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Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and
dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these
incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field
can be assured if the prediction of a coal fire is carried out at an early stage.
Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was
selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations
were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used
because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO,
O2, N2, and temperature were used as input variables whereas fire intensity was considered as the output
variable.The simulation of the model is carried out using the Mamdani inference system and run by the
Fuzzy Logic Toolbox in MATLAB.
Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with
respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas
station points have a greater chance of causing spontaneous combustion and therefore require a pre-
cautional measure.
Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simul-
taneous application of many variables compared with Graham's index.
� 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the world is faced by energy challenges due to
overwhelming increase in population. Coal is one of the sources of
energy used in both the developed and the developing nations. For
instance, in Turkey's vision 2023, the capacity of coal power plants
projected an increase from 15 GW in 2015 to 30 GW in 2023. Coal
alone is expected to contribute about 25% of the electricity demand.
This shows that there will be an increase in coal consumption in
Turkey by the year 2023 [1].

Spontaneous combustion of coal is one of the factors which
cause direct or indirect gas and dust explosion, mine fire, the
release of toxic gases, loss of reserve, and loss of miners' life. The
carrying out of early assessment and prediction of spontaneous
combustion play a key role in combatting with these problems.
ity, Underground Mining Engineer
Danish).
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In coal mining sector, spontaneous combustion is a big problem
in both surface and underground mining. Coal low-temperature
oxidation is the basic cause of self-ignition and self-heating dur-
ing mining, storage, and transportation of coal [2]. Worldwide,
spontaneous combustion accounts for 75e90% of all underground
coal fire and 20% of underground metal mine fires [3]. In US, be-
tween the periods of 1990e1999, the estimated fire resulting from
the spontaneous combustion are as follows: at underground coal
mines 17% of the 87 fires were reported, whereas in surface coal
mines 10% of the 215 fires occurred. Similarly, in all coal operation
plants, 17% of the 91 fires are reported, and 17% of the 65 reported
fires were from surface of underground coal mines [4]. In China, it is
reported that 56% of all underground coal mines are likely to be
affected by spontaneous combustion [5] and approximately 90% of
mine fires are caused by spontaneous combustion. The issue of
mine fire which does result from coal spontaneous combustion is a
ing Department, Karte Mamorin, 5th Districts, Kabul, Afghanistan.
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Fig. 1. Location of AUCM and Adularya power plant.
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major problem in coal producing countries such as China, USA,
India, Australia, Germany, and so on [6]. For instance, in Germany,
the spontaneous combustion caused about 10 coal fires per year in
the Ruhr area [7] and 75% of the coal fire in Indian's coal mines [8].
Between 1990 and 2000, six events of spontaneous combustion
were reported in Karadon Colliery of Turkish Hardcoal Enterprise in
the Zonguldak Basin [9]. Hence, other Turkish coal mines are no
exception to this phenomenon.

Coal spontaneous combustion not only destroys coal reserve,
but also emits greenhouse gases and toxic gases to the environ-
ment. Physical hazard and poor air quality caused by coal fire and
coal mine fires increase the risk of community exposure to high
concentration of contaminants known as aerosolized particles [10].
In China, it is reported that, each year, 20 to 200 million tonnes of
CCO
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�
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coal were combusted through coal fires, which release about 1% of
global carbon dioxide [11]. In addition, it is reported that, in a year,
about 40 tonnes of mercury were released into the atmosphere
worldwide due to coal fire, and nearly, and 3% of global carbon
dioxide are said to be released by coal fires [12].

For ensuring safety, the prediction of spontaneous combustions
is very important. Since 1941, an estimated number of three
thousand miners lost their lives, and more than 100 thousand
miners were injured in different Turkish mines owing to the gas
explosion, mine collapse and mine fire [13].

Spontaneous combustion of coal is an inherent phenomenon in
coal mining and is considered as a natural hazard during mining.
Spontaneous combustion is a physical and chemical reaction
occurring when coal is exposed to oxygen. An increase in hydrogen,
carbon, moisture, and volatile matter, the existence of pyrite, the
existence of sulfur, and a decrease in ash content could catalyze the
cause of spontaneous combustion [14].

There are numerous methods used for early detection of spon-
taneous combustion in underground coal mines. These include the
fuzzy logic method [6,15], monitoring of concentration of gases
produced during spontaneous combustion [16e22], the electro-
magnetic radiation technique [23], temperature measurement
[24e26], numerical modeling [27e29], statistical analysis [30], the
gray model [31], the analytical method [32], remote sensing [33],
and the radon detection method [34]. Out of these, the most widely
used technique in initial prediction of spontaneous combustion and
fire status is the gas indices, such as oxides of carbon ratio (CO/CO2),
Willet's ratio, Jones and Trickett ratio, Graham's ratio, Young's ratio,
and so on. [35e37]. With the development of instruments for
taking gas samples, predicting of coal fires, and coal spontaneous
combustion by utilizing low-temperature hydrocarbons, such as
C2H6, C3H8, C2H2, C2H4, C/H ratio, and Litton ratio, early prediction
could be improved [2,35]. The main hydrocarbon ratios are shown
as follows:
where CC2H2
;CC2H4

;CC2H6
; and CC3H8

are the concentrations of C2H2,
C2H4, C2H6 and C3H8 gases respectively.

In this paper, the fuzzy logic method which is more accurate and
reliable technique in predicting spontaneous combustion and fire
monitoring is proposed. The fuzzy logic method is fast and there-
fore can alleviate the time consumption in decision making.

