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Nanostructured metal-based compound electrodes with excellent electrochemical

activity and electrical conductivity are promising for high-performance energy storage

applications. In this paper, we report an asymmetric supercapacitor based on Ti and

Cu coated vertical-aligned carbon nanotube electrodes on carbon cloth. The active

material is achieved by in-situ functionalization using a high-temperature annealing

process. Scanning and transmission electron microscopy and Raman spectroscopy

confirm the detailed nanostructures and composition of the electrodes. The TiC@VCC

and CuxS@VCC electrodes show a high specific capacity of 200.89 F g−1 and 228.37 F

g−1, respectively, and good capacitive characteristics at different scan speeds. The

excellent performance can be attributed to a large surface area to volume ratio and high

electrical conductivity of the electrodes. Furthermore, an asymmetric supercapacitor is

assembled with TiC@VCC as anode and CuxS@VCC as cathode. The full device can

operate within the 0–1.4 V range, and shows a maximum energy density of 9.12 Wh

kg−1 at a power density of 46.88W kg−1. These findings suggest that the metal-based

asymmetric electrodes have a great potential for supercapacitor applications.

Keywords: asymmetric supercapacitors, carbon nanotubes, carbon cloth, in-situ functionalization, metal

electrode

INTRODUCTION

Supercapacitors (SCs) with outstanding power densities and cycling performances have become
one of the most promising power sources for next generation microelectronics and portable
electronic products (Wang, 2010). However, their low energy density is one of major barriers
for commercialization and practical applications of SCs. For example, the SCs based on carbon
materials could hardly satisfy the energy demands for most practical applications in comparison
with metal ion batteries. According to the energy (E) and capacitance (C) relationship, i.e.,
E= 1

2CV
2, whereV stands for the working voltage of SC, asymmetric supercapacitors (ASCs) based

on novel materials are considered to be capable of improving the energy densities from two aspects.
One is that the operation potential window is effectively broadened through the asymmetric design.
The other one is that, by applying functional nanomaterials to electrodes to introduce the faradic
capacitance, the specific capacitance of the electrodes can be significantly enhanced. As a result,
ASCs based on nanostructured metal oxides have shown a significant improvement in energy
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density, and an operating potential of 2.0 V for ASCs have
been achieved (Xiao et al., 2012). However, the metal oxides
based ASCs suffer from poor conductivities and low power
densities (Zhu et al., 2015). In order to solve these problems,
new electroactive materials apart from transition metal oxides
need to be investigated, to optimize the performance of electrodes
in ASCs.

Transition metal oxides were considered as promising
candidates for new energy storage material due to the
introduction of pseudo capacitance that was able to significantly
increase specific capacitance when compared with traditional
carbon based electrodes. However, transition metal oxide are
usually of poor conductivity and could not deliver high
current and power densities. Transition metal carbides exhibit
both fascinating energy storage performances and outstanding
conductivities, when compared with transition metal oxides.
Two-dimensional metal carbides have demonstrated ultrahigh
specific volumetric capacitances (Lukatskaya et al., 2013).
In addition, compared with metal oxides, transition metal
carbides usually have better cycling performances. For example,
supercapacitor based on a tubular TiC fiber nanostructured
electrode was fabricated and tested for more than 150,000 cycles
at a high temperature of 65◦C (Xia et al., 2015). Moreover,
layered titanium carbide Ti3C2 has also been proved to be a
promising negative electrode material with a high mass loading
of 7.6mg cm−2 and a high specific capacitance of 112 F g−1

in a stable potential window (−0.9 to −0.3V refer to Ag/AgCl
electrode) (Lin and Zhang, 2015). Transition metal sulfides
(e.g., MoS2, NiCo2S4, Ni3S2) based electrodes have also been
extensively studied with ever improving intrinsic conductivity

FIGURE 1 | Schematics of the fabrication processes of the cathode and anode electrode.

(Acerce et al., 2015; Fu et al., 2015; Li et al., 2015). Copper
sulfides (CuxS) have been used in electrochemical devices for
gas sensing application (Sagade and Sharma, 2008) and lithium-
ion batteries (Chung and Sohn, 2002), owing to their superior
conductivity and great specific capacitance. Furthermore, acting
as positive electrodes of supercapacitors, CuxS presents a metal-
like conductivity of ∼1 × 103 S cm−1 (Mazor et al., 2009) and
remarkable specific capacitance of 110 F g−1 (Zhu et al., 2012).
To better evaluate the capacitance of CuS based electrodes, an
asymmetric supercapacitor cell, constructed with nanostructured
CuS networks as the cathode and activated carbon as anode,
was demonstrated with a high specific capacity of 49.8mAh
g−1 at a current density of 1A g−1, and the maximum energy
density is 17.7Wh kg−1 at a power density of 504W kg−1

