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Abstract: Lipids are major actors and regulators of physiological processes within the lung. Initial
research has described their critical role in tissue homeostasis and in orchestrating cellular communi-
cation to allow respiration. Over the past decades, a growing body of research has also emphasized
how lipids and their metabolism may be altered, contributing to the development and progression of
chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working
model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism.
We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing
on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop
therapeutic options for patients with lung fibrosis.
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1. The Physiopathology of Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a severe chronic and progressive disease of the
lung parenchyma, causing significant morbidity through worsening dyspnoea, increasing
cough, and overall irremediable functional decline [1]. The prognosis of IPF is poor, with a
median survival time of less than five years. IPF development is classically viewed as an
abnormal alveolar repair induced by an unknown triggering event leading to myofibroblast
proliferation and extracellular matrix (ECM) accumulation in the lungs. Currently, only
two drugs (pirfenidone and nintedanib) have been approved for the management of IPF.
However, neither of these medications are able to reverse or even stop the progression of
fibrosis, and so the patient’s lung function declines gradually over time [2,3]. The field is
looking towards new avenues to develop therapeutics for patients with IPF.

The physiopathology of fibrosis is still not completely understood, although several
factors and processes have been identified in the last few decades [4,5] (see [6] for a
comprehensive review of the cellular and molecular mechanisms of IPF). The current
working model is based on impaired cellular crosstalk among the different cells present
in the lung [5]. Repeated damages to the lung epithelium activate an initial process of
wound healing with the activation of epithelial cells, mainly alveolar type (AT)II cells. In
this context, and under specific chronic conditions (e.g., aging, tobacco exposure, genetic
predispositions), an aberrantly activated population of epithelial cells located in the distal
lung emerges [7,8]. Those cells, also called aberrant basaloid cells, express specific keratin
fibers (Krt8 and Krt15) and are believed to be stacked into a transitional state in which
their healing activities are impaired and in which they transmit altered messages that
activate neighboring cells such as fibroblasts [9]. Activated fibroblasts or myofibroblasts
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are mesenchymal cells with a crucial role in fibrosis since they produce extracellular matrix
components, collagen being the main component. In addition, they are regarded as a
population of cells with invasiveness and aggressive properties, with the expression of
specific proteins such as the α-smooth muscle actin (α-SMA) or the hyaluronan synthases
(HAS). Recent advances and single-cell transcriptomic approaches have highlighted the
complexity of the fibroblast populations and their ability to promote repair or pathological
extracellular matrix deposition [10,11]. The main source of (myo)fibroblasts is resident lung
fibroblasts, which undergo activation to produce an altered extracellular matrix. Indeed,
many other cell types seem to participate in the accumulation of activated (myo)fibroblasts,
as observed in IPF [12]. ATII cells can experience genetic reprogramming, similar to the
epithelial-to-mesenchymal transition (EMT) described in cancer, to acquire mesenchymal
features and therefore contribute to the pool of activated fibroblasts [13]. Although many
labs have described such activated ATII cells, the part of EMT-derived fibroblasts in IPF
remains controversial [14]. Later, additional structural cells have been shown to differentiate
into myofibroblast-like cells, such as pleural mesothelial cells. During IPF, pleural cells
gain motility via the expression of the canonical myofibroblast marker α-SMA and can
invade the lung parenchyma [15]. More recently, the plasticity of endothelial cells has been
demonstrated. Under fibrotic conditions, endothelial cells in the lung can also undergo
reprogramming and acquire mesenchymal properties via a process termed endothelial-to-
mesenchymal transition [16]. A deeper understanding of this endothelial-to-mesenchymal
reprogramming identifies and confirms potential therapeutic targets such as galectin-
3 [17] Next to endothelium, vascular smooth muscle cells are also involved in pulmonary
remodeling with the production of type I collagen [18,19]. In addition, a recent and growing
body of literature has described the key role of immune cells in orchestrating the cellular
interplay between epithelial cells and fibroblasts [20–23]. Under physiological conditions,
immune cells and macrophages appear highly heterogenous with distinct populations,
each of them involved in specific processes such as inflammation or matrix interactions [24].
Studies with single-cell RNA sequencing of lung tissue from patients with IPF confirmed
the presence of immune cells and notably identified alterations in macrophages and the
presence of plasma B cells in IPF [20–22,25,26]. Although the exact role of these cells during
fibrosis is not fully understood, they are believed to contribute to the local pro-fibrotic
milieu responsible for the abnormal activation of both epithelial and mesenchymal cells.
In aging, the activation of alveolar macrophages can be driven by components of the
microenvironment produced by epithelial cells [27]. The crosstalk between immune cells
and structural (epithelial and mesenchymal) cells seems thus to be a double-edged sword.

The activation of these cells within the lung relies mainly on the interaction of these cells
with abnormal ECM, which is a major hallmark in chronic pulmonary diseases since it serves
as a source of cellular activator molecules [28]. These signals can lead to the (re)activation of
developmental signaling during IPF, such as TGF-β1 or Wnt signaling pathways, which have
an important role in fibrotic processes [4,29]. TGF-β1 is the canonical pro-fibrotic cytokine,
responsible for fibroblast activation, structural cell reprogramming towards mesenchymal-like
cells, and modulation of immune cell functions. In rodents, the adenovirus-mediated over-
expression of TGF-β1 leads to a severe and progressive fibrotic response [30]. Consequently,
approaches to counteract its signaling are an intense area of research [31]. Crosstalk between
fibroblasts and epithelial cells in the lung appears to be key in maintaining tissue home-
ostasis, and this communication involves cytokines and extracellular mediators regulating
developmental signaling. In physiological conditions, fibroblasts control the stemness of ATII
cells via paracrine Wnt signaling [32]. The disruption of this crosstalk, for example, after
a massive epithelial injury, leads to autocrine Wnt signaling in the ATII compartment and
subsequent increased activation of these cells. In fibrosis, Wnt signaling is pathologically
increased and can over-activate ATII cells. Beyond TGF-β1 and Wnt, other signaling are
activated during IPF such as Sonic hedgehog, Notch, and the more recently unraveled Hippo
YAP-TAZ pathway. YAP-TAZ are transcriptional cofactors activated by tissue stiffness and
are overexpressed during IPF [33]. In fibroblasts, they promote invasiveness, production of
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ECM components, and subsequent fibrosis [33]. In epithelial cells, they contribute to the ATII
to ATI differentiation [34]. Whether perturbation in YAP-TAZ signaling is involved in the
inefficient ATII to ATI transition observed in IPF remains unclear.