A lotof literatureshave reported someworks thathavebeendone
in this area. For instance Monjezi et al [38], reported a fuzzy logic
model for prediction of rock fragmentation due to blasting. Similarly
Razani et al [39], developed a fuzzy logic system for predicting the
rate of roof fall in underground coal mines. Toraño, et al [40] also
used a fuzzy logic system based on the virtual reality model
approach for the installation of longwall coal mines. In another
development,Muduli et al [6] proposeda fuzzy logicmodel basedon
online fire monitoring in underground coal mines, where temper-
ature, oxygen, carbon dioxide, and carbon monoxide were consid-
ered as input variables, but according to Turkish mining regulation,
measurement of carbon dioxide is not compulsory, and hence,
Adularya Underground Coal Mine (AUCM) does not carry out



Fig. 2. The location of sensors for measuring the gas samples and temperature.
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measurement of carbon dioxide. Grychowski et al [15] studied an
offline fuzzy logic model for monitoring of fire hazard in the un-
derground coal mine. He has also considered carbon dioxide as the
input variable, but the main factor temperature, which is increasing
during combustion and accelerates the spontaneous combustion of
coal and coalfire,was not considered.Meanwhile, the concentration
of oxygen was considered unreliable (21.25 and 21.09%) which is
higher than the normal concentration of oxygen in the air (20.95%).

Although all the methods have made certain success in predic-
tion of coal fire, fuzzy logic will be better because the high uncer-
tainty and nonlinearity conditions will be efficiently handled with
the linguistics variables. Fuzzy logic is based on the logic of
Table 1
The mean values of data for each gas monitoring station in AUCM in 2017

Gas stations Months Jan Feb Mar Apr M

Main intake O2 (%) 20.64 20.83 20.91 20.89 2
CO (ppm) 2.00 0.00 0.00 4.25
Temperature (oC) 0.68 4.30 9.85 12.41 1
N2 (%) 79.20 79.06 78.57 78.73 7

510 O2 (%) 20.96 20.60 20.83 20.82 2
CO (ppm) 0.77 3.24 1.88 1.74
Temperature (oC) 7.31 11.27 15.12 15.74 1
N2 (%) 78.94 79.29 79.11 79.11 7

1410 O2 (%) 20.46 20.62 20.97 20.98 2
CO (ppm) 4.00 0.00 0.00 0.00
Temperature (oC) 25.02 27.41 26.24 26.00 2
N2 (%) 79.49 79.33 78.93 78.89 7

1409 O2 (%) 20.82 20.75 20.91 20.86 2
CO (ppm) 1.41 2.82 2.82 4.63
Temperature (oC) 26.13 26.87 26.93 27.03 2
N2 (%) 77.99 78.89 78.68 78.70 7

610/2B O2 (%) 20.49 20.42 20.84 20.83 2
CO (ppm) 2.93 5.03 3.53 4.58
Temperature (oC) 27.31 28.06 27.11 26.90 2
N2 (%) 79.10 78.94 78.73 78.75 7

A06 O2 (%) 20.06 19.27 19.92 20.16 2
CO (ppm) 1.38 3.92 3.20 2.68
Temperature (oC) 26.27 25.84 26.60 26.69 2
N2 (%) 79.89 80.67 79.85 79.63 7

610 O2 (%) 20.90 20.85 20.88 20.17 2
CO (ppm) 3.65 0.00 0.00 0.00
Temperature (oC) 10.81 13.08 16.12 16.07 1
N2 (%) 78.62 78.67 78.48 79.4 7

Main return O2 (%) 20.33 19.78 20.23 20.18 2
CO (ppm) 0.00 2.06 6.31 0.00
Temperature (oC) 21.00 22.00 22.49 22.59 2
N2 (%) 79.57 80.12 79.66 79.79 7

D O2 (%) 20.88 20.88 20.83 20.82 2
CO (ppm) 0.00 0.00 0.00 0.00
Temperature (oC) 15.9 15.54 16.95 17.00 1
N2 (%) 79.04 79.09 79.11 79.09 7

D 210 O2 (%) 20.88 20.87 20.83 20.80 2
CO (ppm) 0.00 0.00 0.00 0.00
Temperature (oC) 13.27 13.02 14.46 15.00 1
N2 (%) 79.02 79.00 79.10 79.12 7

AUCM, Adularya Underground Coal Mine.
approximation and uncertainty to generate decisions from the
monitoring data. Fuzzy rules are extracted from expert opinion,
knowledge, and experience which shows uncertainty and ambi-
guity in the fuzzy system. In addition, uncertainties exist at the
measuring devices or monitoring sensors.

Fuzzy system is a nonlinear mapping of input data into output
using fuzzy logic. This mapping is carried out using the fuzzifica-
tion, fuzzy inference, and defuzzification. In addition, spontaneous
heating of coal is a complex process, and there exists a nonlinear
relationship between crossing point temperature and intrinsic
parameters.

