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Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can
seriously affect the environment, animals, and human health. Hg has the capacity to
biomagnify in the food chain. That fact can lead to pathologies, of those which affect the
central nervous system being the most severe. It is convenient to know the biological
environmental indicators that alert of the effects of Hg contamination as well as the
biological mechanisms that can help in its remediation. To contribute to this knowledge,
this study conducted comparative analysis by the use of Shotgun metagenomics of
the microbial communities in rhizospheric soils and bulk soil of the mining region of
Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world
The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The
most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria
and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms
belonging to the phylum Proteobacteria were abundant, evidencing that roots have a
selective effect on the rhizospheric communities. In order to analyze possible indicators
of biological contamination, a functional potential analysis was performed. The results
point to a co-selection of the mechanisms of resistance to Hg and the mechanisms
of resistance to antibiotics or other toxic compounds in environments contaminated
by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human
clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests
that these environments can behave as reservoirs. The sequences involved in Hg
resistance (operon mer and efflux pumps) have a similar abundance in both soil types.
However, the response to abiotic stress (salinity, desiccation, and contaminants) is
more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and
metabolism and plant growth promotion (PGP genes) were identified, with higher relative
abundances in rhizospheric soils. These findings can be the starting point for the
targeted search for microorganisms suitable for further use in bioremediation processes
in Hg-contaminated environments.
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INTRODUCTION

Mercury (Hg) is a highly toxic element that severely affects
ecosystems (Hsu-Kim et al., 2018; Liu et al., 2018). It has the
capacity to enter and biomagnify in the food chain and therefore
affects human health even at low concentrations (Bjørklund
et al., 2019). The accumulation of Hg can lead to pathologies,
with those affecting the central nervous system being the most
serious, such as Minamata syndrome (Gil-Hernández et al., 2020;
Marumoto et al., 2020). The presence of Hg in various ecosystems
is widely described. Exceptionally, environments with extremely
high concentrations of this heavy metal have been described,
such as those detected in the Almadén mercury mining region
(> 8889 µg/g) (US Environmental Protection Agency, 2011).

The presence of Hg in soils conditions the development of
organisms that inhabit it, with bacterial communities being one of
the most vulnerable groups. Some of the bacterial species capable
of resisting the presence of this pollutant could be suitable in
processes of remediating affected soils, this is why there is a
growing scientific interest in knowing the composition of these
Hg-tolerant edaphic communities (Zhao et al., 2021). There are
several references to the usefulness of these techniques in soil
samples (Li et al., 2018; Westmann et al., 2018; Castillo Villamizar
et al., 2019; Nelkner et al., 2019) and, in particular, in soils
contaminated with different toxins (Garrido-Sanz et al., 2018;
Kumar et al., 2018; Thomas et al., 2019).

Metagenomics consist of the complete study of genetic
material extracted from a sample. Various metagenomic methods
based on either DNA amplification and sequencing or DNA
fragmentation and alignment are currently available (Giagnoni
et al., 2018). One of the main metagenomic techniques,
based on sequencing, is the creation of genetic libraries.
The bioinformatic analysis of the data obtained allows us
to reconstruct the metabolism of the organisms that make
up the community and to predict their potential functional
roles in the ecosystem through the so-called “environmental
gene labels” (Youngblut et al., 2020). This field has also been
called environmental genomics, ecogenomics or community
genomics (Riesenfeld et al., 2004; Cordier et al., 2021). Methods
based on functional analysis of DNA libraries from the entire
microbial community of a particular medium can be a great
source for the discovery of new genes (Handelsman, 2004;
Douglas et al., 2020; Moon et al., 2020), study of unculturable
microorganisms (Handelsman, 2004; Tyson et al., 2004; Cycil
et al., 2020) and creation of genomic libraries (Enagbonma
et al., 2020). This approach has also been used successfully
in the study of antibiotic resistance in complex communities
(de Abreu et al., 2020).One of the most widely used methods
of study in metagenomics, and used in this work, is the
“Shotgun metagenomics” technique. It consists of purifying the
sample’s DNA and randomly fragmenting it into many small
sequences that align into consensus sequences. These sequences
are processed through analysis programs that allow taxonomic
and functional identification of the sample’s DNA. SUPER-
FOCUS is a bioinformatic tool which use the non-annotated
sequences to predict potential functional activity, this allows
study the whole metagenome as one unit and reveling the

functional potential profile of the whole community (Chacón-
Vargas et al., 2020; Collins et al., 2021).

To this end, this study aims to: (1) Find the taxonomic
proportion and composition of the microbiological community
of the soils of Almadén. (2) It seeks to provide an interpretation
of the ecological behavior of the community, analyzing its
functional potential information with SUPER-FOCUS.

MATERIALS AND METHODS

Study and Sampling Area
The samples analyzed came from the mining district of Almadén,
Ciudad Real (Spain), and were collected during the spring season
Specifically, the slope “S” of Cerro Buitrones was sampled from
the so-called “Plot 6” (38◦46′25.1′′N 4◦51′03.9′′W), described
by other authors in previous studies (Millán et al., 2007). The
concentration of Hg in this plot was 1710 mg/kg total Hg,
0.609 mg/kg soluble Hg and 7.3 mg/kg exchangeable Hg. Soil
samples for the metagenomic study were obtained from the
rhizosphere and bulk soil, together with plants described by
Robas et al. (2021a): Rumex induratus Boiss. and Reut., Rumex
bucephalophorus L., Avena sativa L., Medicago sativa L. and Vicia
benghalensis L. (Robas et al., 2021a).