The (re)activation of developmental signaling is currently seen as the consequence of
many pathological phenomena which take place in the IPF lung. Insult of the pulmonary
epithelium is believed as a key initiatory step of IPF. Why epithelium can be unable
to repair itself is still largely unknown, although many mechanisms are linked to the
disease [5]. Aging is an important factor in IPF and can give rise to non-functional and
pro-inflammatory senescent cells [35]. Senescence has gained significant interest in the past
decade, and strategies to clear senescent cells during IPF are actively tested [36–39]. Beyond
senescence, hypoxia is a major hallmark of IPF, where scar tissue deposition hampers gas
exchange. Hypoxia also gains attention as a predictive marker of the disease [40–42]. As a
consequence, hypoxia leads to an increase in oxidative stress, dysfunction of mitochondria,
and an unfolded protein response [43,44]. Altogether, these mechanisms impair the cell’s
normal function and consequently cause organ failure.

The lung is an organ that is rich in lipids and active in terms of lipid metabolism.
In the distal lung, a significant amount of lipids is found in the extracellular space, for
example, forming the alveolar surfactant. Pulmonary surfactant is seminal in facilitating
respiration by reducing surface tension during inspiration and preventing the collapse of
alveoli. The surfactant is composed of up to 90% lipids, mainly produced by ATII cells and
secreted towards the alveolar space [45,46]. Among the different lipids produced in the lung
(see below), phospholipids, and particularly phosphatidylcholine (PC), are highly involved
in the composition of surfactants [46]. In addition to phospholipids, fatty acids (FA) are
important components of the pulmonary lipid content. Their significant heterogeneity (length,
unsaturation) and their role as a precursor to producing active lipids explain their numerous
roles within the cells. Arachidonic acid (AA) is a perfect example. Vehiculated thanks to
many phospholipids, AA is an important precursor of active lipids such as prostaglandins,
leukotrienes, or lipoxins. Many lipids are released in the extracellular milieu. This implies the
presence of specific activation systems and the expression of lipid receptors and transporters
such as ABCA, also involved in surfactant assembly within ATII cells [46]. Cholesterol
represents around 10% of the lipid component of lung surfactants, and it has a crucial role in
lowering surface tension [46]. Beyond pulmonary surfactants, lipids shape the extracellular
milieu with which cells interact. The lung ECM is a highly complex patchwork of fibrous
proteins (mainly collagens) and proteoglycans (heparin, hyaluronic acid) as well as other
glycosylated proteins such as fibronectin, laminin, and osteopontin (OPN). There are many
examples of the intimal link between lipids and ECM. In the liver, OPN, which accumulates
in fibrotic ECM, regulates the metabolism of PC and cholesterol by acting on hepatic P450
cytochrome expression [47]. Mice deficient for Opn are less prone to develop fibrosis and
have decreased PC content [47]. In the lung, OPN is up-regulated in PASMCs stimulated
with S1P [48]. The up-regulation of OPN is crucial in S1P-induced PASMCs proliferation. The
activation of PPARγ suppresses the effects of S1P on OPN expression in PASMCs. Several
master regulators, such as Lipin-1/SREBP, have been identified in line with these studies
showing the regulation of lipid metabolism by ECM [49]. This regulatory crosstalk seems to
work both ways as active lipids also drive the production of ECM components. For example,
lysophosphate acid, a bioactive lipid, regulates the production of ECM production (collagen,
fibronectin) via the transcriptomic activation of Yes-associated proteins (YAP)/PDZ-binding
domain (TAC) in trabecular meshwork cells [50].

In pathological conditions, lipid production and metabolism are dysregulated. Further-
more, a growing body of literature identifies the alteration of lipids and their metabolic pathways
as a central feature in lung fibrosis [51,52]. During wound healing and organ fibrosis, lipids
serve as mediators in various processes such as the activation or resolution of inflammation.
Moreover, these lipids can mediate both paracrine and endocrine cell–cell communication.

In this review, we will describe the various lipids present in the lung and explain their
metabolic pathways. Then, we will discuss the abnormalities found in lipid composition
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and metabolism during various pathophysiological processes related to fibrogenesis before
addressing how lipids may open therapeutic avenues for lung fibrogenesis and IPF.

2. Overview of Pulmonary Lipids and Their Metabolism

Lipids are a heterogenous group of hydrophobic molecules that can be classified into four
main classes: (1) glycerides, including phospholipids, (2) fatty acids (FA), (3) non-glyceride
lipids including cholesterol and sphingolipids, and (4) complex lipids (lipoproteins).

2.1. Phospholipids

Phospholipids constitute a class of amphiphilic molecules composed of a central glyc-
erol cytoskeleton branched with two fatty acids (sn-1 and sn-2) and a polar group termed
as “the head”. This group can be choline, serine, ethanolamine, or inositol. As stated
above, pulmonary surfactant is essentially composed of lipids and mainly PCs such as
the dipalmitoyl-PC [45]. The synthesis of PCs relies on choline, which is trimethylamine
with many functions in cell proliferation, differentiation, migration, and apoptosis [53–55].
Increased choline uptake is observed in cancer cells in various organs, including lung
carcinoma cells or liver cirrhosis [56–58]. Several pathways leading to the synthesis of
PCs have been described, with the de novo synthesis pathway known as the Kennedy or
cytidine-diphosphate (CDP)-choline pathway [59]. Within the lung, choline is imported
from the blood towards ATII cells [60–63]. Intracellular choline first undergoes phosphory-
lation before transfer to a cytidylyl triphosphate (CTP) to obtain CDP-choline, which in
turn is branched into diacylglycerol (DAG) to produce PC. Next to their role as structural
lipids, phospholipids, including PCs, also serve as a source of secondary messengers and
active mediators, mainly via FA transportation.