Recently, theapplicationof the fuzzy logicmodelhasattracted the
attention of many researchers. In this study, the fuzzy inference
systemwasapplied todealwithhighuncertaintiesandnonlinearities
in predicting of spontaneous combustion of coal and coal fire.
2. Materials and methods

2.1. Material

AUCM is classified as a lignite coal mine, which is located at
Mihalıççık. Mihalıççık is a town that is at distance of 128 km from
the Eskişehir province, and 145 km from Ankara, the capital of
Turkey (Fig. 1). It covers an area of 40 km2 and produces 3.91
million tons of coal annually. Adularya power plant has been
established in 2007, under the supervision of Naksan Holding
Group with the capacity of 2 � 145 MW, and contributes about
ay Jun Jul Aug Sept Oct Nov Dec

0.82 20.94 21.15 21.15 20.77 20.80 20.93 20.84
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6.99 21.67 28.24 27.49 23.93 17.16 9.94 7.91
8.28 78.98 78.78 78.76 79.16 79.15 79.02 79.1

0.81 20.76 20.84 20.84 20.84 20.96 20.97 20.96
1.60 1.30 1.14 1.00 1.04 1.25 1.00 1.00
8.38 20.84 23.48 24.17 22.33 16.37 13.12 11.91
9.11 78.15 78.04 79.08 77.71 78.96 78.95 78.99

0.99 20.98 20.97 20.96 20.94 20.95 20.96 20.97
0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00
5.97 26.75 26.71 27.46 27.04 26.99 26.13 25.54
8.92 78.95 78.98 78.99 79.02 79.01 79.00 78.99

0.87 20.86 20.83 20.81 20.80 20.90 20.88 20.89
3.08 3.47 3.64 2.43 2.27 2.78 2.29 2.2
7.03 27.72 27.97 28.20 28.12 28.47 27.08 27.02
8.73 78.49 78.61 78.62 78.89 78.73 76.44 79.06

0.84 20.82 20.81 20.12 20.74 20.67 20.86 20.86
2.85 2.76 2.81 2.34 2.37 1.88 1.48 1.38
7.02 28.06 28.69 28.88 29.03 28.68 28.61 28.13
8.74 78.76 78.75 79.03 78.70 78.48 78.33 79.05

0.15 20.32 20.36 20.02 20.05 20.10 19.85 20.18
2.33 2.59 3.85 3.09 2.98 2.36 2.36 3.64
6.73 26.52 25.93 26.77 27.19 27.00 27.09 26.72
9.75 79.22 79.6 76.83 79.88 78.78 80.06 79.64

0.81 20.82 20.80 20.62 20.82 20.91 20.89 20.90
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8.36 19.88 20.42 20.59 19.86 17.74 16.16 15.54
8.77 78.59 78.50 78.97 78.09 78.70 78.83 78.57

0.16 20.17 20.51 20.35 20.27 20.29 20.29 20.46
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.56 24.39 24.73 24.96 24.45 22.79 22.20 23.05
5.61 79.70 79.43 79.58 79.65 79.64 79.62 79.47

0.76 20.64 20.60 20.64 20.76 20.95 20.64 20.45
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8.39 19.62 20.37 20.33 19.43 18.53 17.02 16.88
9.11 79.27 79.31 79.28 79.16 79.02 79.33 79.36

0.77 20.71 20.65 20.66 20.73 20.86 20.96 20.61
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6.53 18.09 19.02 19.75 19.00 17.44 15.89 15.01
9.15 79.19 79.24 79.31 79.24 79.11 79.01 79.30
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1.17% of Turkey's electricity supply. Adularya coal mine is divided
into three sections, A, D, and E. Currently, coal seammine is ongoing
at section A and has covered a length of 250 m of the working
surface. In section D, all development and preparation works are
ongoing with three Dosco Marks roadheaders for a new fully
mechanized longwall method. Adularya coal mine is a fully
mechanized coal mine, in which all actions from coal production in
themine and transportation to the power plant aremechanical. The
mining method is mechanized longwall, where mining residual
coals remain in the gob. These residual coals make the condition
suitable for spontaneous combustion. The ‘U’ type ventilation sys-
tem is applied to the working face, with volumetric air rate of 45.15
m3/sec and velocity of 2.11 m/sec.

Section E is not considered in this study. In this section, pro-
duction is not going on, because this section is too close to the
mined-out area. In this section, ventilation and water drainage are
carrying out; just production is not on going. In addition, the
development works have been made. This area has very much
reserve; therefore, in the future, this area will be mined with other
areas together.

Adularya coal mine works in three shifts with eight hours per
shift. Every hour, gas samples, temperature, and air velocity are
measured by sensors that are firmly situated on the side wall of the
gallery with supports of the gallery (Fig. 2). The measurement of
gas samples in section A is carried out at eight station points
namely, main intake, 510, 1410, 1409, 610/2B, 610, A06, and main
return, and two station points in section D namely, D and D210. In
this paper, the data collected for 2017 are used to determine
whether there is a threat of spontaneous combustion of coal and
mine fire in the area. The mean values of the data for each gas
monitoring station are listed in Table 1. Fig. 3 shows the gas
monitoring station points and the general ventilation system of
AUCM. In Fig. 3, the gas monitoring stations have the same moni-
toring sensors (temperature sensor, carbon monoxide sensor, ox-
ygen sensor, and air velocity sensor) for monitoring the mine
environment. They do not have any specific differences with
respect to monitoring, but they have different condition with
respect to safe and unsafe situation. The safe and unsafe situation of
monitoring stations with more details will be discussed in results
and discussion sections.
Fig. 3. The general ventilation system
According to Turkish underground mine's regulation, it is
compulsory to locate the sensors in main intake and in main return
air ways, like main intake and main return monitoring stations
(Fig. 3). In addition, in production areas, sensors must be located in
intake and return air ways, like 610/2B and A06monitoring stations
(Fig. 3). In the areas which are ventilating by auxiliary ventilation,
the sensors must be located in return air way, like 1409 and 1410
monitoring stations (Fig. 3).
2.2. Methods

2.2.1. Fuzzy inference system
The fuzzy inference system is a famous computing framework

based on the principles of fuzzy set theory, fuzzy ‘IF-THEN’ rules,
and fuzzy reasoning. The fuzzy system has been successfully
applied in various fields such as data classification, automatic
control, expert system, decision analysis, robotics, time series
prediction, and pattern recognition [41].

