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Abstract: The preparation of hybrid polymeric systems based on carbon derivatives with a cationic
polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer
with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide
and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman
and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal
degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials.
Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive
Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas
aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

Keywords: graphene oxide; graphene; antimicrobial; polymer; dopamine; cationic
group; functionalizations

1. Introduction

In the last recent years, carbon-based nanomaterials have been explored as novel antimicrobial
agents, especially for the preparation of antimicrobial and antibiofouling surfaces [1–9]. Some
studies have revealed that graphene and its derivatives exhibit excellent antibacterial activity and
low mammalian cell toxicity [10], however, the mechanism(s) of this antimicrobial activity still
remain controversial [11,12]. Several modes of action have been proposed, e.g., oxidative stress,
contact-mediated physical damage and wrapping, although physical properties such as morphology,
size, aggregation and surface functionality might affect strongly their antimicrobial activities [13–15].
In spite of this, the low solubility of graphene in both organic and aqueous solvents because of its
tendency to aggregate, limits its applicability. For this reason, hydrophilic graphene derivatives
have been prevailingly used and tested as antimicrobial agents. Among them, graphene oxide (GO)
is the hydrophilic graphene derivative that has been most investigated due to its hydrophilicity
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and its capacity to form homogeneous aqueous dispersions [16–18]. Related to graphene and with
the purpose of improving its dispersibility, composite systems have been explored, for instance, by
incorporating polymers to form a stable dispersion [19]. The preparation of carbon-based composites
not only improves the stability and dispersibility of the systems. but also can tune their properties
to develop materials with enhanced antimicrobial activities. Graphene and its derivative materials
have relatively high specific surface area with abundant surface functionalities in case of graphene
oxide, which have the potential for the preparation of multiple composite antibacterial materials in
combination with other antimicrobial agents [20,21]. It has been proved the synergistic or additive
effect of graphene derivatives with silver composite materials, leading an enhanced activity at low
concentration [22–25]. Similarly, hybrid systems with ZnO and TiO2 nanoparticles have demonstrated
excellent antibacterial activity [26–28]. Polymer-based composites have received special attention due
to their versatility and capacity to control their properties. In particular, cationic antimicrobial polymers
such as quaternary ammonium polymers, chitosan or polyethyleneimine polymer (PEI) have been
widely used in combination with graphene derivatives [29–32]. The general accepted antimicrobial
mechanism of cationic polymers is associated with adsorption on the negatively charged bacterial
wall through electrostatic interactions, which augments membrane permeability and subsequently
disrupts the membrane. In addition to the antimicrobial activity, the cationic polymers provide stability,
dispersibility in aqueous media and could also reduce toxicity. There are three main approaches
to develop graphene-polymer composites: physical mixing, covalent bonding of the polymer to
graphenic structure and through non-covalent interactions, such as van der Waals forces, hydrophobic
interactions, and π-π stacking.

In the present study, we have incorporated a monomer with catechol side chains in a methacrylic
cationic polymer, which exhibit excellent antimicrobial activity with the aim to improve the
immobilization on graphene derivatives. The copolymer was composed of N-(3,4-dihydroxyphenethyl)
methacrylamide (DOMA) and 2-(4-methylthiazol-5-yl)ethyl methacrylate (MTA) quaternized with
methyl iodide [33]. The randomly distributed DOMA units have the capacity to strongly adhere on
graphene and graphene oxide sheets through π-π stacking interaction that stabilizes the dispersion of
the nanocomposite. These adhesive units would also be used to bind different surfaces and create
antimicrobial coatings.

2. Materials and Methods

2.1. Materials

Graphite flakes for graphene oxide (GO) synthesis were supplied by Sigma Aldrich (Praha, Czech
Republic). Concentrated sulphuric acid (H2SO4, 98%), potassium permanganate (KMnO4, ≥99%),
hydrogen peroxide (H2O2, 30%) and hydrochloric acid (HCl, 35–37%) were procured from VWR
International (Stříbrná Skalice, Czech Republic). Ultra-pure water (Milli Q, Merck, Praha, Czech
Republic) was used for synthesis as well as washing.