2.2. Fatty Acids

FAs are classified as saturated or unsaturated and also by the length of the carbon
chain, including short-chain FAs (≤6 carbons), medium-chain FAs (6–12 carbons), long-
chain FAs (12–22 carbons), and very-long-chain FAs (more than 22 carbons) [64]. Some FA
can be generated endogenously from acetyl-coA and acetyl-coA carboxylase (ACACA) to
produce malonyl-coA, which is the active donor for FA biosynthesis, which is elongated
to generate a carbon chain [65,66]. The first product is released into the cytoplasm as a
4-carbon carboxylic acid (butyric acid, C4:0). Repeated elongation cycles of the butyric
acid molecule allow the production of long carbon chains up to palmitic acid (C16:0) or
stearic acid (C18:0). ELOVL enzymes are responsible for the elongation of FAs and are
classified into seven groups based on their substrates [67,68]. Saturated short carbon chain
FAs (e.g., palmitic acid) are substrates for ELOVL6. In parallel, saturated long and very
long carbon chain FAs (e.g., stearic acid) are substrates for ELOVL1 [68,69], while ELOVL3
and ELOVL7 elongate saturated and unsaturated long carbon chains. ELOVL2 and five
elongated unsaturated carbon chains such as arachidonic acid (C20:4, AA) [70].

FA can be released from phospholipids via the Lands’ cycle, where phospholipids
are converted into lysophospholipids (reaction accompanied by the release of the sn-2 FA)
under the action of the A2 phospholipase [58,71]. Lysophospholipids can, in turn, be used
by lysophosphatidylcholine acyltransferase (LPCAT) enzymes to branch another FA in the
sn-2 position and then form another complete phospholipid, or they can be processed to
generate active extracellular lipids. Autotaxin is a secreted enzyme with lysophospholipase
D (LPD) activity. It hydrolyzes extracellular lysophospholipids such as lysophosphatidyl-
choline (LPC) to obtain lysophosphate acid (LPA), a known active lipid mediator [72–74].
Indeed, extracellular LPA will bind and activate G protein-coupled transmembrane recep-
tors. Six receptors, LPA1 to LPA6, have been described so far [72]. Although circulating
LPA levels correlate with autotaxin concentrations, LPA can be generated after hydrolysis
of phosphatidic acid (PA) by phospholipases A1 and A2. This reaction releases the FA in
the sn-1 and sn-2 positions of the PA to produce LPA [51,72].
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Among FAs, arachidonic acid (AA) is a major inflammatory mediator seeing as
it can serve as a precursor to the generation of eicosanoids, including prostaglandin,
leukotriene, and lipoxins [75,76]. These active lipids control tissue inflammation. The
bioavailability of AA is major, and AA is the main FA located in the sn-2 position of
phospholipids found linked to the membranes [49]. Within cells, hormonal, physical, or
chemical stimuli can activate phospholipase A2, which is responsible for the hydrolysis
of the sn-2 FA on phospholipids, leading to the release of AA. Then, free AA is metabo-
lized by prostaglandin synthase isoforms COX-1 and COX-2. COX-1 is the main isoform
expressed constitutively in cells, while the isoform COX-2 is activated during inflam-
mation. COX enzymes produce prostaglandin H2 (PGH2), which serve as a precursor
to producing other prostaglandins [77]. Alternatively, AA can also be converted into 5-
hydroperoxyeicosatetraenoic (HPETE) acid by lipoxygenase, mainly the 5-lipoxygenase
(5-LOX, also known as ALOX) to produce leukotrienes [78]. The lipoxins are pro-resolving
lipids that play a vital role in reducing excessive tissue injury and chronic inflammation [79].
Lipoxins are synthesized by two pathways from AA and involve different lipoxygenases (5-,
15- or 12- LOX). The first pathway is the conversion of leukotriene A4 into lipoxin A4 and
B4 by 12-LOX. In the second pathway, lipoxin can be obtained by the conversion of AA into
15-HPETE by 15-LOX, successively by the conversion of 15-HPETE into 15-OH-leukotriene
A4 to produce lipoxin A4 and B4.

The extracellular localization of lipids implies a system of recognition through specific
surface receptors. ABCA3 is a lipid transporter with an ATP binding cassette believed to
play a key role in the homeostasis of pulmonary surfactants [80]. CD36 is a transmembrane
glycoprotein also known as FA translocase or scavenger receptor class B2 [81]. CD36 is
localized in cellular lipid rafts. The FA moves through the bilayer membrane from the outer to
the inner leaflet by a flip-flop process in order to be metabolized. CD36 facilitates the transport
of long carbon chain FAs such as docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic
acid (EPA, C20:5) through the plasma membrane [49]. CD36 is expressed in various cells,
including breast and eye epithelial cells, endothelial cells, enterocytes, insulin-responsive
cells, and hematopoietic cells such as platelets, monocytes, and macrophages [81–83]. The
expression of CD36 is associated with the regulation of lipid metabolism and innate immunity.
CD36 is involved in tissue inflammation, intestinal fat absorption, lipid storage in adipocytes,
and diseases such as obesity, Alzheimer’s, or diabetes [84,85].

2.3. Non-Glyceride Lipids and Lipoproteins

Ceramides are essential constituents of the plasma membrane. They regulate cell
signaling, proliferation, differentiation, and apoptosis [86,87]. Ceramides belong to the
sphingolipid family, which is based on sphingosine (fatty alcohol containing an ethylenic
bond and an 18-carbon chain) linked to a long-chain FA [88,89]. Ceramides can be produced
in the endoplasmic reticulum from a palmitoyl CoA molecule or be recycled in the lysosome
via the hydrolysis of glycosphingolipids or sphingomyelin by sphingomyelinase. In parallel
to ceramides, sphingosine-1-P (S1P) has gained increasing attention. S1P is produced
after ceramidases produce sphingosine from ceramides [90]. Sphingosine is then used by
sphingosine kinases (SphK1, SphK2) to form S1P. S1P is a class of bioactive lipids acting
both as intracellular and extracellular mediators. S1P regulates several cellular processes
involved in cell cycles, apoptosis as well as invasion, migration, and resistance to cancer
therapy [91–93]. S1P can also be used as a biomarker of diseases such as Alzheimer’s [94].

Beyond phospholipids, fatty acids, and their derivatives, cholesterol is a major part of
the lipid composition of mammals [95]. Cholesterol is an important lipid involved in the
regulation of membrane fluidity and serves as a precursor for steroid hormones synthesis.
This steroid can be obtained through diet or synthesized de novo in the intestine and
mostly in the liver. 3-Hydroxy-3-methylglutaryl(HMG)-CoA reductase has been identified
as a key enzyme in de novo cholesterol synthesis [96]. The activity of this enzyme can be
inhibited by a class of pharmacological inhibitors called statins. As cholesterol is a seminal
compound of membranes throughout the body, a complex system regulates its transport
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from the liver to the peripheral tissue and back [97]. In brief, low-density lipoproteins (LDL)
are loaded in the liver with cholesterol and other lipids (FA) that are mainly transported as
triglycerides and phospholipids. LDL then distributes lipids to the peripheral tissue. In
parallel to LDL, high-density lipoproteins (HDL) take up lipids, mainly cholesterol, from
the peripheral tissue and transport them back to the liver for recycling or elimination. This
cycle appears to be highly regulated, and its dysfunction results in atherosclerosis and
systemic inflammation [97].

