
RESEARCH ARTICLE

Residual sweeping errors in turbulent particle

pair diffusion in a Lagrangian diffusion model

Nadeem A. Malik*

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 5046,

Dhahran 31261, Saudi Arabia

* namalik@kfupm.edu.sa, nadeem_malik@cantab.net

Abstract

Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have sug-

gested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS),

Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281

(1992)], unreliable. However, such a conclusion can only be drawn under the assumption of

locality. The major aim here is to quantify the sweeping errors in KS without assuming local-

ity. Through a novel analysis based upon analysing pairs of particle trajectories in a frame

of reference moving with the large energy containing scales of motion it is shown that the

normalized integrated error eIK in the turbulent pair diffusivity (K) due to the sweeping

effect decreases with increasing pair separation (σl), such that eIK ! 0 as σl/η!1; and

eIK !1 as σl/η! 0. η is the Kolmogorov turbulence microscale. There is an intermediate

range of separations 1 < σl/η <1 in which the error eIK remains negligible. Simulations using

KS shows that in the swept frame of reference, this intermediate range is large covering

almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from

locality observed in KS cannot be atributed to sweeping errors. This is important for pair dif-

fusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.

tb, 47.27.eb, 47.11.-j.

1 Introduction

Turbulent particle pair diffusion has attained somewhat of an iconic status in the turbulence

community, many researchers having addressed this topic over the decades. Nevertheless,

most if not all theories of turbulent particle pair diffusion in homogeneous turbulence with

extended inertial ranges have been based upon the hypothesis of locality since Richardson in

1926 [1], and Obukhov in 1941 [2]. See also [3–5] for recent discussions of this topic.

Richardson pioneered this field and introduced the idea of a scale dependent pair diffusivity

as the fundamental quantity of interest in turbulent pair diffusion studies. The turbulent pair

diffusivity is defined as,

KðlÞ ¼
1

2

dhl2i
dt
¼ hl � vðlÞi; ð1Þ
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where l(t) is the pair displacement vector at time t, l = |l|, v(l) is the pair relative velocity,

and h�i is the ensemble average over all particle pairs.

Locality states that the further increase in separation of particle pairs which are separated at

a distance of l in homogeneous isotropic and statistically stationary turbulence is determined

only by the energies contained in the eddies of a similar size to l. This, leads to the scaling

K � hlvi � l
ffiffiffiffiffiffiffiffi
EðlÞ

p
, and assuming that the turbulence energy spectrum is E(l) * l5/3, then

K(l) * l4/3 is readily obtained, showing the equivalence of locality and the 4/3 law.

In passing, we note that alternative scalings for K have been proposed in the past. Hentchel

and Procaccia [6] proposed the more general scaling K * εalbtc, for 2a + c = 2 and 3a − b = 1,

and c 6¼ 0 in their work on a fractal based model for cloud dispersion; see also Klafter [7]. In

fact Batchelor [8] had earlier proposed that K = K(t) could be made dependent on the time

alone—here the time is the time from release of the particle pair. However, such a time-

dependent pair diffusivity would give unrealistically high values for K(t) at large times (tending

to infinity). For short times, however, when the relative velocity is highly correlated with its

initial value, such a scaling can recover the well known short-time ballistic motion although it

lasts only for a very short time. As our interest here is in the pair diffusion scalings inside the

inertial subrange when the times after release are much greater than the short ballistic time

scale, we will not consider a time-dependent pair diffusivity here.

The locality hypothesis can readily be applied to generalized power law spectra of the

type, E(k) * k−p, for 1< p� 3; the pair diffusivity then scales like Kðl; pÞ � s
glp
l with

glp ¼ ð1þ pÞ=2, [9], where s2
l ¼ hl

2i. For Kolmogorov turbulence p = 5/3, this gives the well

known Richardson scaling K � s
4=3

l , which Obukhov showed is equivalent to hl2i * t3 [2].

Kinematic Simulations (KS) [10, 11] has often been used to investigate turbulent pair diffu-

sion. KS is a kinematic Lagrangian model, closer to stochastic models rather than DNS, where

the velocity is prescribed as a Fourier series from the start. It is not dynamical, but it has the

advantage that it can simulate very large energy spectra which are beyond current experimen-

tal or DNS capabilities. This is useful for testing high Reynolds number scaling laws. However,

KS does not yield the assumed locality scaling for p = 5/3, yielding instead K � s1:53
l . For this

reason, it has been assumed that KS must be in error.

Thomson & Devenish [12], for example, argue that the turbulent pair diffusivity must scale

like,

KðlðtÞÞ � SðlÞtsðlðtÞÞ; ð2Þ

where S(l) is the structure function of the turbulence velocity field and τs(l) is an effective time

scale of velocity increments. In real turbulence, assuming locality scaling for S(l) * l2/3 and

for τs(l) * l2/3 leads to Richardson’s classical scaling KðlÞ � s
4=3

l , where we evaluate K at typi-

cal values of l, namely σl = hl2i1/2 which is commonly assumed in these studies.