Monomers N-(3,4-dihydroxyphenethyl) methacrylamide (DOMA) and 2-(4-methylthiazol-5-yl)
ethyl methacrylate (MTA) were synthetized according to previous work and used for consequent
preparation of the statistical copolymer P(MTAx-co-DOMAy) with monomer molar ratio
MTA/DOMA = 90/10 by free radical polymerization (Mn = 24,600 g/mol) [33]. The prepared
copolymer was then quaternized with iodomethane (MeI, 99%, supplied by Sigma Aldrich) leading
the corresponding cationic copolymer bearing thiazolium groups (named as MD10). This quartenized
copolymer was used for functionalization of graphene (GR) and GO.

For microbiological studies: sodium chloride aqueous solution (NaCl, 0.9%, BioXtra, suitable
for cell cultures) and phosphate buffered saline (PBS, pH 7.4) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). BBL™Mueller–Hinton broth was supplied by Becton, Dickinson and Company
(Madrid, Spain) and was used as a microbial growth medium. The 96 well microplates were
obtained from Thermo Scientific (Madrid, Spain). Representative bacterial species, two Gram positive
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Staphylococcus aureus (S. aureus, ATCC 29213) and Staphylococcus epidermidis (S. epidermidis, ATCC 12228)
and two Gram negative Escherichia coli (E. coli, ATCC 25922) and Pseudomonas aeruginosa (P. aeruginosa,
ATCC 27853) were obtained from OxoidTM (Madrid, Spain) and chosen as model bacterial strains in
the present study.

2.2. Synthesis of GO and GR

Graphene oxide (GO) was prepared from graphite according to slightly modified Hummers
method [34]. Briefly, graphite flakes (10 g) were dispersed firstly in concentrated sulfuric acid solution
(250 mL) in an ice bath, then KMnO4 (30 g) was slowly added and the mixture was kept stirring for 3 h.
Subsequently, the mixture was diluted with distilled water (2 L) followed by adding 30% hydrogen
peroxide (50 mL) drop-by-drop. This pre-oxidized product was further oxidized by repeating the
previous procedure: pre-product was well mixed with H2SO4 (250 mL), then KMnO4 (30 g), distilled
water (2 L) and 30% hydrogen peroxide (50 mL) were gradually added. Finally, the product was
washed repeatedly with diluted HCl (1:10) and consequently with demineralized water until pH value
of this solution was neutral. The solid phase was then separated and dried overnight at 40 ◦C to obtain
GO. Exfoliated graphite (GR) was prepared by processes of intercalation and exfoliation of graphite
flakes with an average diameter of 500 mm [35]. The intercalated material was subjected to heating in
a high temperature reactor at 900 ◦C. Resulted material was grounded after cooling [35].

2.3. GO and GR Functionalization

The functionalization of GO was conducted in aqueous solution. At first, GO (approx. 70 mg) was
properly dispersed in distilled water (30 mL) in an ultrasonic bath for two hours. After sonication, there
were no visible GO particles in the mixture. Simultaneously, MD10 polymer (70 mg) was dissolved in
distilled water (30 mL). Then, the aqueous suspension of GO was quantitatively added to the polymer
solution to prepare a mixture containing GO/polymer ratio 1:1. The mixture was well magnetically
stirred for 2 weeks at room temperature. The sample was denoted as GO_MD10. In the case of GR
functionalization, the procedure was exactly the same than with GO but the solvent used was DMF.
The sample was denoted as GR_MD10.

After that, both samples were repeatedly washed with distilled water and centrifuged (5810 R
centrifuge, Eppendorf, Madrid, Spain) at 12,000 rpm for 30 min to eliminate all non-attached polymers
and the DMF solvent in the case of GR. The non-attached polymers elimination in both samples
was checked by analysis of obtained supernatants using UV/VIS spectrometer (NanoDrop™OneC

microvolume UV-Vis spectrophotometer, Thermo Fisher Scientific). Finally, the solid phases were
dried at 50 ◦C until constant weight.

2.4. Characterization of Hybrid Materials

A Zetasizer Nano ZS (Malvern Instruments, Malvern, United Kingdom) was used to estimate the
charge potential of the prepared materials. Samples were dispersed in distilled water (10 µg/mL) and
measured at 25 ◦C. Each measurement was repeated at least ten times.

