude, forming a

U-shaped curve for both antagonistic and mutualistic networks. This interpretation can be

seen as an extension of the Latitudinal Diversity Gradient to network architectures [65, 66].

Similarly, the level of human impact may also be an important factor [67, 68]. This implies

that future studies should index these potential confounding factors so that ecological net-

works can be analyzed under a more general context-dependent approach, which may
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eventually lead to a deeper causal understanding. Another important limitation of our statis-

tical analysis is the inherent geographical sampling bias of ecological networks (Fig 1 and S1

Supporting Information). We have found strong signals that ecological networks change

along the environmental gradient despite the sampling bias (Figs 3–5). Additionally, we

confirmed that while this sampling bias increases our ability to tell apart networks, the extent

of the increment is significantly less compared to the case when the network architectures

and the environmental information are combined (S1 Supporting Information). Nonethe-

less, it would be ideal if future collections of empirical networks would address this sampling

issue.

Beyond the technical issue of statistics, solving the computational challenge of differenti-

ating ecological communities based on network architectures can also shed new light onto

the generating processes of ecological networks. Several studies have proposed many theo-

retical hypotheses to explain the architecture of ecological networks, ranging from ecological

dynamics, evolutionary processes, to statistical artefacts [3, 10, 61, 62, 69–73]. The diversity

of such theoretical explanations makes it hard to point out whether the architectural proper-

ties of ecological networks do reflect the underlying ecological dynamics of the communities

they represent [10, 11, 72, 74, 75]. However, the computational challenge raised by

Michalska-Smith and Allesina [12] provides a unique opportunity to rigorously test which

factors are strongly associated with network architectures. Our results suggest that both

the internal dynamics and the environmental conditions contribute to the generating pro-

cess of ecological networks. Of course, these concepts are not new [22, 23], yet these compu-

tation-based insights serve as a central reminder that general conclusions on ecological

networks cannot be derived without integrating the variability of both internal and external

factors.

Supporting information

S1 Supporting Information. Data sources, detailed methods and additional validations,

and supplementary figures and tables.

(PDF)
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18. Qian JJ, Akçay E. The balance of interaction types determines the assembly and stability of ecological

communities. BioRxiv. 2019; p. 643478.

19. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, et al. Superfamilies of evolved and

designed networks. Science. 2004; 303(5663):1538–1542. https://doi.org/10.1126/science.1089167

PMID: 15001784

20. Song C, Rohr RP, Saavedra S. Beware z-scores. Journal of Animal Ecology. 2019; 88(5):808–809.

https://doi.org/10.1111/1365-2656.12964 PMID: 30874304

21. Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, Loreau M, et al. Comparing species interac-

tion networks along environmental gradients. Biological Reviews. 2018; 93(2):785–800. https://doi.org/

10.1111/brv.12366 PMID: 28941124

22. Levins R. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University

Press, NJ; 1968.

23. Alberch P. The logic of monsters: Evidence for internal constraint in development and evolution. Geo-

bios. 1989; 22:21–57. https://doi.org/10.1016/S0016-6995(89)80006-3

PLOS COMPUTATIONAL BIOLOGY How to tell ecological networks apart

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007787 April 23, 2020 12 / 15