(Fu et al., 2016).
The structures of electrodes are also important for optimizing

the performance of supercapacitors. Recently, three-dimensional
nanocarbon electrodes made from carbon nanotubes (CNTs)
on carbon cloth (CC) were applied to electrochemical cells.
A nickel-zinc battery based on a 3D hierarchical carbon
nanofiber-CC electrode was reported to have a power density
of 6.09 mWh cm−3 and an energy density of 355.7 Wh
kg−1 (Liu et al., 2016). A lithium-ion battery with 3D
carbon nanostructures as its electrodes can be consistently
operated for more than 8,000 cycles (Wang et al., 2015).
Furthermore, low-dimensional metal-organic frameworks (LD
MOFs) have attracted increasing attention in recent years, which
successfully combine the unique properties of MOFs, with the
distinctive physical and chemical properties of LD nanomaterials
(Xu et al., 2017, 2018; Liu et al., 2019).
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Herein, we report on an asymmetric supercapacitor
constructed with TiC and CuxS as its anode and cathode,
respectively. TiC@VCC and CuxS@VCC are chosen as negative
and positive electrode, respectively, due to the potential
window of the materials. To optimize the electrochemical
performance of the device, we have incorporated a vertical-
aligned carbon nanotube (VACNT) array on carbon cloth
as the electrodes. Different from other reported CNT arrays,
the VACNT array employed here is of low density and
superior conductivity, and has demonstrated as promising
electrochemical electrodes (Sun et al., 2015, 2016, 2017). The
array with well-distributed VACNTs on carbon cloth (VCC)
forms a 3D nanostructure with a large surface to volume
ratio and ultra-straight morphology (Wang et al., 2016). A
high-temperature annealing process is conducted to in-situ

functionalize the metal-coated VCC electrodes for the anode
and cathode. A large specific capacitance of 200.89 F g−1 in
a potential window of −0.7–0.1V and 228.37 F g−1 in −0.1–
0.7V are obtained. Moreover, a full device based on these
electrodes shows a high energy density of 9.12 Wh kg−1 and
power density of 46.88W kg−1. Our findings suggest a feasible
approach to achieve SCs with both high energy densities and
high power densities.

EXPERIMENTAL

Preparation of VACNT Array on
Carbon Cloth
Well-distributed VACNTs were grown on a piece of flexible
carbon cloth as current collectors. Firstly, an ultrathin Ni/Al2O3

bi-layer catalyst was deposited through a plasma-enhanced CVD
(PECVD) system (Wang et al., 2014a) and the CNT grew in
a mixture of ammonia/acetylene (240/60 sccm) gas atmosphere
under 120W plasma at 800◦C.

Preparation of TiC@VCC and
CuxS@VCC Electrodes
After the fabrication of VCC, 500 nm titanium and copper were
coated on the VACNT array using a Denton RF/DC magnetron
sputtering system in which a Ti target (99.999%) and a Cu target
(99.99%) were sputtered at a current of 0.7 A and 0.4A under
a pure Argon atmosphere, respectively. In-situ functionalization
processes for both electrodes were conducted in a thermal
chemical vapor deposition (TCVD) furnace. The sulfur powder
was placed in an Al2O3 ceramic boat and heated in a low
temperature zone and the two metal-coated VCC electrodes were

FIGURE 2 | Morphology characterizations of VCC electrodes before and after the metal coating and thermal anneal functionalization. SEM images of VCC

with different magnifications of 80 (a), 5,000 (b) and 20,000 (c). SEM images of Ti@VCC electrode before (d) and after (e,f) the functionalization. SEM images of

Cu@VCC electrode before (g) and after (h,i) the functionalization.

Frontiers in Chemistry | www.frontiersin.org 3 July 2019 | Volume 7 | Article 512

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sun et al. In-situ Functionalization of Electrodes

placed in a high temperature zone of 700◦C for about 30min in a
mixed gas (Ar/H2) atmosphere.

Materials Characterization and
Electrochemical Measurement
The structure and morphology of the electrodes were
characterized with a SEM system (LEO 1550 Gemini) and
TEM (JEM 2100 FJEOL), respectively. A Raman system (WITec)
with a 532 nm wavelength excitation was applied for Raman
spectrum measurements. The mass loading of these as-grown
TiC or CuxS nanocomposite were 0.12 and 0.65 mg/cm2,
respectively, which were determined by the difference before and
after material deposition and functionalization with an analytical
balance (Mettler Toledo XP 26, 0.002 mg).

Electrochemical measurements of the electrode were carried
out through an electrochemical workstation (Autolab/M101)
in a 1.0M LiCl aqueous electrolyte under a three-electrode
measurement setup with a standard Ag/AgCl reference electrode.
For full device test, a standard CR-2032 coin cell testing system
was built and tested as a whole, in which TiC@VCC and
CuxS@VCC electrodes were used as the anode and cathode,

respectively. A membrane was used as the separator and 1.0M
LiCl as the aqueous electrolyte.