Thomson & Devenish argue that in KS because of the lack of true dynamical sweeping, the

time scale must be a sweeping time scale, namely τs * l/Us which is a time scale for the large

scales flow to cut through smaller local eddies, Us being the sweeping velocity scale. This leads

to, K � s
5=3

l . Even when the rms turbulence velocity u0 is taken instead of Us, they obtained

K � s
14=9

l ¼ s1:555
l which is very close to that obtained in KS.

They concluded that whereas locality is true in real turbulence, it is not true in KS. In turbu-

lence the large energy containing eddies carry the smaller eddies, but in KS as there is an

absence of true dynamics the large scales force the fluid particles to cut through the smaller

eddies in an unphysical manner, a view supported by Nicolleau & Nowakowski [13], and

Eyink & Benveniste [14].

Sweeping errors in turbulent pair diffusion model
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However, Thomson & Devenish address only the scaling laws in the diffusivity K, but do

not quantified the errors in K in KS—is it large or small? This is important because although it

is accepted that KS lacks true physical sweeping effects, if these errors are quantitatively small

under given circumstances, then KS could still yield accurate and meaningful results under

these conditions.

Furthermore, it is important to observe that the locality hypothesis itself, for the pair diffu-

sion, has never been confirmed unequivocally as noted by Salazar & Collins [3], “. . . there has

not been an experiment that has unequivocally confirmed R-O scaling over a broad-enough

range of time and with sufficient accuracy”.

As such, in the absence of definitive proof of Richardson’s pair diffusion hypothesis, there

is room for new thinking in this field, and it is reasonable to explore alternative, more analytic,

approaches to address this problem, which is the main concern of this work.

Here we re-examine the sweeping effect in KS with a view of quantitfying the error in the

KS pair diffusivity Ks compared to the physical pair diffusivity K. For this purpose, we focus

upon the differences in the relative velocities along pairs of particle paths in the sweeping frame
of reference. This frame of reference accounts for the physical sweeping effect of the largest

energy containing scales; but a residual sweeping effect still remains due to the largest inertial

range eddies sweeping the smaller inertial range eddies.

Consider Fig 1 which shows a particle pair with separation l in the inertial subrange being

swept by a large scale flow. A real fluid particle pair will be swept by the physical velocity field

u and will follow certain particle paths; but a KS flow will transport the pair along neighbour-

ing particle paths due to an additional KS sweeping motion, us, and thereby force the particles

to cut through local flow structures.

Fig 1. Schematic diagram illustrating the system discussed in the text. The locations of two nearby particles, labelled 1 and 2, are

located at x1(t) and x2(t) respectively, with turbulence velocities u1(t) and u2(t), at time t; their separation is l(t) = |x2 − x1|. They are

transported with velocities ðu1 þ us
1
ÞðtÞ and ðu2 þ us

2
ÞðtÞ respectively to the new locations xs

1
ðtÞ and xs

2
ðtÞ at the next time step t + dt, as shown.

https://doi.org/10.1371/journal.pone.0189917.g001
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The large scale physical sweeping velocity is assumed not to affect the relative motion of

particles in a pair in the inertial subrange. The critical question is, are the deviations from the

physical trajectories induced by KS in the pair diffusion process large or small?

A mean flow will also sweep the smaller scales; but in a KS flow it will force a fluid particle

through smaller flow structures very quickly. Thus KS clearly is not suitable for particle diffu-

sion in the presence a non-zero mean flow. Therefore, in the ensuing analysis the error

between the KS and the physical pair diffusivities, |Ks − K|, will be calculated assuming zero

mean flow. We will consider generalised power law energy spectra, E(k) * k−p, because the

analysis is valid for all such power spectra and this will add weight to the conclusions that can

be drawn from this work if validated over the whole range of p considered.

In this paper we address only the scalings and the quantitative estimates for the sweeping

errors in KS. The main questions of interest are, is the KS sweeping error large or small, and in

what range of separations? These questions are addressed first through a novel mathematical

analysis focussing upon pairs of neighbouring particle trajectories. This is then verified against

simulations using KS with very large inertial subranges.

In Section 2, we derive an expression for the error in the pair diffusivity in KS flows by ana-

lysing neighbouring trajectories in the swept frame of reference. In Section 3, the KS method is

discussed and simulation results presented. In the final Section 4, we discuss the results and its

implications for theory and modeling.

2 The normalized error in the pair diffusivity

2.1 The numerical timestep error

The idea of sweeping scales of motion implies a clear separation of scales between the sweeping

and the swept scales. In reality, although there is a broad division between large and small

scales, there is no well-defined cut-off between them because the spectrum of turbulence is

continuous.

However, the situation in KS is easier because all scales are already separated by construc-

tion as a Fourier series, Eq (27), so it is a trivial matter to ‘remove’ scales of motion simply by

eliminating those terms in the Fourier series. In the present case, the large sweeping scales are

approximated as those scales where k< k1. Thus, in the swept frame of reference the sweeping

action itself can be approximatedd in KS by setting E(k) = 0 for k< k1. However, there still

remains a residual sweeping caused by the largest of the inertial scales sweeping the scales local

to the pair separation.