3. Dysregulated Lipids and Their Metabolism during Lung Fibrosis

In recent years, altered lipid metabolism has been confirmed in pulmonary fibrosis as
well as in other lung-related conditions, including ARDS [45,98]. Evidence of dysregulated
expression of proteins linked to lipid metabolism during lung fibrosis have been compiled in
Table 1. Unbiased transcriptomic approaches in tissue from patients with IPF identified key
alterations in genes involved in lipid metabolism and regulation [20,22,45]. Using single-cell
RNA sequencing on pulmonary cells derived from patients with IPF, an enrichment of gene
ontology terms linked to lipids has been shown in tissue-resident alveolar macrophages [20].
As mentioned above, ABCA3 is a seminal transporter involved in lipid secretion and thus
surfactant homeostasis (Figure 1). In ATII cells, the expression of genes involved in lipid
transport such as ABCA3 is decreased during IPF [99]. Among genetic interstitial lung
diseases (ILDs), more than 200 mutations have already been described in ABCA3, located
on chromosome 16. Patients present heterogeneous phenotypes, from lethal neonatal
respiratory distress syndrome to childhood and rarely adult interstitial lung disease [100].
The same observation regarding Abca3 has been made in mice subjected to bleomycin, who
also displayed decreased intracellular cholesterol, free fatty acids, and triglycerides [101].
Consistent with the link between senescent ATII and IPF, single-cell RNA sequencing
approaches in mice also revealed a disturbed lipid regulation by SREBPs in aged ATII,
together with increased cholesterol synthesis [102]. In fibroblasts, the deregulation of lipid
metabolism leads to the accumulation of pathological myofibroblasts [103].

Table 1. Lipid metabolism dysregulation during pulmonary fibrosis.

Proteins Associated with Lipid
Metabolism

Regulation in
Lung Fibrosis Evidence Disease/Model Cell Type(s) Reference

ATP Binding Cassette Subfamily
A Member 3 down scRNAseq patient, bleomycin

model ATII [99]

Sterol Regulatory Element
Binding Transcription Factor 2 up scRNAseq bleomycin model ATII, lipofibroblasts [102]

Peroxisome Proliferator Activated
Receptor Gamma down qPCR IPF lung tissue [103]

Elongation of Long Chain Fatty
Acids 6 down qPCR, IHC patient, bleomycin

model ATII [104]

Autotaxin up IHC, qPCR, ELISA patient, bleomycin
model

hyperplastic bronchiolar
and alveolar epithelium,
fibroblasts, macrophages

[105]

Arachidonate 5-Lipoxygenase up qPCR bleomycin model senescent cells [106]

Leukotriene C4 Synthase up qPCR bleomycin model senescent cells [106]

Prostaglandin D2 Synthase up qPCR bleomycin model senescent cells [106]

Prostaglandin-Endoperoxide
Synthase 2 up qPCR bleomycin model senescent cells [106]

Prostaglandin E Synthase up qPCR bleomycin model senescent cells [106]

Prostaglandin E Receptor 2 down western blot IPF fibroblasts [107]

Prostaglandin E Synthase down IHC IPF epithelial cells, fibroblasts [108]

Sphingosine-1-Phosphate Lyase 1 up IHC, western blot,
qPCR

patient, bleomycin
model

fibrotic tissue, fibroblasts,
PBMCs [109]
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Figure 1. Altered lipid metabolism during fibrosis contributes to the activation of alveolar ep-
ithelial cells. Under physiological conditions, the elongation enzyme ELOVL6 allows fatty acid
elongation and therefore promotes high intracellular stearic acid vs. palmitic acid. Stearic acid
interferes with pro-fibrotic TGF-β/Smad signaling (red inhibition arrow). In parallel, ATII cells
produce surfactant lipids (mainly PCs) which will be stocked in lamellar bodies and exported in
the extracellular milieu in an ABCA3-dependant mechanism. During pulmonary fibrosis, ELOVL6
expression is decreased, favoring the accumulation of palmitic acid. High intracellular palmitic acid
induces oxidative and ER stress, thus promoting TGF-β/Smad signaling and cell activation. This is
enhanced by the accumulation of cholesterol and its derivates during fibrosis, which activates the
expression of collagen and other ECM components. In addition, surfactant lipids accumulate within
the cell due to decreased expression of ABCA3 under fibrotic conditions. This also leads to impaired
surfactant formation in pulmonary fibrosis.

Beyond transcriptional studies focusing on the expression of metabolic pathways
linked to lipids, a growing body of literature has investigated the alteration of the lipids
themselves during fibrosis. It appears that phospholipid classes have a unique distribution
between the lung cells, with ATII mainly expressing PG and PC, alveolar macrophages
expressing PE, and bronchial epithelial cells expressing PI [110]. The comprehensive
profiling of the lung tissue collected on mice subjected to bleomycin highlighted significant
differences [111]. In comparison to the control tissue, the fibrotic samples were mainly
enriched in PC, PG, and cholesterol ester at D7 post-injury, with PC increasing from D7
to D21. Such lipid quantification was also applied in the bleomycin model together with
interventional approaches. In a paper investigating VEGF inhibitors as potent anti-fibrotic
in the bleomycin model, analysis of the mouse lung revealed increased lipids, such as PC
linked to long fatty acids (e.g., PC 36:4) following bleomycin exposure, which returned to
normal upon treatment with a VEGF inhibitor [112]. These variations were confirmed by
the analysis of genes and proteins involved in the metabolism of these specific lipid species.