https://doi.org/10.1126/science.1194255
http://www.ncbi.nlm.nih.gov/pubmed/20705836
https://doi.org/10.1126/science.1188321
http://www.ncbi.nlm.nih.gov/pubmed/20705861
https://doi.org/10.1073/pnas.1633576100
https://doi.org/10.1073/pnas.1633576100
https://doi.org/10.1073/pnas.1014353108
https://doi.org/10.1098/rspb.2014.2925
http://www.ncbi.nlm.nih.gov/pubmed/25632001
https://doi.org/10.1002/ecy.2063
https://doi.org/10.1002/ecy.2063
http://www.ncbi.nlm.nih.gov/pubmed/29082521
https://doi.org/10.1111/ele.13289
http://www.ncbi.nlm.nih.gov/pubmed/31134748
https://doi.org/10.1371/journal.pcbi.1007076
https://doi.org/10.1371/journal.pcbi.1007076
https://doi.org/10.1038/nature10832
http://www.ncbi.nlm.nih.gov/pubmed/22343894
https://doi.org/10.1126/science.1220529
http://www.ncbi.nlm.nih.gov/pubmed/22822151
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1002/ecy.2708
http://www.ncbi.nlm.nih.gov/pubmed/30924140
https://doi.org/10.1126/science.1089167
http://www.ncbi.nlm.nih.gov/pubmed/15001784
https://doi.org/10.1111/1365-2656.12964
http://www.ncbi.nlm.nih.gov/pubmed/30874304
https://doi.org/10.1111/brv.12366
https://doi.org/10.1111/brv.12366
http://www.ncbi.nlm.nih.gov/pubmed/28941124
https://doi.org/10.1016/S0016-6995(89)80006-3
https://doi.org/10.1371/journal.pcbi.1007787


24. Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends in Ecology & Evolution.

2017; 32(6):429–437. https://doi.org/10.1016/j.tree.2017.03.004

25. Cenci S, Saavedra S. Non-parametric estimation of the structural stability of non-equilibrium community

dynamics. Nature ecology & evolution. 2019; 3(6):912. https://doi.org/10.1038/s41559-019-0879-1

26. Callaway RM, Brooker R, Choler P, Kikvidze Z, Lortie CJ, Michalet R, et al. Positive interactions among

alpine plants increase with stress. Nature. 2002; 417:844. https://doi.org/10.1038/nature00812 PMID:

12075350

27. Chamberlain SA, Bronstein JL, Rudgers JA. How context dependent are species interactions? Ecology

Letters. 2014; 17:881–890. https://doi.org/10.1111/ele.12279 PMID: 24735225

28. Welti EA, Joern A. Structure of trophic and mutualistic networks across broad environmental gradients.

Ecology and evolution. 2015; 5(2):326–334. https://doi.org/10.1002/ece3.1371 PMID: 25691960

29. Tylianakis JM, Morris RJ. Ecological networks across environmental gradients. Annual Review of Ecol-

ogy, Evolution, and Systematics. 2017; 48:25–48. https://doi.org/10.1146/annurev-ecolsys-110316-

022821

30. Cenci S, Song C, Saavedra S. Rethinking the importance of the structure of ecological networks under

an environment-dependent framework. Ecology & Evolution. 2018; 8(14):6852–6859. https://doi.org/

10.1002/ece3.4252

31. Angrist JD, Pischke JS. Mostly harmless econometrics: An empiricist’s companion. Princeton univer-

sity press; 2008.

32. Song C, Rohr RP, Saavedra S. Why are some plant–pollinator networks more nested than others?

Journal of Animal Ecology. 2017; 86(6):1417–1424. https://doi.org/10.1111/1365-2656.12749 PMID:

28833083

33. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.

International Journal of Climatology. 2017; 37(12):4302–4315. https://doi.org/10.1002/joc.5086

34. Staniczenko PP, Kopp JC, Allesina S. The ghost of nestedness in ecological networks. Nature Commu-

nications. 2013; 4:1391. https://doi.org/10.1038/ncomms2422 PMID: 23340431

35. Newman ME. Spectral methods for community detection and graph partitioning. Physical Review E.

2013; 88(4):042822. https://doi.org/10.1103/PhysRevE.88.042822

36. Legendre P, Legendre L. Numerical Ecology, 3rd edition. Elsevier, Amsterdam; 2012.

37. Medeiros LP, Garcia G, Thompson JN, Guimarães PR. The geographic mosaic of coevolution in mutu-

alistic networks. Proceedings of the National Academy of Sciences. 2018; 115(47):12017–12022.

https://doi.org/10.1073/pnas.1809088115

38. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods
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