In the ensuing analysis we will make use of Taylor expansions applied to KS flow fields. It is

important to note that this is possible because although KS is a Lagrangian method, it is not in

the genre of stochastic models such as Random Walk models. In KS, we generate an ensemble

of flow fields, {un}, n = 1, 2, 3, . . . in which each flow field un is a Fourier series with given coef-

ficients and is therefore smooth and differentiable. The randomness in KS comes from choos-

ing each Fourier mode and each coefficient in the Fourier expansion in each flow field un

randomly from specified probability distributions, the square of the magnitudes of the coeffi-

cients being proportional to a given energy spectrum, see Section 3.2.

Consider an ensemble of particle pairs released in a field of homogeneous turbulence at

time t = 0 with some small initial separation l0. At some time t later, the ensemble average of

the separation is assumed to be well inside the inertial subrange and the relative motions are

independent of l0 [8].

Consider the particles in one of these pairs, labeled 1 and 2, as shown in Fig 1. The particle

locations are x1(t) and x2(t) respectively at time t; and the pair displacement is l(t) = x2 − x1,

and l(t) = |x2 − x1|. u(x, t) is the flow due to inertial range of turbulent motions that are

Sweeping errors in turbulent pair diffusion model
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effective in increasing the pair separation. We will refer to u(x, t) as the ‘physical’ flow. All

quantities are assumed at time t unless otherwise stated.

At time t the additional (or residual) KS sweeping flow us(x, t) is ‘switched on’—this is not

to be confused with the total KS velocity field which is ~u ¼ ðuþ usÞðx; tÞ, see Fig 1. In a real

flow field, the small scale turbulence would be carried along dynamically by the larger scales,

and therefore we could assume us(x, t) = 0. In KS, the larger scales force a particle to cut

through the smaller scales, hence us(x, t) 6¼ 0; but the spatial gradients of us are much smaller

than the spatial gradients of u.

The flow u(x, t) transports the particles to x1(t�) and x2(t�) respectively at the next time step

t� = t + dt; while the KS flow (u + us)(x, t) transports the particles to xs
1
ðt�Þ and xs

2
ðt�Þ respec-

tively. Note that ls ¼ xs
2
� xs

1
, and ls ¼ jxs

2
� xs

1
j.

The superscript � will refer to quantities at time t�, e.g. l� = l(t + dt). The superscript s will

refer to quantities related to the KS residual sweeping, e.g. ls(t�) = ls(t + dt).
The following quantities are defined:

u = u(x, t) is the ‘physical’ fluid velocity field

us = us(x, t) is the additional (residual) sweeping velocity field

v(l) = u(x2) − u(x1) is the ‘physical’ relative velocity

vs(l) = us(x2) − us(x1) is the additional (residual) relative velocity

~u ¼ ðuþ usÞðx; tÞ is the total KS velocity

~vðlsÞ ¼ vðlsÞ þ vsðlsÞ is the total KS relative velocity

We will simplifying the notation as much as possible, e.g. u2 = u(x2, t), and

u�
2
¼ uðx2; t þ dtÞ.
In the following analysis, we consider the situation where particle pairs have been released

at some earlier time, and now at time t later, the pair separation l = |l| is still small compared to

some characteristic large length scale L and inside the inertial subrange, i.e. η� l� L; where

η is the Kolmogorov scale. we will assume that inertial subrange is large enough, L/η� 1, such

that inertial range scaling will apply.

Furthermore, the following Taylor expansions in the KS velocity fields will be assumed,

xs
1
ðt�Þ ¼ x1ðt

�Þ þ us
1
ðtÞdt ð3Þ

xs
2
ðt�Þ ¼ x2ðt

�Þ þ us
2
ðtÞdt ð4Þ

ls� ¼ xs
2
ðt�Þ � xs

1
ðt�Þ

¼ lðt�Þ þ ðus
2
� us

1
Þdt

¼ l� þ vsðlÞdt

ð5Þ

to leading order in dt, where the increment, dt, is small compared to all other timescales in the

system, governed only by the need for numerical accuracy.

~vðls�Þ is calculated at the new KS swept particle locations. Using Taylor expansions wher-

ever necessary, assuming that the velocity fields are at least twice differentiable in space and at

Sweeping errors in turbulent pair diffusion model
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least once in time,

~vðls�Þ ¼ ðuþ usÞðxs
2
ðt�ÞÞ � ðuþ usÞðxs

1
ðt�ÞÞ

¼ uðxs
2
ðt�ÞÞ � uðxs

1
ðt�ÞÞ þ usðxs

2
ðt�ÞÞ � usðxs

1
ðt�ÞÞ

¼ vðl�Þ þ vsðl�Þþ

ðus
2
� ru2ðt�Þ � us

1
� ru1ðt�ÞÞdtþ

ðus
2
� rus

2
ðt�Þ � us

1
� rus

1
ðt�ÞÞdt

þOðdt2Þ

ð6Þ

The pair diffusivity at time t� is, K� = hl� � v(l�)i—we ignore constants of proportionality,

like 2, because we are interested only in the power scalings in this work. The KS equivalent is