In addition to unbiased lipidomics, several studies have highlighted the accumulation
of specific FAs, such as palmitic acid, during IPF [113]. FA modification is a central event in
lipid biogenesis. One possible modification is elongation, which determines lipid function



Cells 2022, 11, 1209 8 of 23

and metabolic activity. The role of ELOVL6 in pulmonary fibrosis has been of particular
interest because this enzyme is responsible for the conversion of palmitate (C16:0) into
stearate (C18:0). ELOVL6 is significantly downregulated in the lungs of patients with
IPF and in mice challenged with bleomycin [113]. In addition, stearic acid inhibits the
activation of fibroblasts with reduced TGF-β1-activated Smad signaling as well as ECM
and collagen production [114]. In parallel, Elovl6-deficient mice exhibit an altered FA
composition in the lung accompanied by a more severe fibrotic response upon bleomycin
exposure compared with wild-type littermates. In alveolar epithelial cells, the accumulation
of palmitic acid results in oxidative stress, subsequent TGF-β1 production, and apoptosis
(Figure 1). Consistently, it has been reported that a palmitic acid-enriched high-fat diet
increases mortality in mice subjected to bleomycin [113]. In this model, the increased
stress of the endoplasmic reticulum in alveolar epithelial cells has been observed, which
was dependent on the presence of the lipid receptor CD36. Nevertheless, the association
between increased levels of palmitic acid following a high-fat diet and increased mortality
after bleomycin remains not completely understood since fatty diets are also linked to
systemic inflammation.

Cellular stress is a common phenomenon observed during IPF, mainly in aberrantly
activated ATII cells [5]. Interestingly, stress such as ER or mitochondrial stress is also linked
to lipid metabolism disorders. Impaired mitochondria is a major hallmark of aberrantly
activated ATII during IPF. Mice harboring deletions for mitofusin proteins, orchestrating
mitochondria fusion and homeostasis, exhibit increased fibrosis after bleomycin exposure
compared with wild-type mice [115]. Mechanistically, mitofusin inhibition hampers phos-
pholipids, particularly PSs in ATII cells, showing the intimate relationship between cellular
stress and lipid metabolism. In ATII cells, the stress of the endoplasmic reticulum that
is induced during fibrosis promotes lipid production that is dependent on the stearoyl-
coenzyme A desaturase 1 enzyme [116]. In those cells, lipid production is necessary to
resolve endoplasmic reticulum stress. The pharmacological inhibition of this desaturase
exacerbates ER stress in epithelial cells and then potentializes fibrosis.

Cholesterol and related vesicular transport systems are major bioactive lipid species
that are dysregulated in many chronic lung diseases, including COPD or asthma [117,118].
The link between cholesterol and fibrosis is becoming progressively clearer. The develop-
ment of high-fat diet-induced hypercholesterolemia in ApoE null mice leads to systemic
inflammation and further lipid accumulation within the lung, causing subsequent fibro-
sis [119]. In vitro, the cholesterol derivatives 27- or 25-hydroxycholesterol induce α-SMA
and type I collagen expression in mesenchymal cells (Figure 1) [117,118]. In both studies,
blockade of the TGF-β signaling abolishes the activation properties of these derivatives. In
alveolar epithelial cells, the addition of HDL enhances proliferation and migration proper-
ties with the activation of AKT and ERK signaling pathways [120]. It should be noted that
HDL is a well-known system for the transport of cholesterol from the peripheral tissues
back to the liver.

4. Extracellular Lipids as Important Regulators of Fibrosis Progression

Apart from its crucial role in regulating the surface tension of the alveolar walls,
surfactant lipids also manage the interplay between ATII cells and the local immune
system. For example, specific PC and P-Glycerol entities are capable of modulating alveolar
macrophage polarization and function (Figure 2) [121,122]. Surfactant homeostasis and
lipid composition are often disturbed in pulmonary diseases [123].
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Figure 2. The role of extracellular lipids in the pathogenesis of pulmonary fibrosis. During pul-
monary fibrosis, (1) impaired secretion of the surfactant lipids, mainly phosphatydil-choline (PC)
promotes the accumulation of oxidized phospholipids, mainly oxidized-PC (OxPC). (2) PC are also
a source of lysophosphate acid (LPA) after processing by autotaxin, which is increased during fi-
brosis. (3) The accumulation of palmitic acid in alveolar epithelial cells results in major oxidative
stress and ultimately apoptosis. (4) Sphingosine-1-phosphate (S1P) accumulates in the extracellular
space and promotes the EMT of ATII cells. Further, (5) activated ATII cells produce large amount of
phosphatydil-glycerol. All these lipids contribute to the polarization of local macrophages towards a
profibrotic M2-phenotype or the activation of ATII cells. In addition, S1P has a supplemental role
in the activation of aberrant ATII cells. Altogether, cell activation turns fibroblasts into pathological
(myo)fibroblasts which (6) produce high levels of arachidonic acid derivatives with a high leukotriene
to prostaglandin ratio. Of note, (7) inflammation-primed fibroblasts also secrete extracellular vesicles
carrying prostaglandins. The increase in pulmonary lipids during fibrosis is linked to increased
circulating PC. In normal conditions, (8) lower levels of blood PC are likely to be found with in-
creased circulating HDL, and (9) arachidonic acid metabolism in fibroblasts results in leukotriene
overproduction. (10) ATII cells produce surfactant-forming lipids (mainly PCs) to participate in lung
surfactant homeostasis. Cell types (black) and lipids (light green) are labeled.

Lipid profiling applied to bronchoalveolar lavage fluid (BALF) in experimental ro-
dent models has uncovered significant alterations and the accumulation of lipids in the
extracellular space within the lung [111]. These lipids include a large range of classes, from
phospholipids to eicosanoids. In parallel, the role of oxidized lipids has emerged in many
chronic pulmonary diseases such as asthma or lung fibrosis [101,124]. Upon bleomycin
exposure, secreted oxidized PC can be measured in the BALF of mice [101]. Consequently,
lipid-loaded foam cells accumulate in the lungs of those mice, mainly in proximity to
ATII cells. The presence of these oxidized lipids seems to be crucial for fibrosis develop-
ment, seeing as oxidized PCs mitigated macrophage polarization toward an M2-phenotype
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(Figure 2). Intra-tracheal instillation of oxidized PCs in mice induces a severe fibrotic
response [101]. These data suggest that during pulmonary fibrosis (aberrantly activated),
ATII cells secrete altered and oxidized lipids into the lung, which drive a pro-fibrotic, M2-
type reprogramming of local macrophages, contributing to fibrogenesis. This highlights
the role of lipids in shaping the genetic program of the cells to further promote fibrosis.
This epithelial-macrophage crosstalk remains to be described, and the potential role of
fibroblasts in this impaired communication warrants further investigation.