Thermogravimetric analysis (TGA) was conducted using a TGA Q500 analyzer (TA Instruments,
New Castle, DE, USA) from room temperature to 900 ◦C at a heating rate of 10 ◦C/min under an air
atmosphere. The instrument was calibrated in temperature and weight by standard methods.

Fourier transform infrared spectroscopy (FTIR) was conducted on a Spectrum Two FT-IR
spectrometer (Perkin Elmer, Waltham, MA, USA) in range of 4000–400 cm−1 with resolution of
4 cm−1. Approximately 2 mg of each sample and 200 mg of KBr (FT-IR purity, spectroscopically dry,
Sigma Aldrich) were weighted and transferred to an agate mortar, grinded together and KBr pellets
were prepared using a hydraulic press.

Raman spectra of prepared samples were recorded with a Renishaw inVia Reflex Raman system
(Renishaw plc, Wotton-under-Edge, UK) using a grating spectrometer with an 1800 mm−1 Peltier-cooled
charge-coupled device (CCD) detector, coupled to a confocal microscope operating at an excitation
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wavelength of 532 nm. Samples were prepared by drop-casting of diluted samples solutions on freshly
cleaved SiO2/Si wafers and dried at room temperature.

The XPS measurements were carried out with the PHI 5000 VersaProbe II XPS system (Physical
Electronics, Chanhassen, MN, USA) with monochromatic Al-Kα source (15 kV, 50 W) and photon
energy of 1486.7 eV. All the spectra were measured in the vacuum of 1.4 × 10−7 Pa and at 20.5 ◦C. The
analyzed area on the sample had a spot of 100 µm in diameter. The survey spectra were measured
with pass energy of 187.850 eV and step of 0.8 eV, while for the high resolution spectra were used pass
energy of 23.500 eV and step of 0.2 eV. Dual beam charge compensation was used for all measurements.
The spectra were eValuated with the MultiPak (Ulvac-PHI, Inc., Chanhassen, MN, USA) software.
All binding energy (BE) values were referenced to the carbon peak C1s at 284.80 eV.

The morphology of the samples were characterized by field emission scanning electron microscopy
(FE-SEM) using a SU 8000 microscope (Hitachi, Hitachi, Japan) at 5 kV in transmitted electron imaging
mode. Diluted aqueous solutions of the samples were pipetted onto carbon Type-A 400-mesh TEM
copper grid obtained from Tedpella Inc. (Redding, CA, USA), and then were dried with filter paper.

2.5. Antimicrobial Activity

Firstly, the bacteria (Gram-positive Staphylococcus aureus (S. aureus, ATCC® 29213), staphylococcus
coagulase-negative Staphylococcus epidermidis (S. epidermidis, ATCC® 12221) and Gram-negative
Escherichia coli (E. coli, ATCC® 25922) and Pseudomonas aeruginosa (P. aeruginosa, ATCC® 27853)), were
incubated on Columbia Agar plates with 5% sheep blood for 24 h at 37 ◦C in a IQ050 incubator
(Jouan, Winchester, VA, USA). Subsequently, bacteria suspensions of about 108 colony-forming units
(CFU) were prepared by adjusting concentration with saline solution to ca. 0.5-0.6 of the McFarland
turbidity standard. Suspensions of ca. 2 × 106 CFU mL−1 were finally obtained by further dilution
with Mueller–Hinton broth. The dispersion of the samples in Mueller-Hinton broth (1 mg/mL) were
prepared in glass vials, sonicated and sterilized by UV radiation for 30 min before experiments. Then,
800 µL of bacterial suspension was added to 200 µL sample dispersion to reach a final concentration of
500 µg/mL. Control experiments with only inoculum were also performed. The vials were incubated
with gentle shaking during 24 h and then, 200 µL of each solution (without residue of carbon material)
were placed in a 96-well plate. Bacterial growth was reflected by the absorption of optical density (OD)
at 550 nm via a microplate reader (VirClia® Chemiluminescence). The measurements were made at
least in triplicate and the antibacterial ratio was calculated as follows:

Antibacterial ratio =
OD of control−OD of sample

OD of control
× 100

3. Results

The attachment of polymers to the GO or GR surfaces is eValuated by different techniques.
Firstly, FTIR spectra of the carbon-based hybrid materials as well as GO, GR and the copolymer are
shown in Figure 1. In the spectra of GO and GR, the presence of oxygenated groups are appreciated.
Characteristic vibration and deformation bands at 3410 cm−1 (O–H), 1716 (–C=O), 1615 (sp2 aromatic
C–C), 1164 (sp2 aromatic CH in plane) and 1052 cm−1 (C–O–C) were observed in the GO pattern. Bands
with very low intensity at 3441 (O–H), 1738 (–C=O), 1385 (–C–O), 1065 and 1020 (C–O–C) cm−1 are also
identified in the GR spectrum. In the case of copolymer, characteristic bands at 3420, 3089, 3001 and
2936 cm−1 can be easily assigned to O–H bonds, sp2 asymetric vibration of =CH2, –C=N, sp2 aromatic
CH and sp3 asymetric –CH3, respectively. The band at ca. 1660 cm−1 is associated to –C=O groups of
DOMA comonomer, while the band at 1720 cm−1 is asignated to –C=O groups of MTA comonomer.
The band at 1595 cm−1 corresponds to –C=N+ of the thiazolium groups of MTA units and the strong
band at 1150 cm−1 is assignated to C–O groups of MTA units. The attachment of the cationic polymer
to obtain the hybrid materials is eVident by the presence of carbonyl groups of DOMA and MTA units
in each spectrum.
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Figure 1. FTIR spectra of hybrid polymeric materials, GO, GR and MD10.

Raman spectra of GO, GR and their hybrid materials are presented in Figure 2. The spectrum
of polymer was not possible to measure because of its fluorescence emission. The spectrum of GO
shows the typical D (defects inherent in the graphite and the edge effect of graphite, A1g mode)
and G (first-order scattering of E2g phonons by sp2 carbon atoms) bands at 1350 and 1610 cm−1,
respectively [36]. There is a broad band in the area around 3000 cm−1 that is assigned to 2D, G+D
and 2D’ peaks. These bands are characteristics of GO. Meanwhile, the GR spectrum shows that the
obtained material is exfoliated graphite. A prominent G band at 1564 cm−1 is displayed, the intensity
of D band at 1338 cm−1 is very low and the intensity ratio between both bands (ID/IG) is 0.05, which
indicates the low presence of defects in the structure [37]. As known, the 2D peak between 2600 and
2800 cm−1 in bulk graphite consists of two components 2D1 and 2D2 [38]. The splitting of this broad
Raman band opens up in going from mono- to three-layer graphene and then closes up in going from
four layers to highly oriented pyrolytic graphite [39,40]. Intensity ratio of 2D/G peak gives idea about
the number of layers; its value is 2 for monolayer, 1 for bilayer, and as this value decreases the number
of layers increases. In the case of GR and after deconvolution of 2D peak, this ratio is 0.25, which
indicates that GR presents a large number of layers.
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Figure 2. Raman spectra of the hybrid polymeric materials with GO and GR, respectively.

The Raman spectrum of GO-hybrid polymeric material shows minor changes compare to GO.
The spectra are nearly identical; there are no shifts in positions of D and G bands; however, in a deeper
inspection by deconvoluting the spectra a new band at 1540 cm−1 appears when polymer is attached
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(see Figure 3). The G and D bands do not change, so the GO structure is maintained, and the new
bands could corresponds to –C–O–C– bond from the ring of DOMA and the graphitic structure of GO.
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There are also some substantial changes in GR derivative. There are changes on the intensity of D,
G and 2D bands; the ratio of ID/IG is a slightly higher 0.08 and also the shape of 2D band has changed
(see the insert). These features can correspond to the intercalation of polymer chains between graphitic
layers and formation of graphene stacks with less number of layers.

Subsequently, the morphology and structural properties of the prepared GO and GR as well as
the hybrid materials are studied using the FESEM images. Figure 4 shows the micrographs of GO, GR
and their corresponding hybrid polymeric materials.
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Figure 4. FESEM images of GO and GR and functionalized hybrid materials with MD10.