Ks� ¼ hls� � ~vðls�Þi. Using Eqs (5) and (6) and ignoring terms of order dt2 and higher,

Ks� � hl� � vðl�Þi þ hl� � vsðl�Þiþ

hl� � ðus
2
ðtÞ � ru2ðt�Þ � us

1
ðtÞ � ru1ðt�ÞÞidtþ

hl� � ðus
2
ðtÞ � rus

2
ðt�Þ � us

1
ðtÞ � rus

1
ðt�ÞÞidtþ

hvsðlÞ � vðl�Þidt þ hvsðlÞ � vsðl�Þidt

ð7Þ

The incremental timestep error between the KS and physical diffusivities for a given time-

step dt is, EK = |Ks� − K�|. Using the expansion usðx2ðtÞÞ � us
1
þ l � rus

1
in Eq (7), yields

EK � hl� � vsðl�Þiþ

hl� � ðus
1
� rÞvðl�Þidtþ

hl� � ðus
1
� rÞvsðl�Þidtþ

hl� � ðl � rÞus
1
� ru2ðt�Þidtþ

hl� � ðl � rÞus
1
� rus

2
ðt�Þidtþ

hvsðlÞ � vðl�Þidtþ

hvsðlÞ � vsðl�Þidt

ð8Þ

The time scale of the sweeping Ts is much larger than the local time scale of the pair separa-

tion. Hence, in the last four terms l(t) is replaced by l(t�) without affecting their magnitudes or

scalings (the associated errors are *O(dt2) which is neglected).

All the terms in Eq (8) are now evaluated at the same time t�, so without loss of generality t�

is replaced by t and the superscript ‘�’ is dropped. The subscript ‘1’ is also dropped because of

homogeneity. Eq (8) now simplifies to,

EK � hl � vsiþ

hl � ðus � rÞvidtþ

hl � ðus � rÞvsidtþ

hl � ðl � rÞus � ru2idtþ

hl � ðl � rÞus � rus
2
idtþ

hvs � vidtþ

hðvsÞ2idt

ð9Þ

It is reasonable to assume that the (residual) sweeping flow field us, which is caused by

the largest of the inertial range eddies, is close to uniform across small distances, and therefore

Sweeping errors in turbulent pair diffusion model
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the relative velocities across the local separation scales l that it induces is small, i.e. gradients

like |(l � r)us|� 0. However, gradients of the relative velocity v(l) itself can be large. The

magnitude of us = |us| is assumed large compared to v(l) = |v(l)|, and also as compared to

vs(l) = |vs(l)|. us scales differently to v(l).
v(l) also scales differently to vs(l), the former being governed by inertial range turbulence

scaling, and the latter by differences in the residual sweeping velocity across a small distance l.
This can be seen clearly in the limit of uniform (parallel) sweeping flow, where the v(l) is unaf-

fected, but vs(l) = 0 and all the terms on the right hand side in Eq (9) are zero or nearly zero

compared to the second term. This indicates that the second term in Eq (9) makes the domi-

nant contribution to the error.

Consider generalized energy spectra of the form E(k) = ε2/3L5/3−pk−p, for k1� k� kη and

for 1< p� 3, and with kη/k1� 1 [9, 15]. In the swept frame of reference, E(k) = 0 for k< k1.

The rate of energy dissipation is ε * U3/L, where U is the velocity scale in the energy contain-

ing scales.

The previous discussion implies that jrvsj � U
L

� �
and therefore,

vsðlÞ �
l
L

� �

U: ð10Þ

The energy in turbulent inertial scales local to l is, v2(l) * E(1/l)/l, and therefore,

vðlÞ �
l
L

� �p� 1

2

U ð11Þ

and; jrvðlÞj �
l
L

� �p� 3

2 U
L

ð12Þ

It is usual to assume the scaling l * σl as previously mentioned. Then, the second term in

Eq (9) is given by,

E2 ¼ hl � ðus � rÞvidt �
sl

L

� �p� 1

2

UusðlÞdt; ð13Þ

All the other terms in Eq (9), labeled respectively E1, E3, . . ., E7, scale proportional to us or

are much smaller, and this leads to the following estimates,

E1

E2

�
sl

L

� �5� p
2 L
Udt

;

E3

E2

�
sl

L

� �3� p
2

E4

E2

�
sl

L

� �5� p
2

E5

E2

�
sl

L

� �5� p
2

E6

E2

�
sl

L

� �1

E7

E2

�
sl

L

� �5� p
2

:

ð14Þ
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All of these ratios are small for σl/L< 1 and 1< p� 3. This is true even in the expression

for E1/E2 because the factor L/Udt is subdued by the very small factor in the brackets. It is rea-

sonable to conclude that the 2nd term in Eq (9) is dominant and therefore EK� E2.