Lysophosphatidic acid (LPA) is a major bioactive phospholipid acting via G protein-
coupled surface receptors, and it is involved in many illnesses, including cancer and
fibrosis [52,125,126]. LPA is increased in wild-type mice subjected to bleomycin compared
with non-treated mice [127]. LPA can be generated by autotaxins, which are secreted hydro-
lases converting LPC into LPA (Figure 2) (see chapter 2, [128]). Autotaxin is overexpressed
in human IPF as well as after bleomycin exposure in rodents [105]. Autotaxin knock-out
in bronchial epithelial cells or macrophages consistently decreased collagen accumulation
in mice subjected to bleomycin. Mice lacking LPA receptor 1 exhibit a rapidly observable
default in alveolarization [129]. In alveolar epithelial MLE12 cells, the stabilization of the
LPA receptor 1 increases cell migration and ERK signaling (Figure 2) [130]. Furthermore,
the administration of an LPA antagonist consistently diminishes bleomycin-induced fibro-
sis by interfering with the activation of myofibroblasts [127]. LPA1 inhibitors are currently
being tested in patients with IPF (see chapter 6).

As mentioned above, arachidonic acid is a master fatty acid thanks to its ability to
serve as a precursor for complex lipid mediators such as prostaglandins and leukotrienes.
Those so-called eicosanoids seem to be mainly produced by immune cells and appear to
be important factors in structural cell activation and thus fibrosis development [52,131].
The production of these mediators seems to be dysregulated during lung fibrosis, mainly
resulting in enhanced synthesis of leukotrienes versus prostaglandin E(2), establishing
a pro-fibrotic environment (Figure 2) [78]. Whether dysregulated eicosanoid leads to
fibrosis development or the other way around seems still unclear. Tissue stiffness, a major
hallmark of fibrotic tissues, down-regulates COX-2 expression and therefore diminishes
prostaglandin production [108]. In parallel, Cox-2 repression appears to be controlled by a
number of mechanisms, including epigenetic and MAP3K8 signaling [132,133].

The role of leukotrienes as contributors to the development of fibrosis has been well
described. Mice overexpressing leukotriene C4 synthase had worsened pulmonary fibrosis
after bleomycin exposure compared with wild-type mice [134]. Inversely, leukotriene signal-
ing blockade using antagonist of the leukotriene receptor or genetic deletion of the enzyme
involved in their production (such as 5-lipoxygenase) attenuates bleomycin-induced fibro-
sis [135–137]. Further, the inhibition of leukotriene production impairs Smad-dependent
TGF-β signaling in fibroblasts [138]. Leukotrienes are pro-inflammatory molecules that are
part of the altered secretome of senescent cells observed during IPF [36,37]. In IPF, 50%
of cells expressing the principal enzyme of the leukotriene synthesis ALOX5 also express
the senescence marker p16 [106]. Conditioned media from radiation-induced senescent
fibroblasts triggers fibrosis pathways in fibroblasts, and this was abolished upon ALOX5
inhibition [106]. Interestingly, senescent fibroblasts isolated from the lungs of patients with
IPF aberrantly produce leukotrienes and no prostaglandins (Figure 2). This disbalance is
believed to be one of the mechanisms of fibrosis.

Mice with a genetic deletion of the prostaglandin synthase in hematopoietic cells
have increased fibrosis after bleomycin compared with normal mice [139]. This is in line
with the protective role of prostaglandins in pulmonary fibrosis, which is not completely
understood. In the bleomycin model, prostaglandin E2 supplementation starting at D14
post bleomycin did not impact fibrosis development nor increase fibrosis resolution in
the model [140]. However, mice that received prostaglandin E2 before the bleomycin
challenge developed less severe fibrosis, while mice lacking the prostaglandin E2 synthase
had fibrosis similar to their wild-type littermates [140,141]. This surprising result suggests
that prostaglandin may be beneficial during the model development and does not interfere
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with the mechanisms involved in disease progression. This is consistent with the regulation
of prostaglandin production by alveolar epithelial cells. Indeed, extracellular ATP can
trigger either prostaglandin or pro-inflammatory IL-6 secretion in those cells depending on
the activation or not of ionotropic P2X receptors [142]. Many studies support the idea that
prostaglandins have a role in fibroblast biology. Prostaglandins reduce the activation of
fibroblasts in myofibroblasts by decreasing their proliferation and inhibiting the production
of ECM components [143–146]. However, the biology behind prostaglandin production
and action remains to be fully understood. For instance, the transfer of prostaglandin E2
from epithelial cells or T-lymphocytes co-cultured together with fibroblasts diminishes
TGF-β1-triggered activation of the mesenchymal cells [147,148]. Altogether, these studies
identify prostaglandins as seminal mediators in inter-cellular crosstalk, showing how
alveolar epithelial cells and immune cells direct fibroblast activation. ILD fibroblasts can be
resistant to prostaglandin E2 [107]. In these cells, resistance to prostaglandins is explained
by the hypermethylation of the prostanoid E2 receptor, which can be restored using a
DNA methylation inhibitor [149]. Interestingly, patients with prostaglandin-resistant
fibroblasts are also patients with more altered lung function [107]. In parallel, IPF fibroblasts
also have nonfunctional COX-2 and therefore lack the ability to produce prostaglandins.
Impaired prostaglandin responsiveness also affects the protective role of the plasminogen
activation [150,151].