In all the cases, the suspended materials are constituted in sheets of several microns; the regular
shapes of flakes are visible. GO sheets present shaped like a cluster of agglomerating flakes with
regular and sharp edges of several microns. GR sheets also agglomerate but present smaller size than
GO. Moreover, the functionalization with polymer seems to provoke the delamination of GR layers
into smaller stacks.
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Next, the attachment of polymers to carbonaceous materials was also analyzed by
thermogravimetry under air atmosphere. Figure 5a shows thermal stabilities of the hybrid sample
GO_MD10, compared to GO and MD10 polymer. The degradation of the cationic polymer occurs in
three stages [41], whereas the GO degrades in two steps, in addition to the loss of adsorbed/absorbed
water. The first process at 235 ◦C is ascribed to the removal of most of functional groups containing
oxygen such as labile epoxy, hydroxyl, and carboxylic groups (~36% weight loss) from the GO structure,
whereas the second decrease in weight, at around 483 ◦C, is abrupt and can be associated to the complete
thermal decomposition of GO [42]. Table 1 summarizes the decomposition temperatures at 5% weight
loss (Td5) and the temperatures of the maximum rate of weight loss for each step (Td

max1, Td
max2,

Td
max3 and Td

max4) for all the samples. The TGA graph also shows that the GO_MD10 decomposes in
several degradation processes. Clearly, the stability of the hybrid sample was in between the stability
of GO and the initial polymer, with Td5 value of 185 ◦C. The first degradation process of the GO_MD10
presented a Td

max1= 188 ◦C, thus at lower temperatures than that of GO and MD10, whereas the
rest of the decomposition steps occurred at higher temperatures. This behavior is in agreement with
that of other functionalized GO samples, which is associated to the capping of the reactive surface
functionalities of GO that are probably sites of decomposition [43,44]. Therefore, the TGA analysis
confirms the successful attachment of the cationic polymer onto the GO.
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Figure 5. Thermogravimetric (TGA) analysis of (a) graphene oxide hybrid sample GO_MD10 compared
to GO and MD10 polymers; and (b) graphene hybrid sample, GR_MD10 compared to, MD10 and GR.

Table 1. Characteristic parameters of the thermal degradation of hybrid materials, the decomposition
temperatures at 5% weight loss (Td5) and the temperatures of the maximum rate of weight loss for each
step (Td

max1, Td
max2, Td

max3 and Td
max4).

Material Td5 (◦C) Td
max1 (◦C) Td

max2 (◦C) Td
max3 (◦C) Td

max4 (◦C)

MD10 202 221 316 511 -
GO 158 235 483 - -

GO_MD10 185 188 320 533 -
GR 628 760 - - -

GR_MD10 296 210 347 484 762

Likewise, the TGA analysis of the graphene-based hybrid sample, GR_MD10, also corroborates
the immobilization of the cationic polymer onto the graphene sheets (see Figure 5b and Table 1) of
around 10 wt% of polymer. The graphene is stable up to 628 ◦C with weight loss of 5%. This high
stability of graphene results from the strong π-π interactions of the structure. On the other hand, the
GR_MD10 started to decompose at 296 ◦C due to the present of polymer and showed four degradation
stages. The first three processes are associated to the polymer immobilized on the graphene, while the
last stage at Td

max = 762 ◦C corresponds to the complete degradation of graphene sheets.
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Moreover, the surface of all materials was analyzed by XPS to confirm the attachment of polymer.
Figures 6 and 7 display the C1s profiles of GO and GR and their hybrid materials, respectively. Firstly,
C1s profile in GO shows a considerable degree of oxidation with five components that correspond
to C atoms of non-oxygenated C=C (sp2) of aromatic rings (284.80 eV), the reduced C–C (sp3) bonds
(286.16 eV), and C atoms in –C–O, C=O and carboxylate, 286.97, 288.14 and 289.14 eV, respectively.
In the C1s spectrum of hybrid GO_MD10 system a higher occurrence of sp3 C–C as well as a clear
decrease on the amount of C–O bond are observed. The N1s spectrum confirmed presence of both
O=C–N, and quarternary C–N bond, indicating the attachment of polymers to the carbonaceous surface.
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Figure 6. C1s and N1s XPS spectra of GO and GO_MD10.
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All these facts, confirm the functionalization of GO and GR with the cationic polymer probably
through both, electrostatic interactions and by π-stacking between the hexagonal cells of graphene and
graphene oxide and the aromatic ring structure of dopamine [45,46].