Production of Soil
To obtain samples of rhizospheric soil (RS), the root of each plant
specimen was gently shaken in order to remove soil fractions that
were not tightly adhering to the root. The part of the soil attached
to the root was then carefully separated to make up 2 g per plant.
The five rhizospheric fractions were then combined into a single
sample, in order to obtain10 g of soil that was homogenized
for further metagenomic study. The 10 g of bulk soil (BS) was
obtained in the same way, by sampling 2 g of soil near each plant,
avoiding the rhizospheric fraction. Each sample was divided into
3 technical replicates for the metagenomic analysis.

Isolation of DNA
The DNA was purified by the “DNeasy Power Soil Pro
Kit” (Qiagen, United States) following the manufacturer’s
instructions. An enzyme lysis step with lysozyme was included
in order to obtain the highest and best amount of total bacterial
DNA. Purified DNA was quantified using PicoGreenTM
(Thermo Fisher Scientific, United States) from 40 pg. The genetic
libraries were constructed using mechanical fragmentation
and adaptors ligation by TruSeq (Illumina R©, United States)
methodology. The metagenome sequences obtained were
assembled using metaSPAdes tool (Nurk et al., 2017).

Metagenomic and Bioinformatics
Analysis
DNA isolated from BS and RS samples was used for metagenomic
analysis. These samples were processed and sequenced with
Shotgun using Illumina R© MiSeq desktop using the 2 × 250 bp
paired-end reagent V2 Kits (Illumina R©, United States) technology
with a standard quantification pattern. Bioinformatic analysis
and quality control were performed using the Fast QC tool
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(Andrews, 2017). Q-score was used to predict the probability of
an error in base-calling. Over 75% of bases > Q30 averaged across
the entire run was considered acceptable. Raw sequence reads
underwent quality trimming using Trimmomatic to remove
adaptor contaminants and low-quality reads (Li et al., 2010).

Taxonomic Analysis
The MetaPhlAn2 (Metagenomic Phylogenetic Analysis v2) tool
was used for taxonomic analysis (Segata et al., 2012; Truong
et al., 2015). This is a computational tool for profiling the
composition of microbial communities from metagenomic
shotgun sequencing data. MetaPhlAn relies on unique clade-
specific marker genes identified from∼17,000 reference genomes
(∼13,500 bacterial and archaeal, ∼3,500 viral, and ∼110
eukaryotic) to make taxonomic predictions. It was used bowtie2 –
bt2_ps “very-sensitive” preset parameters, –tax_lev “a” for
prediction of all taxonomic levels, “–min_cu_len 2000” for
minimum total nucleotide length for the markers in the clade,
and “–stat_q 0,1” for quantile value.

Functional Analysis
The SUPER–FOCUS tool (SUbsystems Profile by databasE
Reduction) was used for the functional potential analysis
of the data obtained by Shotgun metagenomics. FOCUS
uses a reference database to identify subsystems (predicted
protein groups with similar potential function) (Silva et al.,
2016). This tool reports functional annotation using CD-
HIT and with the SEED database, we reduced the references
of the data set (Overbeek et al., 2004; Aziz et al., 2012).
SUPER-FOCUS identifies the taxonomic profile of the data
and creates a database with the subsystems for predicted
organism. Metagenomic data was aligned against the
database using RAPSearch2 (Zhao et al., 2012). Sequences
with e-values ≤ 1e-5, a minimum identity of 60%, and an
alignment length ≥ 15 amino acids were retained. This database
categorizes information into three levels of detail: “level I” (large
functional potential groups), “level II” (families of potential
functional activities) and “level III” and SEED (specific potential
functional role and the protein to which the sequences belong)
(Silva et al., 2016).

Statistical Analysis
For the statistical analysis, SPSS v.27.0 program (Version 27.0
IBM Corp, Armonk, NY, United States) was used. In order to
evaluate the quality of the technical replicates in each soil a
Pearson correlation (r) of the percent genus abundances was
done. Simpson and Shannon diversity index were also calculated
with the relative abundances obtained from the taxonomical
analysis to assess the ecological richness between BS and RS.

RESULTS

In the metagenomic DNA extraction and sequencing of RS
and BS samples, were generated a total of 15,939,287 and
15,826,564 raw reads across the three technical replicates
respectively, maintaining the 98.1% (RS) and 95.3% (BS) of
the sequences after QC. The sequences were aligned and

analyzed in two steps, taxonomical identification and functional
annotation of the sequences. Species abundance between
technical replicates was highly correlated (all comparisons
r > 0.99 with Pearson correlation test). Processing a larger
number of samples would allow obtaining statistically
more complete information and reducing the limitation of
the results in subsequent studies. The following results are
presented divide by taxonomic identification and functional
potential analysis.

Taxonomic Identification
Taxonomic profile and relative abundances of the microbial
community in RS and RF was analyzed using MetaPhlAn2. The
identification of organisms is based on the assignment of the gene
pool to a taxon. Comparing the BS and RS samples, a difference
in abundance between viruses and bacteria was observed with an
apparent 21 and 79% relative abundance respectively in RS and a
2 and 98% relative abundance respectively in BS.

Figure 1 shows the relative abundances of different bacterial
groups. Examining the results obtained in BS, shows that the
most abundant group is Actinobacteria. However, the best
represented taxon in RS is Alpharoteobacteria. Acidobacteria and
Cyanobacteria only appear in BS, and Betaproteobacteria and
Gammaproteobacteria are only represented in RS.