A fuzzy logic model consists of four components such as fuzzi-
fier, rules base, inference engine, and defuzzifier. The general
structure of a fuzzy logic model is shown in Fig. 4. Before describing
the fuzzy inference system, fuzzy set theory and crisp set theory
would be discussed.

2.2.2. Fuzzy and crisp set theory
A fuzzy set is a generalization of a classical set or is a set without

a crisp boundary and characterized by a characteristic function
between zero and one (m˛f0;1g). In addition, each element is
connected with a membership degree value and takes a member-
ship value between zero and one [42]. This shows its flexibility in
linguistic expressions, whereas in the crisp set each element takes a
membership value of zero or one (m˛f0;1g) (Yes, No condition). In
crisp set F, the membership or nonmembership of an element xis
represented by the characteristic functionmFof F , expressed by

mFðxÞ ¼
�
1 if x˛F
0 if x;F

(2)

In a fuzzy set P, with the input crisp set x is represented by the
membership function, defined by
and gas station points of AUCM.



Fig. 4. The general structure of a fuzzy logic model.
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P ¼ �
x;mpðxÞjx˛ F

�
(3)

where Fis universal discourse and mpðxÞis the membership function
for the fuzzy set P. The membership degree of xvariables which is
expressed as

mpðxÞ/½0;1� (4)

For example, if we consider a suffocated area with oxygen
concentration less than 10%, according to crisp set theory those
areas, which have above 10% oxygen concentration, will not be
counted as suffocated areas but in the fuzzy set each area will be
considered by their membership degree. If we assume area A with
20% oxygen concentration, area B with 15% oxygen concentration,
area C with 9.99% oxygen concentration, and area Dwith 5% oxygen
concentration, then, according to crisp set theory, area A and B will
be considered as appropriate, whereas area C with 0.01% difference
would be rejected. However, in the fuzzy set theory, area C with
membership degree between zero and one will be considered as
the appropriate area, and area D with membership degree of zero
will be rejected (Fig. 5).

To run a fuzzy logic model, Fuzzy Logic Toolbox in MATLAB was
used. For developing a fuzzy model, the first step is to introduce
input and output variables and give them linguistics values, and for
each linguistic value consider a membership function with their
ranges. The concentration of CO, O2, N2, and CO2 are commonly
used as indicators for early predicting of coal fires and coal spon-
taneous combustion [2]. In this study, CO, O2, N2, and temperature
Fig. 5. Fuzzy set (a) and crisp set (b).
are selected as input variables whereas fire intensity is an output
variable.

2.2.3. Fuzzy system components
Fuzzification: in fuzzy logic system, input can either be crisp or

fuzzy sets, but the outputs are always fuzzy sets [41]. When the
input is as crisp input sets, the fuzzifier is used for mapping the
crisp input sets to fuzzy input sets. In the fuzzification part, the
precise values are converted to imprecise values. In other words, for
each crisp input variable, given linguistic values, and linguistic
values characterized by their membership function, those variables
whose values are words rather than numbers are called linguistic
variables [43]. The temperature, CO, O2, N2 linguistic input vari-
ables, and fire intensity was considered as a linguistic output var-
iable. Table 2 shows the input and output variables, linguistic values
of variables, membership function, membership function's ranges,
and membership function shapes. Various shapes of membership
functions are used for presenting the linguistic values, such as
trapezoidal, Gaussian, bell curve, triangular, and sigmoid. The
trapezoidal shape of the membership function is used in this study,
and for all inputs and output, graphical trapezoidal membership
functions are illustrated in Fig. 6. The trapezoidal membership
function could be specified by four parameters fa; b; c; dg as
follows:

Trapezoidal ðx; a; b; c;dÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; x � a:
x� a
b� a

; a � x � b:

1; b � x � c:

d� x
d� c

; c � x � d:

0; d � x:

(5)

By using the MAX and MIN trapezoidal membership function is
specified as follows:

Trapezoidal ðx; a; b; c;dÞ ¼ MAX
�
MIN

�
x� a
b� a

;1;
d� x
d� c

�
;0

�
(6)

where a;b;c;and dare the parameters of membership functions on
the xcoordinate and x is the considered crisp input value.