RESULTS AND DISCUSSION

The fabrication process of the TiC@VCC and CuxS@VCC
electrodes is shown in Figure 1. A 20 nm nickel thin film
functioning as catalyst for VACNT growth was deposited on the
carbon cloth substrate through an electron beam evaporation
system. The VACNT array synthesis was conducted in a plasma-
enhanced chemical vapor deposition system (Wang et al., 2014b)
to form 3D nanostructured VCC electrodes.

SEM images of the VCC substrate in Figures 2a–c show that
VACNTs were well distributed on the surface of the carbon cloth.
The density and uniformity of the as-prepared VACNTs aremuch
better than randomly grown carbon nanotube networks (De
Volder et al., 2013) and common carbon nanotube arrays grown
via thermal CVD system (Jiang et al., 2013). In addition, large
interspacings in the VACNT array in Figure 2c can reserve space
for later accommodation of active materials.

After the fabrication of VCC electrodes, titanium and copper
were deposited on these VCC substrates via sputtering. SEM

FIGURE 3 | TEM images of electrodes: TiC@VACNT (a,c), and CuxS@VACNT (b,d). (Insets: corresponding high resolution TEM images.
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images of Ti@VCC (Figure 2d) and Cu@VCC (Figure 2g)
electrodes suggest that the diameters of 1D nanostructures
in both electrodes were uniformly increased, indicating
that conformable coatings of titanium and copper on VCC
electrodes have been achieved. Subsequently, high temperature
annealing processes were conducted for Ti@VCC and Cu@VCC
electrodes, as described in Section Preparation of TiC@VCC
and CuxS@VCC electrodes. It is confirmed that the proposed
in-situ functionalization process has successfully converted the
two metal-coated VCC electrodes into TiC@VCC (Yildirim
and Ciraci, 2005) and CuxS@VCC (Vas-Umnuay et al., 2015)
electrodes, respectively. In Figures 2e,h, it is seen that the
diameters of metal coated VACNTs have not been significantly
changed. From zoom-in images as seen in Figures 2f,j, the
surface morphologies of 1D nanostructures in both electrodes
have been altered, especially for the CuxS@VCC electrode.
It is also noticed that a notable aggregation occurred in the
functionalized VACNT array during the annealing process,
and part of the nanowires have stick together to form thicker
bundles (Sun et al., 2015). Nevertheless, enough interspacing
and porosity were reserved inside of these 3D nanostructured
electrodes although the 1D nanostructured array would
aggregate during the annealing step.

To obtain detailed nanostructures andmaterials compositions
of the electrodes, transmission electron microscopy (TEM)
characterizations were performed. Figures 3a,c reveil the core-
shell nanostructure within a single TiC-coated VACNT. The
inset of a high resolution TEM (HRTEM) image indicates a

lattice interspacing of 2.196 Å, corresponding to the (002) planes
of TiC (Xia et al., 2015). TEM image of a single CuxS-coated
VACNT (Figure 3d) is consistent with the SEM characterization
results, and the aggregation phenomenon in CuxS@VCC further
escalated during the high-temperature functionalization. In this
process, as-deposited Cu thin film was converted into CuxS
nanoparticles attached to the VACNTs with an approximate
average diameter of 100 nm. The inset of Figure 3b shows a d-
spacing of 3.127 Å, which coincides with other findings of high-
temperature fabricated CuxS (Quintana-Ramirez et al., 2014;
Bulakhe et al., 2016). Low-magnification images of TiC@VCC
and CuxS@VCC are further provided as shown in Figures 4C,D

to confirm the material of electrodes.
The Raman spectra of the TiC@VCC electrode and bare

VCC electrodes are shown in Figures 4A,B, respectively. Strong
characteristic peaks of 258, 430, and 620 cm−1 are attributed
to TiC after functionalization (Lohse et al., 2005; Xia et al.,
2015). Concurrently, the intensities of the Raman disordered
band (D band) and graphitic band (G band) are significantly
reduced, confirming that the TiC thin film shell was conformably
coated on VACNTs. The Raman spectra of CuxS@VCC electrodes
illustrate a strong copper sulfide peak at 470 cm−1 (Figure 4C),
and weakened D and G band (Figure 4D), which are well-
consistent with other reported results (Munce et al., 2007;
Quintana-Ramirez et al., 2014; Bulakhe et al., 2016).