Figure 2 shows the results of the relative abundances for
the species taxon. Both samples seem to have a high diversity
levels [Simpson’s diversity (D) and Shannon’s diversity (H)],
being RS diversity levels (DRS = 0.14, HRS = 9.18) higher
than BS (DBS = 0.4, HBS = 4.3). In RS, 73.42% of the genetic
material was identified, leaving 26.58% unidentified (Figure 2
and Supplementary Table 1). Similarly, in BS 38.87% were
identified. 61.13% of this DNA belongs to the various taxa
(Figure 2 and Supplementary Table 1).

The relative abundance of Kribbella sp. stands out in both
samples, having a greater representation in RS. Similarly, the
high representation of Pseudomonas sp. and Mesorhizobium
sp. in RS (Figure 2) stands out. Likewise, the presence of
strains of the genera Actinoplanes sp., Microcoleus sp. and
Propionibacterium sp. seems to be especially abundant in
BS (Figure 2).

Viral DNAs have been identified as Cyclovirus
NGChicken15/NGA/2009, with 18.88% representation in RS. Less
abundant in both samples was the mosaic Dasheen virus.

Potential Functional Analysis
The functional analysis with SUPER-FOCUS present three
levels (I-III) and predicted proteins (SEED) with the non-
annotated metagenome sequences that allows pool the sequences
by potential functional activity clusters. The two metagenomes
obtained were assembled using MetaSpades. A total of 813,375
and 676,195 contigs were obtained, respectively.

Functional Level I: Large Functional Potential Groups
In the analysis of level I (more general group of potential
functional activity), the sequences pooled on the same potential
functional activity were ordered according to their relative
abundance. In this way, the functional potential content of

Frontiers in Microbiology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 797444

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-797444 March 1, 2022 Time: 16:5 # 4

González et al. Metagenomic Study of Hg-Contaminated Soils

5.29

78.11

5.54
8.87

2.19

30.59
35.31

5.66
7.90

20.54

0

10

20

30

40

50

60

70

80

90

100

)
%(

se
nca

d
n
u
ba

e
vital e

R

BS

RS

FIGURE 1 | Comparative of the Relative abundances by taxonomic level of Class in BS (Pink - Bulk Soil) and RS (Green - Rhizospheric Soil). Data in the figure show
how the relative abundances of the diferent classes are further grouped according to their presence in RS or BS.

the samples was ranked, reflecting the abundance of the
different subsystems.

Were found 35 functional potential groups (Supplementary
Table 2). The most abundant subsystems are those which
seem to be related to basal metabolism and basic functions
for the survival of bacteria, such as the carbon cycle,
amino acid synthesis, and functional activities involved in
breathing, among others, while subsystems encompassing more
specific characteristics (such as virulence or photosynthesis) are
less represented.

It is interesting that the functional potential cluster
endowment of “stress response” presents 4.45% RS and
4.36% BS abundances. This functional potential group is among
the 10 most abundant, which indicates the high environmental
pressure suffered by bacteria in soils contaminated with Hg.

Functional Level II: Families of Potential Functional
Activities
At this level (Figure 3), the potential functional activities were
collected in a more concrete way, ordering them according to
their relative abundances by families of same potential functional
activities. Were found at this level 192 functional potential
clusters (Supplementary Table 3).

Some potential functional activities are especially relevant
and could allow for explaining the biological behavior of the
Hg-tolerant edaphic communities. The following activities stand
out (Figure 3): “Resistance to antibiotics and toxic compounds”
(3.03% RS and 2.96% BS), “ABC type conveyors” (1.88% RS and
1.85% BS) and “oxidative stress” (1.26% RS and 1.13% BS).

Functional Level III and SEED: Specific Potential
Functional Role and the Protein to Which Sequences
Belong
The third level identifies the potential functional role to which the
sequences under study belong, revealing the potential function
within the metabolism of the bacteria. On level III, 1,186
functional potential groups were found and 24,441 functional
potential annotations on SEED were done (Supplementary
Tables 4, 5).

The 35 most abundant subsystems belong to a division of
the subfamilies found in levels I and II. Furthermore, most of
the subfamilies of biological interest in this study seems to be
represented with lower relative abundance percentages.

At this level, there are several subsystems that group the
resistance to heavy metals and to Hg, in particular. Among
them we find various predicted proteins of the mer operon, Hg-
reductases and ABC-type transporters associated with resistance
to heavy metals.

Noteworthy is the large number of subsystems could be linked
to resistance to various antibiotics, including beta-lactamases,
predicted proteins regulating the BlaR1 family, various proteins
of multiple resistance systems, multiple resistance systems
linked to the MexAB-OprM and MexEF-OprN complex,
fluoroquinolone resistance, vancomycin resistance, mdtABCD
flow pump cluster and bacitracin stress response.

There are also subsystems involved in the biological cycle
of nitrogen (N). Particularly important are those linked
to the nitrogenase complex for atmospheric N fixation.
Likewise, the potential functional activities responsible for the
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FIGURE 2 | Comparative of the population relative abundances by taxonomic level of species in RS and BS. A pool of species could not be identifided with the
sequences present in the metagenome in both soil.

promotion of plant growth are represented as “production of
auxins,” “metabolism of ethylene,” “siderophore production,”
and “phosphate solubilization.” With a major relative
abundance in RS.