2.2.4. Fuzzy conditional statement and inference engine
These two components of the fuzzy logic model work closely

together and constitute important modeling tools that are based on
the fuzzy logic set theory and known as the backbone of the fuzzy
logic system. The relationship between inputs and outputs are
described by ‘IF-THEN’ rules (Equation 8), and fuzzy conditional



Table 2
The input and output variables, linguistic values, membership function shape, range, and membership function parameters

Variables Linguistic values Membership function shape Ranges Membership function parameters

Input variables Nitrogen (N2) Low (L) Trapezoidal [0-85] [0, 0, 20, 30]
Moderate (M) Trapezoidal [20, 30, 50, 70]
High (H) Trapezoidal [50, 70, 85, 85]

Oxygen (O2) Low (L) Trapezoidal [0-20.95] [0, 0, 5, 8]
Moderate (M) Trapezoidal [5,8,14,18]
High (H) Trapezoidal [14, 18, 20.95, 20.95]

Temperature (T) Low (L) Trapezoidal [0-45] [0, 0, 10, 15]
Moderate (M) Trapezoidal [10,15,20,30]
High (H) Trapezoidal [20,30,45,45]

Carbon monoxide (CO) Low (L) Trapezoidal [0-0.006] [0, 0, 0.001, 0.002]
Moderate (M) Trapezoidal [0.001, 0.002, 0.004, 0.0045]
High (H) Trapezoidal [0.004, 0.0045, 0.006, 0.006]

Output variable Fire intensity (FI) Very low (VL) Trapezoidal [0-3] [0, 0, 0.2, 0.4]
Low (L) Trapezoidal [0.2, 0.4, 0.45, 0.5]
Moderate (M) Trapezoidal [0.45, 0.5, 0.75, 1]
High (H) Trapezoidal [0.75, 1, 1.5, 2]
Very high (VH) Trapezoidal [1.5, 2, 3, 3]

Fig. 6. The graphical trapezoidal shape membership function of fuzzy inputs; (a) nitrogen, (b) oxygen, (c) temperature, (d) carbon monoxide, and fuzzy output (e) fire intensity.
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Table 3
Some samples of the full version of fuzzy rules

R# IF-THEN rules

1 IF N2 is Low and O2 is Low and T is Low and
CO is High THEN FI is High

2 IF N2 is Low and O2 is Low and T is Low and
CO is Moderate THEN FI is Moderate

3 IF N2 is Low and O2 is Low and T isModerate
and CO is High THEN FI is Very high

4 IF N2 is Moderate and O2 is Low and T is Low
and CO is High THEN FI is Very high

5 IF N2 is Moderate and O2 is Low and T is Low
and CO is Moderate THEN FI is High

6 IF N2 is High and O2 is High and T is
Moderate and CO is High THEN FI is
Moderate

7 IF N2 is High and O2 is High and T is
Moderate and CO is Moderate THEN FI is
Low

FI, fire intensity.

Saf Health Work 2020;11:322e334328
statement consists of antecedent and consequence sections. Fuzzy
relations can be combined with various operators such as AND, OR,
and NOT which are called MIN, MAX, and complement operators,
respectively [41]. In this fuzzy model, the AND operator was used
for creating fuzzy relations which is expressed as follows:

mfiðxiÞ and mfj
�
xj
	 ¼ mfiðxiÞ I mfj

�
xj
	 ¼ MIN



mfiðxiÞ;mfj

�
xj
	�

(7)

where mfiðxiÞ and mfjðxjÞ are the membership functions of Fi and Fj
fuzzy sets, respectively.

Ri ¼ IFðX1is Ai1and X2is Ai2and::: and Xnis AinÞ THENðY is DiÞ
(8)

whereRi is a number of Rith rules, X1; X2; Xnare inputs, Y is the
output variable, Ai1; Ai2 Ainare inputs, and Diis the output linguistic
value. In the (Equation 8)
ðX1is Ai1and X2is Ai2and:::and Xnis AinÞandðYisDiÞare called ante-
cedents and consequence, respectively.

The fuzzy conditional statement and inference engine are also
called the fuzzy logic controller, in which the fuzzy engine pro-
cesses all fuzzy inputs by using the fuzzy logic theories based on the
sets of fuzzy ‘IF-THEN’ rules and creates fuzzy output sets, which
are used in decision making (Fig. 7). In this paper, for predicting the
coal fire with the fuzzy logic system, 81 ‘IF-THEN’ rules (Equation 8)
were created and are listed in Tables 3, 4.

2.2.5. Defuzzification
The nature of defuzzification operations is opposite to fuzzifi-

cation. As mentioned in section 2.2.3 fuzzy logic model inputs can
Fig. 7. Main structure of the fuzzy contro
either be fuzzy sets or crisp sets, but the outputs are always fuzzy
sets. To recognize the fire intensity, like other gas indices, the real
world for decision making needs a crisp value, as shown in the
general structure of the fuzzy logic model (Fig. 4); then, defuzzifi-
cation has to be carried out. There are different defuzzification
methods such as centroid of area (COA), bisector of area, mean of
maximum, smallest of maximum, and largest of maximum. Among
them, COA has been widely used in different applications [41]. In
this study, COA, which is a widely used defuzzificationmethod, was
used and expressed as follows:
ller system and defuzzification steps.