To estimate E2 itself, an estimate for us(l) is needed. The inertial subrange contains only a

small part of the total turbulence energy across the entire wavenumber range, 0< k<1; a

typical turbulence spectrum is the von Karman spectrum Evk(k). The von Karman spectrum is

essentially a fit between the low wavenumber energy spectrum (E(k) * k4), and the high wave-

number inertial subrange spectrum (E(k) * k−5/3); the exact form is not important for our

purposes; but see [16].

Let, the fraction of the turbulence energy in the inertial part of the spectrum be, I2 = EIN/

ETOT, where EIN is the energy in the inertial range, and ETOT is the total turbulence energy.

Then if, EIN � u2
ks; and ETOT * U2, then we obtain, I2 � u2

ks=U
2, and uks� IU. The choice of

wavenumber which separates the inertial range from the large scales is somewhat arbitrary.

The wavenumbers that contribute to the sweeping of particle pairs at separation σl are in

the range k1� k< kl, where kl * 1/σl. In the KS sweeping frame of reference, the larger iner-

tial scales are the sweeping scales, and the energy in these scales is approximately,

ðusÞ2 �

Z k1

kl

EðkÞdk ¼
Z k1

kl

akε
2=3L5=3� pk� pdk ð15Þ

and using ε * (uks)3/L * (IU)3/L, this gives

us � IU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
sl

L

� �p� 1
r

ð16Þ

Using this in Eq (13), the residual error between the physical and the KS pair diffusivities in

the inertial subrange of pair separations in the swept frame of reference, per unit timestep

(retaining EK to represent this quantity), is

EKðpÞ � E2 ¼ Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
sl

L

� �p� 1
r

sl

L

� �p� 1

2

U2I: ð17Þ

Ck is the constant of proportionality, which can depend upon p.

For p = 5/3, the residual error per unit timestep is,

EKð5=3Þ � Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
sl

L

� �2=3
r

sl

L

� �1=3

U2I: ð18Þ

As p! 1, EK! EK(1)� CkU2/L� Constant for σl/L< 1, but is nearly zero close to σl/L = 1.

In this limit, p! 1, the pair diffusion is strongly local and is not affected by long range

sweeping.

For p = 3, the residual error per unit timestep is negligibly small for σl/L< 1,

EKð3Þ � Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
sl

L

� �2
r

sl

L

� �
U2I � Ekð5=3Þ: ð19Þ

In this limit, nearly all the energy is contained in the largest scales and inertial subrange

scaling is no longer applicable.

2.2 The integrated error

The incremental timestep error in the diffusivity EK only tells us the error in KS due to the lack

of dynamic sweeping per numerical time step. As the particle pair separations increase (on
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average), these errors will not only increase, but they will also accumulate over a period of

time. The important question is, does this integrated error remain small?

We therefore need to calculate the integrated error, relative to the actual diffusivity, over

the period while the pair separation remains within the inertial subrange. The limit that the

pair separation approaches the upper end of the inertial subrange, σl * L, implies that σl/η�
1. In the limit of infinite inertial subrange this corresponds to σl/η!1.

Eq (17) provides a way of estimating an upper bound for the integrated residual error. Fig 2

shows the log-log plots of the factor f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � xp� 1
p

xðp� 1Þ=2 for selected powers in the range

0< p� 3. The range over which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � xp� 1
p

� 0 is very short and close to x = 1; but over the

rest of the range
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � xp� 1
p

� 1. Hence, to a good approximation, f(x)< x(p−1)/2 for all x� 1,

and using this in Eq (17) with x = σl/L yields,

EKðpÞ < CkU2I
sl

L

� �p� 1

2

: ð20Þ

Fig 2. The function f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � xp� 1
p

xðp� 1Þ=2, 0 < x� 1, for selected powers 1 < p� 3.

https://doi.org/10.1371/journal.pone.0189917.g002
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The integrated residual error, EIK , over a period of time is,

EIK < CkU2I
Z t

0

sl

L

� �p� 1

2

dt: ð21Þ

Assuming the pair separation scaling s2
l � twp , where t is the time and for some χp> 0,

yields,

EIK ≲ CkUIL
sl

L

� �p� 1

2
þ 2

wp
: ð22Þ

If the pair diffusivity scales like, K � s
gp
l , for some γp> 0 then χp = 1/(1 − γp/2) is an exact

relation.

The most important quantity is the relative integrated residual error with respect to the pair

diffusivity, eIK . Using the above expression for χp, and replacing the scaling with L by scaling

with η, leads to

eIK ¼
EIK
K

≲
CkUIL

sl

Z

� �2gp �
pþ3

2 : ð23Þ

For strict locality scaling γp = (1 + p)/2, and this becomes

eIK ≲
CkUIL
sl

Z

� �gp � 1
: ð24Þ

Since γp − 1> 0, eIK decreases with increasing pair separation for all p> 1. For p = 5/3, we

have γp = 4/3 and we obtain,

eIK ≲
CkUIL
sl

Z

� �1=3
: ð25Þ

Thus, as σl/η!1 then eIK decreases; and as σl/η! 0 then eIK increases.