The electrochemical characterizations of the proposed
electrodes were performed in a standard three-electrode testing
system with Pt plate as a counter electrode, and Ag/AgCl as

FIGURE 4 | Raman spectra of TiC@VACNT electrode (A,B) and CuxS@VACNT electrode (C,D).
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a reference electrode. TiC@VCC anode/CuxS@VCC cathode
were used as the working electrodes, and LiCl as an electrolyte.
For comparison purpose, the CV curves of VCC electrodes at
different scan speeds from 20 to 5,000mV s−1 are first shown in
Figures 5A,D. Correspondingly, the CV curves of the TiC@VCC
anode (from −0.7–0.1V, vs. Ag/AgCl) and CuxS@VCC
cathode (from −0.1–0.7V, vs. Ag/AgCl) are presented in
Figures 5B,E,C,F, respectively. It is confirmed that both
TiC@VCC and CuxS@VCC electrodes exhibit good capacitive
behaviors at these scan speeds. Figure 5G further shows the
real and imaginary parts of the electrochemical impedance for
both electrodes, validating highly conductive properties with
small impedance. The specific capacitance of TiC@VCC and
CuxS@VCC electrodes can be calculated from these CV curves,
yielding much higher values in comparison with VCC electrodes
for a scan rate up to 200 mV/s (Figure 5H). It is noticed
that the specific capacitance of the CuxS electrode decreases
sharply after 200 mV/s, which may limit the applications of the
proposed electrode at lower scan rate. This is attributed to the
limited migration of electrolyte ions at higher scan rates, and
some similar results have been observed in other metal sulfide
based electrodes (Choudhary et al., 2015). Nevertheless, the

specific capacitance is still higher than carbon only electrodes
at higher scan rates. Measured CV curves of TiC@VCC and
CuxS@VCC electrodes in the range of −0.7–0.7V and scan
speeds at 10 and 500 mV/s (Figure 5I) show a better rectangular
shape than those of the VCC electrodes, suggesting dominating
capacitive characteristics.

To evaluate the applicability of the proposed electrodes, a
full device was assembled using the TiC@VCC as anode and
the CuxS@VCC as cathode, having a working range from 0
to 1.4V. Figures 6A,B illustrate the measured CV curves of
the full device at scan rates from 2 to 100 mV/s. At these
scan speeds, good rectangular shapes and large curve areas are
obtained. The CV curves as a function of the bias voltage (from
0.7 to 1.4V) at a scan rate of 10 mV/s (Figure 6C) confirm
that the full device can operate at different bias voltages, and
therefore, can operate effectively as a micro-supercapacitor. After
the charging and discharging test of 3,000 cycles, it is found
that the specific capacitance retention is from ∼80% to 110% of
its original value (Figure 6D), which is relatively unstable when
compared with other demonstrated micro-supercapacitors. This
phenomenon is attributed to the side electrochemical reactions
occurred during the first several hundred cycles within the

FIGURE 5 | Electrochemical properties of the proposed electrodes. CV curves of the VCC (A,D), TiC@VCC (B,E) and CuxS@VCC (C,F) at different scan speeds from

10 to 5,000 mV/s. Electrochemical impedance (G), Specific capacitance of electrodes (H) at different scan rates calculated from the CV curves (A,F). Comparative CV

curves of VCC, TiC@VCC and CuxS@VCC electrodes performed in a three-electrode cell (I).

Frontiers in Chemistry | www.frontiersin.org 6 July 2019 | Volume 7 | Article 512

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sun et al. In-situ Functionalization of Electrodes

FIGURE 6 | The electrochemical properties of the full device. CV curves of the full device at different scan rates (A,B), CV curves at different bias voltages under a

scan rate of 10 mV/s (C), capacitance retention vs. cycle number for the full device (D).

copper sulfide in positive electrode (Zhu et al., 2012; Hsu et al.,
2014; Bulakhe et al., 2016). Experimental results of copper
sulfide based supercapacitors suggest that the unstable cycling
performance in full device was a common issue and usually only
1,000∼2,000 stable cycles of electrochemical test can be achieved.
Nevertheless, all these results suggest that the full device shows an
excellent electrochemical performance when compared to other
recently reported full micro-supercapacitors.

CONCLUSIONS

In this paper, we designed, fabricated and experimentally
demonstrated a metal-based asymmetric supercapacitor using
TiC@VCC as anode and CuxS@VCC as cathode. TiC and CuxS
were prepared through in-situ functionalizations on the VCC
substrate, providing a large interspacing and porosity to the
3D nanostructured electrodes. The electrodes showed a specific
capacitance of 200.89 and 228.37 F g−1 in the potential window
of −0.7 to 0.1V and −0.1 to 0.7V, respectively. A full device
assembled from the electrodes was able to work within a potential
window of 0–1.4V at a scan speed up to 100 mV/s, and
demonstrated a maximum energy density of 9.12 Wh kg−1

at a power density of 46.88W kg−1. Cycling measurements
showed that the capacitance retention was between 80 and 110%
of its original value. The proposed all-solid-state asymmetric
supercapacitor demonstrated a high applicability and can be used
as efficient energy-storage devices.
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