Table 4
Complete abbreviation form of fuzzy rules for predicting coal fire

R# Inputs Output R# Inputs Output R# Inputs Output

N2 O2 T CO FI N2 O2 T CO FI N2 O2 T CO FI

1 L L L H H 28 M L L H VH 55 H L L H H

2 L L L M M 29 M L L M H 56 H L L M M

3 L L L L L 30 M L L L M 57 H L L L L

4 L L M H VH 31 M L M H VH 58 H L M H VH

5 L L M M H 32 M L M M H 59 H L M M H

6 L L M L M 33 M L M L M 60 H L M L M

7 L L H H VH 34 M L H H VH 61 H L H H VH

8 L L H M VH 35 M L H M H 62 H L H M VH

9 L L H L M 36 M L H L M 63 H L H L M

10 L M L H M 37 M M L H H 64 H M L H H

11 L M L M L 38 M M L M L 65 H M L M L

12 L M L L VL 39 M M L L VL 66 H M L L VL

13 L M M H VH 40 M M M H H 67 H M M H M

14 L M M M H 41 M M M M M 68 H M M M L

15 L M M L M 42 M M M L L 69 H M M L VL

16 L M H H VH 43 M M H H VH 70 H M H H H

17 L M H M VH 44 M M H M H 71 H M H M M

18 L M H L M 45 M M H L H 72 H M H L L

19 L H L H H 46 M H L H H 73 H H L H M

20 L H L M M 47 M H L M L 74 H H L M L

21 L H L L VL 48 M H L L VL 75 H H L L VL

22 L H M H M 49 M H M H M 76 H H M H M

23 L H M M L 50 M H M M L 77 H H M M L

24 L H M L VL 51 M H M L VL 78 H H M L VL

25 L H H H VH 52 M H H H M 79 H H H H H

26 L H H M H 53 M H H M M 80 H H H M M

27 L H H L M 54 M H H L L 81 H H H L L

Note: VL: very low, L: low, M: moderate, H: high, VH: very high.
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zCOA ¼

Z
z

mAðzÞz dz
Z
z

mAðzÞ dz
; (9)

where mAðzÞ is the aggregatedmembership function of output fuzzy
setA, zCOA is the crisp value.

In general, there are three commonly used fuzzy inference
systems in the various application based on linguistic rules, such as
Mamdani systems, Sugeno or Takagi, Sugeno and Kang (TSK)
models, and Tsukamoto models [44]. The differences between the
aforementioned fuzzy inference systems are in the consequents of
their fuzzy rules, aggregation, and defuzzification. Thus, the result,
after defuzzification in Mamdani system, has been given as a crisp
output whereas in the TSK model the result is given as the poly-
nomial function. For more clarification, typical fuzzy rules for
Mamdani fuzzy system and TSK fuzzy system are given as follows:

Mamdani : IF X1is A
k
i1and X2is A

k
i2 THEN Ykis Dk

i (10)

for k ¼ 1;2;3; ::::; r

whereAk
i1and Ak

i2are fuzzy sets in the kth antecedent and Dk
i is the

fuzzy set in the kth consequent.
TSK : IF X1is Ai1and X2is Ai2THEN Y is Y ¼ f ða;bÞ (11)

where Ai1and Ai2are fuzzy sets in the antecedent and Y ¼ f ða; bÞ is
a crisp function in the consequent.

Consequently, for prediction of the coal fire in this work,
Mamdani fuzzy inference system [45] is used because of its easi-
ness to interpret and well accepted for human input.

Muduli et al [6] proposed a fuzzy logic model based on online
fire monitoring in underground coal mines, where temperature,
oxygen, carbon dioxide, and carbon monoxide were considered as
input variables, and Grychowski et al [15] studied an offline fuzzy
logic model for monitoring of fire hazard in the underground coal
mine. He has also considered oxygen, carbon dioxide, and carbon
monoxide as input variables, but the main factor temperature,
which is increasing during combustion and accelerates the spon-
taneous combustion of coal and coal fire, was not considered.
Meanwhile, the concentration of oxygen was considered unreliable
(21.25 and 21.09%) which is higher than the normal concentration
of oxygen in the air (20.95%). The differences of these studies and
our study are in input variables, fuzzy rule base, and analyzed data.

In the fuzzy logic model suggested here, oxygen, carbon mon-
oxide, temperature, and nitrogen were considered as input vari-
ables whereas fire intensity considered as an output variable.
According to Turkish mine's regulation, measurement of carbon
dioxide is not compulsory, and hence, AUCM does not carry out
measurement of carbon dioxide. In this paper, we have generated
81 'IF-THEN' rules which are called as a backbone of the fuzzy logic



Table 5
Rating of fire intensity using Graham's ratio

Graham's ratio Status

£ 0.4 Indicates normal status

0.5 Indicates necessity for a thorough check-
up

>0.5 < 1 Indicates heating almost certain

>1 < 2 Indicates heating in an advanced stage

>3 Indicates active fire

‡7 Indicates blazing fire
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system which differ from other works. On the another hand, the
membership function shape, range, and membership function pa-
rameters differ from existing researches. In addition, Muduli's et al
[6] work was validated by statistical test, and ours was validated by
Graham's index.

2.2.6. Fire ratios
Prediction of spontaneous combustion of coal based on the gas

monitoring data is conducted using different gas indices. For pre-
dicting of spontaneous combustion, in underground coal mines,
some important gas ratios proposed by different researchers such
as oxides of carbon ratio (CO/CO2), Willet's ratio, Jones and Trickett
ratio, Graham's ratio, Young's ratio, dry ash-free oxygen index,
desorbed hydrocarbon index, and (N2/(CO þ CO2)) ratio.