Even for non-local scaling, assuming that γp does not deviate too far from the local scaling,

the above order of magnitude for eIK is still approximately true. In fact, in KS we know, Section

3.3, that γp is slightly greater than locality so the errors will be slightly smaller than in Eq (25).

However, between these two asymptotic limits there must exist an intermediate range of

separations, between 1< σl/η<1, where the errors remain negligible. In reality, all turbu-

lence spectra are finite in range. So what size of the inertial subrange do we need to approxi-

mate an ‘infinite’ subrange?

Even then, the crucial question is: is the intermediate range of scales where the KS sweeping

errors are negligible wide enough for inertial range scaling to be actually observable in KS?

To determine the extent of this intermediate range of scales, if it exists at all, simulations

with KS must be performed with very large inertial subranges.

The errors in Eqs (24) and (25) cannot be determined directly from simulations because

only the KS particle trajectories are generated directly.

However, the effects of the error analysis can be observed in several important ways that

will be described in the next section where we carry out KS calculations for the pair diffusivity.
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3 Simulations and results

The normalised integrated error, eIK , is scale dependent and reduces with increasing separation.

The KS diffusivity is given by, Ks � Kð1þ eIKÞ ! K as σl/η!1. It is expected that if there is

an appreciable intermediate range where the errors are negligible, then the power scaling in Ks

must be constant and asymptotic to the limiting case where σl/η!1. The extent of this inter-

mediate range is determined by the range over which the power scaling in Ks is constant.

Furthermore, significant levels of the sweeping error means that the fluid particles cut

through KS eddies, and therefore must be accompied by high levels of noise—the larger the

relative sweeping error the larger the noise level.

Thus, where the errors are negligible it is expected that the correct power law scaling,

Ks� K, will be observed in that part of the of the inertial subrange.

On the other hand, where the errors are significant it is expected that Ks will deviate from

the true power law scaling for K and also be accompanied with significant statistical noise due

to fluid particles being swept through local eddies in that part of the inertial subrange. Even in

this case, however, it is expected that the errors and the associated noise diminish as the pair

separation increases.

3.1 Frames of reference

Comparison will be made between two cases: first, where Ks is obtained from KS in the physi-

cally correct sweeping frame of reference; and second, the case where large scale random

sweeping velocities are explicitly added to the flow.

Case 1. Swept frame. Set the spectrum to be E(k) * k−p in the inertial subrange, and set

E(k) = 0 for k< k1.

Case 2. Non-swept frame. Set the spectrum to be E(k) * k−p in the inertial subrange as in

Case 1, and add E(k) = E0δ(k − k0) at some low wavenumber k0 < k1, and such that E0

is the energy in the von Karman spectrum in the range 0< k< k1.

A very small fixed timestep, smaller than any timescale in the system dt� τη, is used in all

the simulations reported here. τη is the Kolmogorov time scale.

The analysis for Case 2 is similar to that which leads to Eq (24), except that U, L, and I are

different. From I2 * EIN/U2, we obtain UI �
ffiffiffiffiffiffiffi
EIN
p

� uks which remains relatively constant in

the expressions (24) and (25). Thus, the differences in the errors between the two cases

depends largely upon the different length scale L in the two cases, and assuming Ak = Ck
UI� constant we obtain,

eIK ≲ Ak
sl

Z

� �� gpþ1

L: ð26Þ

In Case 2, when large random scales are included in the simulations then L is about 10

times bigger than in Case 1. We may thereore expect the errors to be about 10 times bigger in

Case2 than in Case 1.

The exact level of the error in Eq (26) depends upon the choice of cut-off scale between the

sweeping and non-sweeping scales which is somewhat arbitray. It is best to view Eqs (24)–(26)

as a general scaling law with parameters U, L, I, and the actual level of error can only be deter-

mined by simulations.

3.2 Kinematic Simulations

Kinematic Simulation [4, 5] is a Lagrangian method for particle diffusion in which the velocity

fileld is prescribed as a sum of energy-weighted Fourier modes. It is akin to the widely used
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random flight type of statistical models in which the dynamical interactions between turbulent

length scales is not explcitly modeled, rather the overall effect on the statistical moments of

particle diffusion is mimicked. In KS this is accomplished by specifying the energy spectrum

E(k). Although KS cannot capture the full dynamics of particle motion, it has the advantage

that it can generate extremely large energy spectra that is far beyond current experimental or

DNS capabilities, and therefore it can be used to examine some aspects of very high Reynolds

number scaling laws. KS continues to be used in turbulent diffusion studies for both passive

and inertial particle motion, including cases with generalized power-law energy spectra of the

form E(k) * k−p for p> 1, Maxey [17], Turfus [18], Fung & Vassilicos [19], Malik & Vassilicos

[20], Farhan et al. [21]. Meneguz & Reeks [22] carried out a DNS of inertial particle motion,

and compared it to results from KS which they found to agree well with the DNS. Murray et al.

[23] investigated inertial particle statistics using KS.