DISCUSSION

Taxonomic Discussion
In the soils analyzed, representatives of six taxonomic
phylum appear: Acidobacteria, Actinobacteria,
Cyanobacteria, Alphaproteobacteria, Betaproteobacteria,
and Gammaproteobacteria, whose analysis and discussion of the
findings are described below. The results obtained show how the
taxonomical diversity varies between bulk soil and rhizospheric
soil, being positive selected by the plant root those that have a
potential benefit to the plant, like proteobacteria group (Figure 1
and Table 1) (Moulin et al., 2001; Zai et al., 2021).

Acidobacteria
Acidobacteria are a phylum within the bacteria domain of
species ubiquitous in the soil (Kalam et al., 2020). In the
present study, the sample was identified up to the family taxon
Acidobacteriaceae (Table 1) (Foesel et al., 2016). In the same
way as in our results, the predilection of this bacterial group
for the bulk soil has also been described in comparison with
the rhizosphere (Kielak et al., 2016; Conradie and Jacobs, 2020).
Several authors have also discussed the potential of this bacterial
class for the degradation of various pollutants (Feng et al., 2021;
Gonçalves and Santana, 2021) and its potential biotechnological
application in Hg degradation (Vishnivetskaya et al., 2011;
McDaniel et al., 2020).

Actinobacteria
Actinobacteria are a phylum and class of Gram-positive bacteria
and are the group with the highest representation in BS and
the second most represented in RS. This taxon is particularly
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interesting because of its wide biotechnological potential. Most
antibiotics and many of the compounds used in the production of
medicines come from the species in this class (Hopwood, 2007).
There are recent studies of the relationship of these bacteria with
resistance to various heavy substances (Yun et al., 2020), among
which are the mer genes of resistance to Hg (Christakis et al.,
2021). In this manuscript, representatives have been found in
seven of the orders pertaining to this class (Table 1).

Two families and two species of the Propionibacteriales order
were identified. Propionibacterium acnes is first described as Hg
resistant as well as its presence in rhizospheric soils.

Kribbella sp. is linked to both types of soil. Its resistance to Hg
is not included in the scientific literature, although some authors
have described strains of this genus resistant to other heavy
metal divalent cations like Cu, Ni, and Cd (Chanda et al., 2017;
Rosenfeld et al., 2018). Other authors describe the capacity of

produce siderophores by some species (Acquah et al., 2020). The
presence of this bacteria in a Hg-contaminated soil and the data
found on the bibliography suggests postulating that species as
a good target to look for strains with possible biotechnological
potential for use in soil bioremediation.

Within the Geodermatophilales order, the
Geodermatophilaceae family present in both types of soils
was identified (Table 1). Although bacteria associated with
the rhizosphere of some plant species have been described in
the literature (Montero-Calasanz et al., 2017), it was found
with a greater abundance in BS in the present study. There
are references to some species in this family as resistant to
heavy metals (Kou et al., 2018), although no evidence of their
description as resistant to Hg has been found.

In the order of Microccocales, two families and two species
were detected (Table 1), Agromyces sp. and Cellulomonas sp.
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CLASS ORDER FAMILY SPECIES % RS % BS Ref Hg Ref RS PGPR N β-Lac

Acidobacteria Acidobacterial Acidobacteriaceae Species 0 5.29 Vishnivetskaya
et al., 2011

Kielak et al., 2016;
Xu et al., 2018

– – Gonçalves and
Santana, 2021

Actinobacteria Solirubrobacterales Family Species 14.13 32.8 Gołêbiewski et al.,
2014

Hernández et al.,
2015

– – Jauregi et al.,
2021

Propionibacteriales Nocardioidaceae Kribbella sp. 11.09 7.11 – Álvarez-Pérez et al.,
2017

Shan et al., 2018 Shan et al., 2018;
Borah and Thakur,
2020

–

Propionibacteriaceae Propionibacterium
acnes

0 5.42 – – – – Ramage et al.,
2003

Species 0 6.53 – Yeager et al., 2017;
Armanhi et al.,
2018

– – –

Geodermatophilales Geodermatophilaceae Species 3.56 7.79 – Montero-Calasanz
et al., 2017

Karray et al., 2020 – –

Microccocales Microbacteriaceae Agromyces sp. 1.01 0 – Muehe et al., 2015 Lee and Whang,
2020

Hu et al., 2021 Lee et al., 2021

Cellulomonadaceae Cellulomonas sp. 0.8 0 – Zhao et al., 2018 Zhao et al., 2021 Suleiman et al.,
2019

Zhang et al.,
2021

Micromonosporales Micromonosporaceae Actinoplanes sp. 0 8.62 – Gkarmiri et al.,
2017

Yamamoto et al.,
2018; Kaur et al.,
2021

Yamamoto et al.,
2018; Kaur et al.,
2021

Torres-Bacete
et al., 2007

Actinomycetales Streptomycetaceae Streptomyces
chartreusis

0 1.13 – Wang et al., 2019 Senges et al.,
2018; Vurukonda
et al., 2018; Wang
et al., 2019

Vurukonda et al.,
2018; Wang et al.,
2019

–

Streptosporangials Thermomonosporaceae Species 0 8.7 – Malisorn et al.,
2018

– – –

Cyanobacteria Oscillatory Microcoleaceae Microcoleus sp. 0 5.54 – Couradeau et al.,
2019

Jan et al., 2018 Couradeau et al.,
2019

Philippon et al.,
2016

Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium sp. 4.98 0 Petrus et al., 2015 Garrido-Oter et al.,
2018

Menéndez et al.,
2020; Alemneh
et al., 2021

Garrido-Oter et al.,
2018; Menéndez
et al., 2020

Rangel et al.,
2017

Mesorhizobium loti 6.79 0 – Garrido-Oter et al.,
2018

– Garrido-Oter et al.,
2018

–

Bradyrhizobiaceae Afipia sp. 3.46 1.94 Petrus et al., 2015 Jaiswal et al., 2017;
Zheng et al., 2021

Jaiswal et al., 2017 – –

Rhodopseudomonas
sp.