In addition to eicosanoids, other circulating lipids such as S1P have emerged as
important players in fibrosis development and progression in the lung and other or-
gans [52,90,152–154]. In patients with IPF, S1P is increased in the BALF or in the blood
compared with control patients or healthy subjects (Figure 2) [155]. The same observations
have been made in rodents exposed to bleomycin [156]. More importantly, the accumu-
lation of S1P in BALF correlates with lung function parameters in IPF. Mechanistically,
S1P enhances the reprogramming (EMT) of ATII cells induced by TGF-β1 (Figure 2). This
underlines that aberrantly activated ATII cells secrete extracellular bioactive lipids able
to enhance their trans-differentiation (EMT). Mice with a genetic deletion of the acid sph-
ingomyelinase, an enzyme required to produce ceramide and thus S1P, have reduced
pulmonary collagen after bleomycin compared to control mice [156]. Likewise, the S1P
lyase, an enzyme able to degrade S1P, is overexpressed in fibrotic tissues during IPF or after
bleomycin in mice [109,157]. The genetic deletion of S1P lyase in mice promotes fibrosis
while its overexpression in vitro counteracts TGF-β1-induced cell activation and activates
autophagy in fibroblasts. Consistently, the reduced expression of S1PL in PBMCs from
patients with IPF correlates with the severity of the disease in those patients [109]. S1P can
signal by binding to five surface G protein-coupled receptors, and many studies have inves-
tigated what occurs when there is a deficiency of these receptors. The adenovirus-mediated
inhibition of S1P receptor 3 in mouse lungs leads to reduced inflammatory cell infiltration,
histology change, and collagen accumulation in a model of radiation-induced pulmonary
fibrosis [158]. The expression of S1P receptor 3 is regulated by the microRNA-495-3p. In
alveolar epithelial cells, the microRNA-495-3p mimic decreases S1P receptor 3 and hampers
the activation of those cells [158]. In mice, the genetic deletion of the enzyme involved
in S1P generation, sphingosine kinase (SPHK)1, in fibroblasts or alveolar epithelial cells,
reduces bleomycin-induced fibrosis [159]. The pharmacological inhibition of SPHK1 re-
duces fibrosis in vivo. Mechanistically, SPHK1 inhibition counteracts the activation of YAP
signaling that is triggered by TGF-β1 or bleomycin exposure in fibroblasts or epithelial
cells in vitro [159]. In this study, disturbing SPHK1 expression in endothelial cells had no
effect. In parallel, invalidation of the S1P receptor 1 gene in endothelial cells resulted in
worsened fibrosis after bleomycin exposure [160]. Compared to controls, S1pr1-/- mice
have increased vascular permeability and immune cell influx within the lung as well as
coagulation activation. Interestingly, increased S1P/S1PR1 axis in ApoM overexpressing
transgenic mice did not reduce experimental fibrosis compared with normal mice [160].
S1pr2 null mice exhibited less inflammation and fibrosis upon bleomycin compared with
wild-type mice [161]. The pharmacological inhibition of the S1P receptor 2, using JTE-013,
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diminishes the activation of alveolar epithelial cells induced in vitro by TGF-β1 [161]. How-
ever, the use of a genetically engineered mouse model to track S1pr2 expressing cells shows
that this receptor is not limited to structural cells. Alveolar macrophages also express
this S1P receptor 2 during fibrosis [162]. The analysis of BALF cells from S1pr2-/- mice
subjected to bleomycin showed increased IL-13 signaling [162]. This finding is consistent
with the hypothesis that S1P receptor 2 engagement on macrophages promotes fibrosis by
polarizing those cells towards a pro-fibrotic M2 phenotype (Figure 2) [162,163].

Cellular communication is key in the onset and development of IPF. Several mech-
anisms of cell-to-cell crosstalk have been described in the disease, one of them being
extracellular vesicles (EVs) [5]. EVs, including exosomes, are membranous vesicles secreted
by all cells and act as transporters for molecules (also called cargoes) such as proteins,
nucleic acids, or lipids [163]. A growing body of literature shows that EVs are a key
component in the pathobiology of IPF. Those vesicles accumulate in the lungs of patients
with IPF [164], and they harbor specific cargoes of proteins and microRNA [164–169].
Mechanistically, fibrosis-derived EVs activate the mechanism of fibrosis, such as fibrob-
last proliferation and activation, by controlling developmental signaling such as Wnt or
TGF-β1 [164,167]. This seems to be highly dependent on the crosstalk driven by these
vesicles. Macrophage-derived EVs appear to have anti-fibrotic properties through the
transfer of specific microRNA to epithelial cells [170]. Vesicles secreted by bronchial epithe-
lial cells also transfer microRNA and hamper fibroblast activation and senescence [171].
The characterization of these vesicles, the crosstalk they mediate, and the understanding
of how cargos are packed into them could potentially lead to the identification of new
therapeutic targets in IPF. EVs carry different molecules, such as lipids, that participate
in disease mechanisms. These vesicles accumulate in the BALF of patients with asthma,
and significant lipidomic changes, mainly on ceramides and PG, have been observed in
EVs from asthmatics compared with healthy controls [172]. EVs isolated from asthmat-
ics transport not only specific lipids but also trigger leukotriene production in bronchial
epithelial cells, which demonstrates the close link between EVs and lipid dysregulation
during chronic lung diseases [173]. In IPF, EVs also carry a distinct cargo of microRNA
and proteins [165,174]. The analysis of the proteome of the IPF-EVs shows the presence of
proteins involved in lipid metabolism [165]. Furthermore, prostaglandins are found in EVs
from fibroblasts activated with IL-1β (Figure 2) [175]. This finding is consistent with the
hypothesis of paracrine signaling in which inflammation-primed fibroblasts secrete EVs to
communicate with and limit the activation of the surrounding mesenchymal cells.

5. Lipids and Pulmonary Fibrosis, The Hope for Potential Biomarkers

Patient heterogeneity and stratification remain a challenge in IPF. Over the last few
years, there has been an emphasis on this aspect in order to better classify patients. More
particularly, studies have investigated whether lipid profiling can be used as biomarkers
or prognostic tools in pulmonary fibrosis. Lipid transport has been identified as a key
component of the proteins identified in the BALF of a subset of patients with pulmonary
fibrosis [176]. At the circulating level, the quantification of HDL particles correlates in-
versely with IPF severity and prognosis (Figure 2) [177]. This supports data obtained
from larger cohorts such as in the MESA study, where high levels of HDL were associated
with lower fibrosis biomarkers (e.g., MMP7, SP-A) and fibrosis assessed by CT [178]. The
mechanism underlying this association remains to be fully elucidated, but it is known
that lipids obtained through diet and transported by circulating lipoproteins can influence
pulmonary surfactant composition [179,180].

Lipid profiling has been applied to plasma collected from patients with IPF. The
analysis of the lipid species found in plasma from IPF patients compared with control
patients identified a six-lipid signature, including triglycerides and PCs (Figure 2), that
could be used to differentiate samples from the two groups [181]. An in-depth lipidomic
analysis showed significantly increased triglycerides and PCs in patients with stable vs.
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rapidly progressing IPF [182]. In the progressor group, the enriched lipidomic networks
were the metabolism of linoleic acid, arachidonic acid, and glycerophospholipids.