Consequently, all the aforementioned fire indices have their
own advantages, disadvantages, and limitation. The area in un-
derground coal mines based on gas sampling is divided into two
groups (1) ventilated areas and (2) sealed off areas. However,
because the evaluation of gases which are taken from behind seals
differs from the analysis of gases which are taken from the venti-
lated air, the fire ratios should be considered into two groups: (1)
fire ratios for ventilated areas and (2) fire ratios for the sealed-off
area [36]. Hence, Graham's ratio, CO/CO2 ratio, Jones and Trickett's
ratio, and so on are used for analyzing the ventilated areas, and
desorbed hydrocarbon index, dry ash-free oxygen index, N2/
(CO þ CO2) index, CO/CO2 ratio, and so on are used for sealed off
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Fig. 8. Value of fuzzy model for each
area analysis. Asmentioned in section 1 according toTurkishmine's
regulation, measurement of carbon dioxide is not compulsory;
therefore, Graham's ratio was used. Advantages of Graham's ratio
include the following: (1)it is used as an index for detecting the
status of the fire in the early stage and in the development stages
because of spontaneous combustion in underground coal mines, (2)
it is widely accepted because of the availability of CO field sensor as
a comparison to CO2 sensor, (3) it does not involve carbon dioxide,
and (4) can be used for ventilated areas. Owing to these advantages,
Graham's ratio was selected for validation of fuzzy logic simulation.

2.2.6.1. Graham's ratio (GR). Graham's ratio which is widely used as
an index for detecting the status of the fire in early stages as well as
in development stages due to spontaneous combustion in under-
ground coal mines [35,36]. This ratio is also named as Graham in-
dex and carbon monoxide index, and stated as carbon monoxide/
oxygen deficiency, which means the release of carbon monoxide
due to heating or spontaneous combustion causes oxygen con-
sumption. The rating of fire intensity by Graham's ratio is shown in
Table 5. This ratio is generally expressed as a percentage and is
calculated by the following equation:

GR ¼ 100� CO
ð0:265� N2 � O2Þ

(12)

where N2, O2, and CO are the percentage of gas samples taken at
any time and from anywhere in underground coal mines.

3. Results

As stated earlier, spontaneous combustion causes fire in un-
derground coal mines, and various methods are used for detection
and forecasting of coal fire in underground coal mines. During
spontaneous combustion process, some gases are produced, and
the detection of coal fire can be carried out by gas indicators, such
as CO, CO2, N2, CH4,and so on. As a result, many fire ratios are used
to forecast and assess the fire status in underground coal mines.
The most widely used fire ratios are oxides of carbon ratio (CO/
CO2), Willet's ratio, Jones and Trickett ratio, Graham's ratio, Young's
7 8 9 10 11 12
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gas monitoring station in AUCM.
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ratio, dry ash-free oxygen index, desorbed hydrocarbon index, and
(N2/(CO þ CO2)) ratio. Among them, Graham's ratio, because of its
easiness to interpret, can be used for early detection and advanced
fire stages, as it does not involve carbon dioxide and can be used for
both ventilated areas and sealed-off areas, is more accepted, and is
widely used as a fire ratio (Equation 12). During spontaneous
combustion of coal, the increase in temperature increases the
production of gases with the consumption of oxygen in under-
ground coal mines. The most determinant parameters for predic-
tion of coal fire are oxygen, CO, CO2, N2, and temperature in
underground coal mines.

Prediction of coal fire in AUCMwith the fuzzymodel was carried
out for each gas station, and the results are shown in Fig. 8. Fig. 8
shows considerable values for 1409 and 610/2B gas station
points; 1409 gas station is in under development gallery. 610/2B gas
station point is near to working face and in the middle of drift
which is mined into the coal seam and is parallel to the mine gob. In
underground coal mines, when a coal seam is beingmined, residual
coals in the gob are subjected to low-temperature oxidation on
exposure to air leakage of ventilation system, which may result in
the ignition of residual coals. As a result, the longwall gob area is
the main place for spontaneous combustion in AUCM which is in
line with the result reported by Taraba andMichalec [46]. However,
attention should be paid to these two points which is suspected for
Fig. 10. Main structure of simulation mod
future spontaneous combustion, and therefore, precautionary ac-
tion has to be taken. The result of fuzzy logic model for each gas
monitoring station shows that the value increases gradually from
main intake toward return airway. This result is in line with the
results reported in the literature [6]. Fig. 8 also shows that the
spontaneous combustion likely to increase seasonally; as shown in
June, July, August, September, and October, the values are higher
than those of othermonths. The value of themain intake gas station
point in July, August, and September shows an increase in the fuzzy
model (Fig. 8).

For validation of the fuzzy logic model, the result of the fuzzy
logic model was compared with Graham's index result (Fig. 9).
Fig. 9 shows that the values of Graham index increased at 1409 and
610/2B stations as well. Graham's index remains unchanged
seasonally, but shows a high increase at 1409 and 1410 stations in
July and September, respectively. In Fig. 9, if we decrease the value
of 1409 monitoring station in month seven and value of 1410
monitoring station in month nine, the other monitoring station
values will appear.
4. Discussion

AUCMwas selected as a case study to assess whether is prone to
coal fire or not. The data were collected from 10 gas monitoring
el with four inputs and one output.