0 4.7 Deng and Jia, 2011 Wong et al., 2014;
Hsu et al., 2021

Wong et al., 2014 Chang et al., 2020 –

Rhodopseudomonas
palustris

6.05 0 Deng and Jia, 2011 Wong et al., 2014;
Hsu et al., 2021

Wong et al., 2014 Chang et al., 2020 McCully et al.,
2018

Hyphomicrobiaceae Species 8.88 0 – Xu et al., 2014 He et al., 2020 Martineau et al.,
2014

Zheng et al.,
2016
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Neither of these two species is cited as resistant to Hg, a
fact that is first described in this study. Its resistance to other
heavy metals is described (Corretto et al., 2017; Brookshier
et al., 2018). The presence of Agromyces sp. associated with
Arabidopsis halleri roots in the extraction of heavy metals by
phytoextraction is not known (Muehe et al., 2015); the role
of Cellulomonas sp. in plant rhizome as a producer of IAA is
known (Zhao et al., 2018). The findings on these two bacteria
are postulated by organisms with a possible biotechnological
potential to look for strains for use in soil bioremediation
in this study, despite their low representation in the data
obtained (Table 1).

In the Micromonosporal order, a single species Actinoplanes
sp. was detected, only in BS, being described as good PGPR
(Table 1) (Gkarmiri et al., 2017; Yamamoto et al., 2018).
Works such as that of Wang et al. (2019) have demonstrated
the tolerance to various heavy metals by Actinoplanes sp.; no
resistance references to Hg were found. The resistance to Hg of
these species it’s first described in this study.

The genus Streptomyces (Actinomicetales) is one of the most
studied due to its high biotechnological and industrial potential,
since a large quantity of antibiotics currently used clinically are
derived from these bacteria (Hopwood, 2007). Its resistance to
Hg has been referenced for more than 20 years (Ravel et al.,
1998). Streptomyces chartreusis has been described as good PGPR
(Table 1) (Senges et al., 2018; Vurukonda et al., 2018; Wang
et al., 2019). This is the first time S. chartreusis has been referred
to in a soil contaminated with Hg. The potential PGPR and
its remediation capability noted in the literature, along with
its presence in the study soil, suggests S. chartreusis as a good
target for search strains that could be used in the remediation of
this environment.

Cyanobacteria
Cyanobacteria (bacteria domain) include bacteria capable of
performing oxygenic photosynthesis. It’s a phylum that have an
extensive ecological distribution, as well it’s needed to take in
account that the plots sampled are located in rainwater leaching
areas and close to water sources, so it understandable to find
this phylum on the sample (Mehetre et al., 2022). The species
Microcoleus sp. was detected (Table 1). Microcoleus sp. has not
been described as resistant to Hg. Godoy-Lozano et al. (2018)
shows the high potential of this species to degrade various heavy
metals. The data collected in the literature and their presence in
these soils are indicative of their potential as research targets for
its possible use in the bioremediation of Hg.

Alphaproteobacteria
Mesorhizobium sp. and Mesorhizobium loti (Phyllobacteriaceae)
have been studied for their ability to form nodules in plant roots
and fix N (Garrido-Oter et al., 2018). They are of great interest
for their close relationship with the plant root and have been
described as resistant to various heavy metals, such as Cd or Pb
(Fan et al., 2018), highlighting their strong potential for use in
soil remediation.

Afipia sp., Rhodopseudomonas sp. and Rhodopseudomonas
palustris (Bradyrhizobiaceae): Afipia sp. arouses interest
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for its potential use in remediation of soils contaminated
with Hg (Petrus et al., 2015). Rhodopseudomonas sp. and
Rhodopseudomonas palustris are described as PGPR (Wong
et al., 2014; Hsu et al., 2021). Some authors (Batool and
Rehman, 2017; Xiao et al., 2021) relate the PGPR capacity
of Rhodopseudomonas sp. and R. palustris to their ability to
remediate Hg-contaminated soils.

Calubacter sp. and Caulobacter vibrioides (Caulobacterales)
have been described as resistant to various heavy metals
because they host divalent cation ATPase transporters on
their membranes (Hu et al., 2005). As for C. vibrioides,
it has solubilizing activity of selenium used in processes
of detoxification of Hg (Wang et al., 2016). As well, this
bacterias appear in the bibliography described as nitrogen
fixers (Gutiérrez-García et al., 2019). For these reasons, these
bacteria have a biotechnological interest for use in future
bioremediation pathways.

Betaproteobacteria
For this Class, only one specie could be identified. Variovorax sp.
(Burkholderiales) has been characterized by Belimov et al. (2015),
noted for its activity as PGPR and its resistance to various heavy
metals, although not appearing in the literature as resistant to Hg.
Having found this species in RS with high concentration of Hg
postulates it as a good candidate to further studies to find strains
from this species with potential use in bioremediation.

Gammaproteobacteria
Gammaproteobacteria are a diverse class of Gram-negative
bacteria with a wide biological distribution. Pseudomonas sp.
have a high biotechnological interest and have been studied
for their characteristics as PGPR (Yasmeen et al., 2021). The
bioremediation capacity of Hg is well known (González et al.,
2021; Imron et al., 2021; Robas et al., 2021a). Therefore, a study
of its potential use in the remediation of contaminated soils and
look for non-phytopathogenic specific strains is of interest.