Although these data from clinical trials are appealing, they need to be challenged
in larger and multi-centric cohorts before being potentially used in clinical practice. The
heterogeneity of patients diagnosed with IPF will probably represent a major bottleneck in
this quest to use a lipid signature to evaluate prognosis or disease progression. Indeed, IPF
is often diagnosed in an aged population that likely brings other conditions (and accom-
panying medication) on top of the disease itself. In particular, the challenge here would
come from patients with lipid-lowering drugs (statins, fibrates). Moreover, additional
research is needed to rule out the possibility of increased arachidonic acid metabolism due
to inflammation, which could be observed during episodes of acute IPF exacerbation.

6. Lipid-Focused Therapies

Lipids are essential components of cellular metabolism within all cells. Consequently,
several approaches focused on controlling cell metabolism, including lipid regulation,
have been investigated for their anti-fibrotic properties. Metformin, which is used clini-
cally in diabetes, can reverse pulmonary fibrosis after bleomycin administration [183]. In
IPF fibroblasts, metformin promotes lipid accumulation and metabolism with enhanced
PPAR-γ [11]. In parallel, reduced TGF-β1-mediated activation and collagen production
are observed in these cells after exposure to metformin, consistent with a myofibroblast
differentiation towards a lipofibroblast phenotype [11]. In addition to cell metabolism,
senescence is a major hallmark of IPF, and senolytic drugs are actively being studied as a
therapy for fibrotic disorders [5]. The senolytic drug quercetin has a beneficial effect on
bleomycin-induced pulmonary fibrosis in mice [184]. Interestingly, quercetin administra-
tion has been associated with a decreased S1P signaling in fibroblasts [184]. Another active
area of investigation is S1P signaling. Chemical antagonists of S1P receptor 2 have been
tested in mice exposed to bleomycin [185]. In this model, when compared to controls, the
S1P receptor 2 inhibition seemed to diminish fibrosis as effectively as the anti-fibrotic drug
pirfenidone [186].

As described above, increased levels of HDL are associated with less severe disease in
patients with IPF [177], suggesting that cholesterol accumulation may be detrimental. Over
the last decades, a growing number of cholesterol-lowering drugs have been developed,
statins being one of them. The administration of statins seems to have a beneficial effect on
bleomycin-induced lung fibrosis in rats [185]. This observation concurs with retrospective
studies assessing the effect of statins in patients with IPF [187,188].

Disturbed lipid and fatty acid levels appear to be a key component of fibrosis. Many
studies have therefore tried to correct the levels of lipids that decrease during fibrosis.
Supplementation with anti-oxidative lipids such as α-lipoic acid decreases fibrosis induced
by bleomycin [189]. The effect of the omega-3 fatty acid DHA has also been tested in
pre-clinical models. Compared with controls, mice subjected to bleomycin and receiving
the protectin DX (a DHA derivative) display reduced fibrosis with enhanced lung function
and a longer life span [190]. Protectin DX’s mechanistic ability to reverse fibrosis has been
observed, explaining the anti-fibrotic properties of the compound. In vitro, fibroblasts
cultured in the presence of the DHA derivative maresin 1 exhibit fewer activation markers
upon TGF-β exposure, in addition to decreased α-SMA expression, Smad signaling, and
ERK signaling [191]. In mice exposed to bleomycin, the local administration of DHA during
the early inflammation phase inhibits collagen accumulation [192]. DHA is associated with
decreased levels of eicosanoid production in this model.

Eicosanoid imbalance and further leukotriene production over prostaglandin is be-
lieved to be a dysregulated mechanism that has an important role in fibrosis progression.
Leukotriene inhibitors have already been assessed in pre-clinical models of pulmonary
fibrosis and were found to decrease fibrosis in mice when administered starting on D7 post
bleomycin exposure [193]. Similarly, agonists of the anti-inflammatory lipoxin receptors
inhibit collagen accumulation following bleomycin exposition [194].
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LPA is another extracellular bioactive lipid with pro-fibrotic activity. Pharmacological
inhibition of LPA or autotaxin, which produces LPA, is an active area of research. In the
bleomycin model, inhibitors of autotaxin or LAP receptors protect mice from fibrosis [195].
Thanks to encouraging data from pre-clinical models, autotaxin inhibitors are being tested
in patients with IPF [196].

Lipids can also serve as extracellular mediators that activate cellular signaling by
binding to surface receptors such as fatty acid receptor CD36. Recently, this receptor and
its inhibition have gained significant attention in the field of cancer as a potential strategy
to limit metastasis [197]. CD36 expression correlates with high EMT and poor prognosis
in patients with cancer [198]. Its function in lipid-mediated cell reprogramming (EMT)
and immune cell activation has led to the testing of CD36 inhibitors in clinical trials in
patients with cancer [199]. In silica-induced lung fibrosis in rats, lentivirus-based CD36
silencing diminished hydroxyproline content and other fibrosis-related markers compared
to controls [200]. The potential of CD36 inhibitors, while developed in cancer, remains to
be investigated in fibrosis

As discussed above, cellular communication is of major importance in IPF, and part of
this communication is mediated through EVs [201,202]. There is growing interest regarding
the use of EVs isolated from anti-inflammatory and anti-fibrotic mesenchymal stem cells as
a therapy for fibrotic disorders [203,204]. Such strategies have been employed in preclinical
models and seem to be efficient in reducing experimental lung fibrosis [203,205,206]. These
data exist, but more research is required to fully characterize these vesicles and develop
production methods for translational studies.

Nevertheless, numerous lipid-targeting strategies have been tested in patients with
IPF in line with these preclinical data. The autotoxin inhibitor GLPG190 was tested in a
phase 3 study in IPF but was stopped because the benefit-risk profile no longer supported
the continuation of the study (NCT03733444). Moreover, high-affinity LPA1 antagonists
were assessed vs placebo in a phase 2 study in patients with IPF and found to significantly
reduce FVC decline [207]. They are currently being tested in patients with IPF or progressive
fibrotic interstitial lung disease (ClinicalTrials.gov Identifier: NCT04308681). Other lipid-
targeting drugs are currently being tested in IPF, such as the PBI-4050 compound, which
completed an open-label phase 2 clinical trial in IPF [208,209]. PBI-4050 is known to
modulate the activity of G-protein coupled lipid receptors GPR40 and GPR84. This molecule
was tested alone or in combination with either pirfenidone or nintedanib. The published
results from this trial show no significant change in lung function (%FVC) from baseline to
three months in patients with PBI-4050 alone or PBI-4050 + nintedanib [208].
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