KS generates turbulent-like non-Markovian particle trajectories by releasing particles in

flow fields that are incompressible by construction and which satisfy Eulerian statistics up to

second order. A turbulent flow field realization is produced as a truncated Fourier series,

Wðx; tÞ ¼
XN

n¼1

ðAn � k̂nÞ cos ðkn � x þ ontÞ þ ðBn � k̂nÞ sin ðkn � x þ ontÞ
h i

ð27Þ

where N is a suitable number of representative wavemodes, typically hundreds for very long

spectral ranges, kη/k1� 1. k̂n is a random unit vector (kn ¼ k̂nkn and kn = |kn|). The coeffi-

cients An and Bn are chosen such that their orientations are randomly distributed and uncorre-

lated with any other Fourier coefficient or wavenumber, and their amplitudes are determined

by hA2

ni ¼ hB
2

ni / knEðknÞ, where E(k), k1� k� kη, is the turbulent energy specturm. The

angled brackets h�i denotes the ensemble average over many flow fields. This construction

ensures incompressibility in each flow realization,r � u = 0. The flow field ensemble generated

in this manner is statistically homogeneous, isotropic, and stationary.

An important feature of KS is that unlike some other Lagrangian methods, by generating

entire kinematic flow fields in which particles are tracked it does not suffer from the crossing-

trajectories error which is caused when two fluid particles occupy the same location at the

same time in violation of incompressibility; but because KS flow fields are incompressible by

construction this error is completely eliminated.

The energy spectrum E(k) can be chosen freely within a finite range of scales. In turbulent

particle pair studies the interest is in Kolmogorov-like power law spectra,

EðkÞ ¼ CEε2=3L5=3� pk� p; k1 � k � kZð¼ 2p=ZÞ; 1 < p � 3 ð28Þ

CE is a constant. The largest represented scale of turbulence is 2π/k1, and the smallest is the

Kolmogorov scale η = 2π/kη. The constant is normalized such that the total energy contained

in the range k1� k� kη is 3(u0)2/2, where u0 is the rms turbulent velocity fluctuations in each

direction. ε(p) is determined by integrating the spectrum,
R kZ

k1
EðkÞdk ¼ 3ðu0Þ2=2. (p = 1 is a

singular limit which is not consider here.) vη = (εη)1/3 is the velocity micrcoscale, and

τη = ε−1/3η2/3 is the Kolmogorov time micrcoscale.

The frequencies are chosen according to usual practice to be proportional to the eddy-

turnover frequencies, i.e. on ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
nEðknÞ

p
. The choice of λ is somewhat arbitrary, but pro-

vided λ< 1 it does not affect the diffusion scaling itself—even frozen field with λ = 0 yields the

same scaling [15]. λ = 0.5 is a common practice in KS which is also chosen here.

The distrbution of the wavemodes is geometric, kn = k1rn−1, with r = (kη/k1)1/(N−1). The grid

size in wavemode-space of the nth wavemode is dkn ¼ knð
ffiffi
r
p
� 1=

ffiffi
r
p
Þ.
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A particle trajectory is obtained by integrating the Lagrangian velocity WL(t),

dx
dt
¼WLðtÞ ¼Wðx; tÞ: ð29Þ

The method of computing trajectories in KS is well established in the literature, see previous

references above. Briefly, since an individual KS flow field realization is smooth and differen-

tiable, Eq (29) can be readily integrated using any standard method such as Runga-Kutta or

Predictor-corrector methods. The time step Δt should be smaller than any other time scale in

the system—in this case the Kolmogorov time scale τk = 2π/kη; thus we require Δt� τk. In our

simulations, particle trajectories are produced by integrating Eq (29) with a fixed time step of

Δt� 0.01τk in a fourth order Adams-Bashforth predictor-corrector method.

It is important to produce a very large ensemble of independent particle pair trajectories.

Only eight independent particle pairs are released in any one given KS flow realization, each

pair set part by more than an integral length scale. Each pair is initially released with a pair sep-

aration distance of l0/η = 0.5. To obtain a true ensemble, this process is repeated in many thou-

sands of KS flow realizations. (Releasing thousands of particle pairs in the same KS flow field

will not produce the required independence which may produce biased statistics.) Pairs of tra-

jectories are thus harvested over a large ensemble of flow realizations and pair statistics are

then obtained from it for analysis.

The turbulent diffusivity itself can be computed in two ways. Directly from the forumla

K(l) * hl � v(l)i, i.e. the ensemble average of the scalar producted of v and l. But it has been

found that using the equivalent formula, K(l) * dhl2i/dt, i.e. the derivative of the hl2i, con-

verges faster statistically needing a much smaller ensemble of trajectories, although the two

methods give identical results for large enesmbles of particle trajectories. The latter method

has been adopted here.

Lagrangian statistics are the physically meaningful output from KS. It is not correct to com-

pare the kinematically generated flow fields directly with DNS flow fields. As such, KS is like

Lagrangian methods such as Random Walk models where an individual particle trajectory has

no physical meaning, but the ensemble average over many such random trajectories produces

physically meaningful Lagrangian statistics.