Viruses
Two viral families were identified in the metagenome,
Circoviridae and Potyviridae. The first is a family that is
distributed in the environment infecting mainly vertebrates
(Delwart and Li, 2012). Only the species Cyclovirus
NGChicken15/NGA/2009was identified, it is a virus typically
pathogenic from farm birds. It is interesting and remarkable that
of the 21% of the relative taxonomic abundance of viruses in the
RS sample, 18.88% belong to a single virus that is very far from
its natural host. Due to the ubiquity of this virus and its presence
in our sample only in RS we suspect that it could be a virus very
similar to NGchicken15 that is infecting the plant or any of the
bacteria in the rhizosphere such as prophage.

From the family Potyviridae was identified the species
Dasheen mosaic virus, very common species pathogenic of
vegetables (Francki et al., 2012) with a similar relative abundance
in both soils (1.66% RS and 2.19% BS) It is not strange to find this
species both in the fraction of SL and RF given that the samples
were collected at a time of high growth and therefore of a greater
transmissibility of this virus to plants and to the soils.

Functional Analysis
Functional potential bioinformatic analysis allows the
identification of potential metabolic activities and processes.
In this way, it is possible to sort the potential functions of the
microbial community according to their abundance. However,
minority activities should be taken into account as long as
they allow the biological behavior of these communities to
be interpreted. In this sense, most of the functional potential
clusters identified, and sequences associated to a protein
belong to basal metabolism. However, the mechanisms of Hg
resistance, those involved in oxidative stress, N metabolism
and PGPR activity are more important from an ecological
and functional potential point of view. In addition, sequences
associated to a protein have been found whose presence
in soils can only be interpreted as indicating biological
contamination (Li et al., 2020; Stange and Tiehm, 2020).
Since there is no antibiotic pressure on the analyzed soils,
the mechanisms of resistance commonly described in clinical
studies should not be detected in environmental samples.
For this reason, in the area of “One Health” they deserve to
be analyzed and interpreted as bioindicators of biological
pollution. Microbial soil communities can act as reservoirs
from which information can be transferred horizontally to
potential pathogens, becoming a threat to human, animal and
environmental health (Wang et al., 2021).

Antibiotic Resistance
Soils, especially those under high environmental pressure, act as
a natural reservoir of resistance to existing antibiotics or provide
the potential to host bacteria of clinical importance (Yan et al.,
2020; Liao et al., 2021). Several studies show the existence of a co-
choice between the presence of various toxic compounds in the
environment and the selection of antibiotic resistance naturally,
together with co-resistance to heavy metals and antibiotics (Yan
et al., 2020; Mazhar et al., 2021; Robas et al., 2021b).

At level II this functional cluster were more represented
in RS than in BS. At level III of the metagenome study,
several specific role clusters for resistance to rare antibiotics in
the natural environment have been identified (Supplementary
Table 12), such as β-lactamases and mechanisms associated
with resistance to beta-lactams and predicted proteins associated
with gene responses to these antibiotics BlaR1 and MecR1
(Silveira et al., 2018).

Likewise, the presence of various transporters dependent on
ATP of Pb, Cb, Cu, and Hg in the group of functional activities
regulating the beta-lactams BlaR1 was found, and a direct
relationship between the presence of these heavy metals and
β-lactam resistance. Among the predicted proteins related with
β-lactam resistance genes isolated in this study, some belonging
to classes A, C, and D were identified.

Class A includes several subsystems, all fundamentally linked
to ampicillin resistance, that are rarely used clinically owing to
numerous described resistances that exist for this antibiotic (Kaye
et al., 2000; Rice et al., 2001). CTX-M-16 was found, which gives
greater catalytic power than other cefotaximes (Bonnet et al.,
2001). The finding in the present work of resistance mechanisms
to these antibiotics was evidence of the selection of resistance
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mechanisms of clinical origin, especially when occurring in
semi-synthetic compounds that do not occur in nature.

The AmpC-type β-lactamases are of great clinical
importance because they are hydrolyzed penicillins, cefamycins,
oxyminocephalosporins and monobactams, although they
are not active against fourth-generation carbapenemic
cephalosporins (Jacoby, 2009; Aguirre et al., 2020). The relevance
of these genes is provided by their high transmissibility, since
many are found in plasmids (Ku et al., 2019; Rensing et al., 2019).

The MexAB-OprM and MexEF-OprN complexes are a protein
assembly of membrane transporters that provide multi-resistance
to antibiotics, identified primarily in Pseudomonas sp. and are
highly linked to multi-resistance in P. aeruginosa (Ma et al.,
2021). As shown in Table 1, there is high probability that these
genes that could confer multi-resistance can be associated with
the Pseudomonas identified in this manuscript. In the analysis of
the sequences, were predicted proteins from the MexT regulator
was found, which is inactivated by some Hg resistance genes,
making the strains carrying the MexEF-OprN complex sensitive
to carbapenems (Köhler et al., 1999).