On the other hand, the C1s XPS spectrum of GR exhibits a dominant presence of the C atoms in
the C=C (sp2) bonds of the graphenic structure (284.81 eV), with a lower occurrence of C atoms in
C–C (sp3) bonds at 285.23 eV, which confirms the low impurities observed by Raman measurements.
The –C–O and C=O groups are occurring with much lower intensities than in case of GO (285.91 and
287.03 eV, respectively), almost negligible. The C/O ratio is approximately 1.1 for GO while is 60.7
for GR.

The C1s spectrum of GR_MD10 has similar profile than GO_MD10 but with lower proportion of
carbonyl groups as expected. Besides, there is also an increment of intensity in the C–C (sp3) peak
due to the polymer attachment. In the N1s spectrum, GR_DM10 presents O=C–N and C–N+ groups,
which newly confirm the functionalization of GR.

The ζ potential in water solutions was also measured to confirm this functionalization. The values
are gathered in Table 2 and, as is noticeable, the values of quaternized polymer present high positive
charge according to those previously obtained [33]. In contrast, GO and GR present negative values
due to their preparation methods and their values are also in agreement to reported values [47,48].
The negative value of GR means that its flakes size is large (>0.46 mm2); since only the absolute value
of zeta potential, which is more than 30 mV, can ensure its good dispersion stability [49].
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Table 2. ζ potentials of the different materials.

Material ζ Potential (mV)

MD10 71 ± 5

GO −36 ± 3
GO_MD10 35 ± 5

GR −30 ± 3
GR_MD10 61 ± 4

The functionalization with MD10 makes the carbonaceous materials positively charged and also
form stable dispersions. In the case of GO_MD10, this positive charge is lower than for GR_MD10,
which could be explained by the stronger negative charge of GO in comparison with GR and the
higher proportion of –COO− that could compensate the positive charge of polymer MD10 before the
attachment by the catechol groups.

As mentioned before, the charges are also important in the antimicrobial response of materials.
The antimicrobial behavior of the cationic MD10 polymer was previously eValuated and their minimal
inhibitory concentration (MIC) values ranging from 8–64 µg/mL against the tested bacteria [33,50].
Having this in mind, the antimicrobial eValuation of carbon-based materials is performed by contact
killing of material (500 µg/mL) and bacteria during 24 h under soft moving. Figure 8 shows the
antibacterial ratio against Gram-positive (S. aureus and S. epidermidis) and Gram-negative (P. aeruginosa
and E. coli) bacteria for GO and GR derivatives including also GO, respectively. It is noticeable that the
activities of GO against bacteria is slightly improved with the incorporation of MD10 except against
P. aeruginosa and S. aureus bacteria. Remarkably, hybrid GR_MD10 presents the best results of all, which
can be explained by the higher positive charge of the system. It is important to note, that in the case of
GR, it was not possible to obtain stable water dispersion during 24 h and then GR sheets did not kill the
bacteria at the tested concentration. The incorporation of the cationic polymer significantly improves
the water stability, also providing antimicrobial activity. Likewise, the graphene hybrid sample is also
more effective against Gram-negative than Gram-positive bacteria. This could be explained by the
difference on composition and thickness of the corresponding bacterial cell membranes.
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4. Conclusions

The successful functionalization of graphene oxide and graphene with the quaternized statistical
copolymer P(MTA90-co-DOMA10), MD10, was confirmed by FTIR, Raman spectroscopy and XPS
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and the products were further eValuated as antibacterial materials. The structural characterization
performed by FTIR confirmed the presence of C=O groups (from MTA) in both hybrid GO_MD10 and
GR_MD10 systems. The analysis of the Raman spectra confirmed the functionalization of GO with the
cationic polymer through the presence of a new band corresponding to the C–O–C bonds from the
ring of DOMA and the graphitic structure of GO, but inducing no changes in the GO structure. In
the case of GR, the incorporation of the cationic polymer onto the GR sheets resulted in a structural
modification, probably due to the intercalation of the cationic polymer between the graphitic layers and
the subsequent formation of graphenic stacks with less number of layers. The functionalization of GR
and GO by MD10 quaternized copolymer was also eVidenced by the significant change of superficial
charge from negative to highly positive values determined by the potential zeta analysis. Moreover,
due to the positive charge obtained with the attachment, the hybrid polymeric materials presented
good antimicrobial activity against Gram-positive and Gram-negative bacteria, especially in the case of
graphene, which activity in water solution is insignificant.
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