3.3 Results

KS simulations were performed with L = 1, k1 = 1/L = 1, and kη = 106, CE = 1.5 (Kolmogorov

constant) and u0 = 1. There were 200 wavemodes per realization.

In Case 1 (swept frame of reference), E(k) = 0 for k< 1.

In Case 2, large scale random sweeping were added at the low wavenumber k0 = 1/10, with

E(k) = E0δ(k − k0). The energy in these sweeping scales, E0, was equal to the energy contained

in the von Karman turbulence spectrum for k< 1. k0 corresponds approximately to the loca-

tion of the peak in the von Karman spectrum.

In both cases, three different power spectra were considered with, respectively, p = 1.01,

5/3, and 3. With 8 pairs released in 5000 flow realizations, the Lagrangian statistics were

obtained from 40,000 particle pair trajectories.

Fig 3 shows log-log plots of the pair diffusivity K/(ηvη) against σl/η, for Case 1 (red lines)

and Case 2 (green lines). The energies in the two cases are different, so Case 2 plots have been

shifted vertically in order to compare the two cases directly. This does not affect the scalings

(the slopes) which is the main interest here. Hence the ordinate is shown without scale.

For p = 1.01, the two cases align with a constant power-law scaling, γ1.01� 1.07, over most

of the inertial subrange of scales and there is very little statistical noise, indicating that
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eIKðslÞ � 1 at all separations in this part of the inertial subrange in both cases. In this limit,

locality is very strong, and the relative motion is unaffected by the long range sweeping. The

obtained slope is indeed very close to the exact locality scaling of 1.005.

For p = 5/3 (Kolmogorov turbulence), in Case 1 (red) a clear power-law scaling is observed,

γKol� 1.53> 4/3, and very little statistical noise in the range 1< σl/η< 105, indicating that

eIKðslÞ � 1 in this range of scales. Case 2 (green) deviates increasingly from Case 1 at small

inertial separations where it is also accompanied with increasing levels of noise. Nevertheless,

the agreement between the two cases for σl/η> 102 is good.

For p = 3, the two cases overlap with a power-law scaling, γ3 = 2, with almost no statistical

noise. In this limit nearly all the energy is in the large scales and inertial range scaling is no

longer applicable; rather uniform strained motion with the characteristic slope of 2 is

obtained.

4 Discussion and conclusions

All the results in Fig 3 are consistent with the numerical analysis and the theoretical predic-

tions in section 3. The constant power law scaling over most of the inertial subrange of separa-

tions, 1< σl/η< 105, and the very low level of statistical noise in the swept frame of reference

are especially important. (The departure from this for σl/η< 1 observed in Fig 3 is outside of

the inertial subrange.)

The KS sweeping error in this frame of reference is therefore negligible for most practical

purposes. It is possible that KS could produce negligible sweeping errors in even bigger inter-

mediate ranges than reported here, but the current simulations are the maximum size of iner-

tial subrange possible, kη/k1 = 106, with double-precision accuracy.

It is remarkable that even when large scale sweeping is included, the KS sweeping errors

remain small in the range σl/η> 102.

It is also noted that some Direct Numerical Simulation (DNS) show pair diffusion which

appear to display locality scaling, see [24] for example. However, the maximum inertial range

obtained in DNS to date is around kη/k1� 102, which is much shorter than required to test

pair diffusion scaling reliably—that requires kη/k1 > 104. Thus the current KS results cannot

be compared directly with DNS at the present time. However, for low Reynolds KS has

been validated against DNS for turbulent pair diffusion by Malik & Vassilicos [20]; here not

only did the pair diffusion from KS closely match the DNS results with the same energy spec-

turm, but the fourth order statistic, the kurtosis in the pair separation, also matched remark-

ably well.

The main contribution of this work is that it has been shown that the departure from local-

ity scaling observed in KS cannot be attributed to the sweeping effect; in a reference frame

moving with the large energy containing scales in zero mean flow turbulence the sweeping

errors in the turbulent pair diffusion process in KS is negligible in the inertial subrange where,

1< σl/η< 105.

But if the sweeping errors in KS are negligible, why is locality scaling not observed for

p = 5/3 where KS yields γKol� 1.53 > 4/3—could the locality hypothesis itself be in error? This

cannot be concluded for certain from the present results alone—only detailed experiments or

DNS can provide a definitive answer to that, and both are decades away at the present time.

But the results presented here, do excite an important new line of thinking that has been

neglected in the turbulence community, but one which has as much validity per se as the local-

ity hypothesis itself. A non-local theory of pair diffusion that could explain the observed results

and available data is currently the subject of active research by the author.
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Fig 3. The turbulent diffusivity as log(K/(ηvη)) against log(σl/η) obtained from KS. From top to bottom,

p = 1.01, 5/3, 3. Case 1 (red lines), Case 2 (green lines). No scale is show on the vertical axis because the

energies in the two cases are different and Case 2 plots have been shifted vertically in order to compare the

two cases directly. This does not affect the scalings (the slopes).

https://doi.org/10.1371/journal.pone.0189917.g003
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