Fig. 11. Interpretation of fire intensity based on graphical fuzzy rules with various combination of inputs; (a) oxygen and nitrogen, (b) oxygen and temperature, (c) oxygen and
carbon monoxide, (d) nitrogen and temperature, (e) nitrogen and carbon monoxide, (f) temperature and carbon monoxide.
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stations in AUCM colliery in whole 2017 as shown in Table 1. In this
study, a fuzzy logic model is proposed for predicting and assessing
the fire status in AUCM. In the fuzzy logic model suggested here, N2,
O2, CO, and temperature were used as inputs variables, and fire
intensity was used as an output variable (Fig. 10). In simulating the
fuzzy logic model, Fuzzy Logic Toolbox in MATLAB R2017a on a
system with an Intel core i7-4500U, 1.80GHz CPU, and 16GB RAM
running on Microsoft Windows 8.1Pro platform was used. As
mentioned in section 2.2.1, the fuzzy logic system consist of four
components; fuzzification, rule base, inference engine, and defuz-
zification. In the fuzzification step, crisp values which were intro-
duced as inputs were converted to fuzzy inputs by giving them
Table 6
Rating of fire intensity with record to the fuzzy model

Fuzzy model Comments

<0.3 Indicates normal status

‡0.3 < 0.48 Indicates certain heating

‡0.48 < 0.88 Indicates heating in an advanced stage

‡0.88 < 1.8 Indicates active fire

‡1.8 £ 3 Indicates blazing fire
linguistic values (Table 2) and trapezoidal shape membership
functions (Fig. 6). In rule base step, by using Equation 8, 81 ‘IF-
THEN’ rules were generated based on knowledge expert as shown
in Table 4. For the case of the inference engine step, it is based on
created rules which generated fuzzy output sets using Mamdani
fuzzy inference system (Equation 10) and is awidely used inference
system. The defuzzification step is done to obtain a crisp value for
interpreting the fire status, like other fire indices, and fuzzy output
defuzzified to crisp output by using the COA method (Equation 9).

As shown in Fig. 8, 1409 and 610/2B gas monitoring station
points show considerable values. 1409 gas monitoring station is in
the under development gallery; therefore, the air is polluted and
the temperature is high because of the series of ventilation system
and working of machines. The fresh air comes from the main intake
airway, passes through 510, 1410 serially, and then ventilates 1409,
but the main result for spontaneous combustion of coal is the
intersection of two galleries (Fig. 3, point 12). The thickness of the
pillar in this point is less, and owing to overburden pressure, cracks
and fractures are formed; therefore, this phenomenon leads to air
leakage into pillar, and in addition, mine air circulates the shortest
way through formed cracks and fractures into pillar to ventilate
next galleries and accelerate spontaneous combustion process in
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this gallery as a result. 610/2B gas monitoring station point is the
most dangerous point in AUCM till now because the cross section of
gallery is shrinking, and cracks and fractures are being formed
because of overburden pressure. Therefore, when the crosscut of
gallery is decreased, the air pressure goes up and air leakage
occurred into the mine gob through cracks and fractures accelerate
the spontaneous combustion phenomenon into the gob area. Fig.10
also shows an increase for main intake gas in July, August, and
September. Hence, it shows that the fuzzy model might be affected
by increasing the air temperature in these months.

Fig. 11 shows, the fire intensity and accuracy of fuzzy rules with
respect to various combinations of input variables. In Fig. 11a, the
label shows if oxygen concentration is 3.3% and nitrogen concen-
tration is 13.4%, then, the fire intensity is 1.3. In Fig. 11c, the label
shows, if oxygen concentration is 0% and CO is 0.0015%, then, the
fire intensity is 1.9. In addition, in Fig. 11d, the label shows, if ni-
trogen concentration is 0% and temperature is 26 0C, the fire in-
tensity is 2. The rating of fire intensity for this fuzzymodel is shown
in Table 6. Assessing of fire intensity with a build-up fuzzy model is
easy and time saving with respect to analyzing many variables
simultaneously just by entering variable values in the input part,
Fig. 7.

The values of Graham index increased at 1409 and 610/2B sta-
tions the same as those of the fuzzy logicmodel (Fig. 9). The value of
Graham's index remains unchanged seasonally whereas the fuzzy
logic model shows seasonally change. The increase of Graham's
index value at 1409 and 1410 stations in July and September,
respectively, caused by the carbon monoxide gas which released as
a result of blasting works are realized in these galleries in July and
September.
5. Conclusion

In this paper, a fuzzy logic model was developed for predicting
the coal fire in AUCM as a case study area. The data was collected
from AUCM at ten gas monitoring stations by sensors in the whole
year of 2017. For predicting of coal fire, CO, O2, N2, and temperature
were used as input variables and fire intensity as the output vari-
able. In the fuzzy model, Mamdani inference system was used and
ran Fuzzy Logic Toolbox in MATLAB environment for simulation.
The results showed that the fuzzy logic system is more reliable for
decision making of fire intensity with respect to uncertainties and
nonlinearities of data. From the results, the 1409 and 610/2B gas
monitoring station points are suspected areas for spontaneous
combustion, and precautionary works have to be carried out. For
validation of the fuzzy logic model, Graham's index was used and
showed that the fuzzy model can assess fire intensity with many
variables at the same time and produce a reasonable result.

Graham's index includes carbon monoxide and oxygen defi-
ciency as variables whereas in the fuzzy logic system we have
considered oxygen, carbonmonoxide, temperature, and nitrogen as
input variables. In addition, in the fuzzy logic system we can add
more input variables which effect on coal fire such as relative hu-
midity or other hydrocarbons. Rating of fire intensity by Graham's
index is difficult because it has some gob (for example, between
two and three what will happen), but in the fuzzy logic method this
gob is eliminated by membership function. Fuzzy logic is fast and,
therefore, can alleviate the time consumption in decision making.
In addition, the fuzzy logic system should be incorporated to sen-
sors for the design of an efficient and reliable online monitoring
system for underground coal mines. The fuzzy logic model shows
higher probability in predicting fire intensity with the simulta-
neous application of many variables compared with Graham's
index.
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