At level III, sequences related to RND transporters have
been found in multi-resistance efflux pumps functional potential
cluster. Among these, there is a large representation of MexAB-
OprM and MexEF-OprN, along with MexCD-OprJ antibiotic
transporters, related not only to antibiotic resistance but also
mediate processes of quorum sensing (Alcalde-Rico et al.,
2018). Other antibiotic resistance predicted proteins found were
those from AcrAB-TolC, a system responsible for the expulsion
of antibiotics, such as penicillin G, cloxacillin, naphthyllin,
macrolides, novobiocin, linezolid, and fusidic acid derivatives;
this system is commonly associated with E. coli (Anes et al.,
2015; Byrd et al., 2021). Proteins from MdtABC genes have also
been predicted in SEED, related TolC, which give resistance
to novobiocin, quinolones and phosphomycin, among others
(Anes et al., 2015). CmeABC membrane transporters were
also found, related to Campylobacter jejuni’s resistance to
a wide variety of antibiotics (Lin et al., 2002; Yan et al.,
2006), although authors such as Stopnisek et al. (2016) have
reported the presence of these genes in other species within the
Rhizobiales order.

Some proteins directly related to antibiotic multi-resistance
mechanisms have been predicted with the metagenome
sequences in Gram-positive bacteria cluster. The MdtRP operon
of Bacillus sp. confers resistance to several antibiotics such as
novobiocin, streptomycin and actinomycin, and is regulated by
the MarR repressor (Gupta et al., 2019; Warmbold et al., 2020).

Another of the functional subsystems identified in level III
and SEED is related to tripartite protein expulsion systems in
Gram-negative bacteria. Similar to the already noted MexAB-
OprM or AcrAB-TolC, they belong to membrane transporters
RND (Daury et al., 2016). No specific identification of any of these
sequences was achieved beyond identifying them as antibiotic
ejection systems within the RND group and related to tripartite
proteins such as MdtABC, and ejection proteins from genes such
as TolC or OprN. This highlights a variety of resistance systems
that bacteria can possess in a hostile environment, and which
are still unknown.

An important functional cluster related to fluoroquinolone
resistance has been found. These are synthesis compounds,
not found naturally in environmental samples. Hooper (2000)
describes how fluoroquinolone resistances are acquired by
mutations in the genes of Topoisomerases II and IV, predicted
proteins present in the metagenome sequences of the samples
analyzed at level III and SEED. Similarly, pumps from Lde
genes were found, which are specific to fluoroquinolones
(Godreuil et al., 2003).

A functional cluster and predicted proteins related with
vancomycin resistance were also found. The proteins predicted
VanA, VanB, VanH, VanR, VanS, VanW, VanX and VanZ, all of
which were directly related to vancomycin resistance (Qureshi
et al., 2014; Stogios and Savchenko, 2020) and VanZ, which
in turn gave teicoplanin resistance (Qureshi et al., 2014) and
VanW whose role in resistance mechanisms is still unknown.
These genes are usually grouped by their function and level
of resistance, thus taking the VanAB, VanHAX, and VanRS
groups (Bugg et al., 1991; Arthur et al., 1992). The presence
of some sequences that predict proteins, such as those related
with VanAB genes, appearing in plasmids has been studied
(Ishihara et al., 2013; Qureshi et al., 2014; Sivertsen et al.,
2016), giving this resistance greater potential to be transmitted
to other species. Several proteins related with that regulation
of the activity of this resistance were also found, such as
VanRS and a histidin-kinase system that activates the resistance
system (Arthur and Quintiliani, 2001; Qureshi et al., 2014;
Stogios and Savchenko, 2020).

Another group of resistance functional potential cluster
was that corresponding to bacitracin resistance. The predicted
proteins in SEED correspond to ABC flow pumps associated with
the Bacillus genus such as BceAB, BceR, YvcPR, YxdM, YclH,
YknY, BseL and LiaRS (Mascher et al., 2004; Kingston et al., 2014).
Some of these genes have also been reported in other Gram-
positives, such as some species of Enterococcus and Clostridium
(Charlebois et al., 2012; Zhou et al., 2019).

Hg Resistance and Oxidative Stress Response
The mechanisms of resistance to Hg are widely described in
the microbial world. For this reason, it is not uncommon to
detect various predicted proteins associated with genes from
operon mer (MerC, MerE, and MerT) (Gionfriddo et al., 2020)
and mercuroreductases in the samples analyzed (Supplementary
Table 6). In the same way, some resistance and transport
mechanisms for divalent cations (Co, Zn, and Cd primarily)
(Supplementary Table 6) were found, revealing the probably
participation of that mechanisms in the resistance to Hg of the
microorganisms. Likewise, ABC-type transporters (ATP-binding
cassette), capable of providing resistance to bacteria against
various toxins (Acar et al., 2020; Thomas and Tampé, 2020),
account for almost 50% of membrane transporters in level II.
At SEED level it can be found some ABC and RND efflux
systems related with resistance with divalent cations and heavy
metals (Supplementary Table 6). These transporters are widely
distributed throughout the metagenome and primarily associated
with resistance systems, acting as efflux pumps for different toxic
compounds (Supplementary Table 3).
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Environmental factors are known to cause oxidative stress to
the colonizing microorganisms of contaminated soils. In order
to colonize these environments, bacteria need effective biological
mechanisms. Stress response genes give microorganism methods
of adaptability to host situations and environments that may
affect their normal development (Chakraborty and Kenney,
2018; Dweba et al., 2018; Kokou et al., 2018). These potential
functional activities are found with a high relative abundance
(Supplementary Table 7), as the soil is a “nutritional desert” and
has the abiotic stress of high Hg concentration. These factors are
in a similar proportion in both samples; it seems that BS and RS
exert a different environmental pressure on organisms in terms of
stress. Various ABC transport mechanisms have been developed,
which function as part of the stress response machine in a hostile
environment (Teichmann et al., 2018; Van Goethem et al., 2018).
As well some sequences related with the carbon starvation, like
proteins of Slp (Alexander and St John, 1994) and Sspa (Yin et al.,
2021) were found. And functional potential clusters related with
weather conditions (Cold and heat shock, desiccation stress and
osmotic stress) (Supplementary Table 7).

N Metabolism and PGPR
N is a limiting macronutrient for the proliferation of
microorganisms and the growth of plants. Therefore, the
enzymes involved in the synthesis of nitrogen compounds
usable by plants are relevant. In the present study, in level I
was found a functional potential cluster that involves the N
metabolism (Supplementary Table 8). Several sequences have
been associated with proteins related to the assimilation of
nitrate and nitrite as the Nar (NarA, NarD, NarE, NarK, NarL,
and NarP) (Fukuda et al., 2015). Among the N metabolism,
proteins from Nir denitrification genes were identified. Some
of these sequences, related with genes such as NirT and Nos,
are involved in N monoxide denitrification and formation
(Bergaust et al., 2012; Belbahri et al., 2017). At level III, was alsa
found a cluster related with the nitrogen fixation, fundamentally
from the operon Nif were identified, which codes for the
nitrogenase complex, fundamental in the fixation of atmospheric
N in the soil (Di Cesare et al., 2018; Dasgupta et al., 2021;
Supplementary Table 8).

Plant growth-promoting bacteria are characterized by their
ability to produce and/or adapt to a hostile environment, such
as auxin production, phosphate solubilization, ACC degradation,
and siderophore production. Several sequences clustered in
potential functional activities involved in the synthesis of
auxins, an important factor promoting the growth of plants,
have been identified (Mishra et al., 2021). Specifically, 3-
indolacetic acid (IAA) is related to a large number of processes
that improve plant quality. Some proteins from the principal
biosynthetic routes of IAA, indole-3-pyruvate and indole-3-
acetamide were predicted (Nascimento et al., 2021), such as
proteins IorA and IorB (Supplementary Table 9). Likewise,
IAA has the capacity to improve the tolerance of plants to
adverse conditions and stress by heavy metals (Ma et al., 2011;
Nazli et al., 2021). Some authors (Ma et al., 2011; Zainab
et al., 2020) have established a relationship between rhizospheric
bacteria producing IAA and significant improvement together

with greater speed in phytoextraction of heavy substances and
recovery of contaminated soils.

Plants and microorganisms compete for phosphorus present
in the environment; therefore, the solubilization of phosphorus
by microorganisms contributes to the promotion of plant
growth (Pereira et al., 2020). A large number of proteins
genes have been predicted for acid phosphatases, phytases,
gluconate dehydrogenases, ketogluconate dehydrogenases, and
glucose-1-dehydrogenase (Supplementary Table 10), which
are encompassed in the context of phosphate solubilization
(Suleman et al., 2018).

The predicted proteins of the AcdS genes of the ACC
deaminase (1-aminocyclopropane-1-carboxylate desaminase)
found in our metagenome interfere with the synthesis of ethylene
in the plant by degradation of a metabolic precursor, thereby
reducing stress in the tissues (Glick, 2014; del Carmen Orozco-
Mosqueda et al., 2020). Ethylene is a marker of plant stress
and senescence, so this enzyme helps plants withstand stressful
environments, such as soils contaminated with heavy metals.

A wide variety of siderophore functional potential clusters
were also identified (Supplementary Table 11), it can be found
at level II a functional potential cluster related with siderophores
(Supplementary Table 3). Siderophores act as metal chelators
favoring, among other potential functions, the absorption of
iron and its entry into the food chain. Plants that are able to
use bacterial siderophores as a source of iron (Wang et al.,
1993) increase their chances of survival and adaptation to
contaminated environments.

CONCLUSION

Several conclusions can be drawn from this study.
In the taxonomic analyze, the most abundant microbial

genome analyzed belongs to the bacteria domain. The prevalent
taxa are those of Actinobateria and Alphaproteobacteria.
Betaproteobacteria and Gammaproteobacteria seems to
be intimately linked to rhizospheric soil (RS). Likewise,
Cyanobacteria and Acidobacteria only have representation in
bulk soil (BS). Similarly, the genome belonging to the Domain
Eukarya involved in the potential functional activity of microbial
activity was detected. The viral genomes present in the sample
are interpreted as prophages.

On the functional potential profiling, the presence of
antibiotic resistance mechanisms and other toxic compounds
could confirm previous studies pointing to their co-selection
in Hg-contaminated environments. The finding of resistance
mechanisms proper to human clinical, evidence of biological
contamination, suggests that these environments may behave as
reservoirs. Although, the presence of Hg resistance functional
clusters and involved in the response to oxidative stress are
present as a minority; however, their biological significance
justifies the behavior of the microbial community. The
abundance of PGP and N-fixation functional activities detected
in the metagenome sequences may be an opportunity for further
selection of both effective bioremediation strains and genes for
promoting biotechnological use in the production of GMOs.
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levels I–III and SEED of IAA potential functional activities.

Supplementary Table 10 | Relative abundances of SUPERFOCUS functional
levels I–III and SEED of ACCd potential functional activities.

Supplementary Table 11 | Relative abundances of SUPERFOCUS functional
levels I–III and SEED of siderophores potential functional activities.

Supplementary Table 12 | Relative abundances of SUPERFOCUS functional
levels I–III and SEED of resistance to antibiotics potential functional activities.
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