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Paraoxonase 1 (PON1) activity is markedly influenced by coding polymorphisms, Q/R at position 192 and M/L at position 55 of
the PON1 gene. We investigated the frequencies of these polymorphisms and their effects on PON1 and antioxidant activities in
844 South African mixed ancestry individuals. Genotyping was done using allele-specific TaqMan technology, PON1 activities
were measured using paraoxon and phenylacetate, oxidative status was determined by measuring the antioxidant activities of ferric
reducing antioxidant power and trolox equivalent antioxidant capacity, and lipid peroxidation markers included malondialdehyde
and oxidized LDL.The frequencies of Q192R and L55M were 47.6% and 28.8%, respectively, and the most common corresponding
alleles were 192R (60.4%) and 55M (82.6%). The Q192 was significantly associated with 5.8 units’ increase in PON1 concentration
and 15.4 units’ decrease in PONase activity after adjustment for age, sex, BMI, and diabetes, with suggestion of differential effects
by diabetes status. The PON1 L55 variant was associated with none of the measured indices. In conclusion, we have shown that the
Q192R polymorphism is a determinant of both PON1 concentration and activity and this association appeared to be enhanced in
subjects with diabetes.

1. Introduction

Paraoxonase 1 (PON1) is a calcium dependent esterase
synthesized in the liver and widely distributed in tissues
including liver, kidney, intestine, and serum, where it asso-
ciates with high-density lipoprotein (HDL). The enzyme has
a dual physiological function in humans. First, it catalyzes the
breakdown of various toxic organophosphate (OP) pesticides
and nerve gases, including paraoxon, diazoxon, sarin, and
soman [1, 2], which are potent acetylcholinesterase (AChE)
inhibitors. Secondly, PON1 is increasingly acknowledged
as an atheroprotective enzyme due to its in vitro ability
to inhibit oxidative modifications of LDL [3], HDL [4],
macrophages [5], atherosclerotic lesions [6], and augment

cholesterol efflux from macrophages [7]. In addition, PON1
lowers inflammatory responses in the arterial wall by destroy-
ing biologically active lipids in mildly oxidized LDL [8],
impairing the differentiation of monocytes to macrophages
[9], and decreasing monocyte chemotaxis and adhesion to
endothelial cells [10]. Decreased PON1 activities have been
reported in diseases with accelerated atherogenesis including
diabetes and familial hypercholesterolemia [11–13].

The activity of the enzyme is markedly influenced by
polymorphisms on the coding and promoter regions of the
PON1 gene. The coding polymorphisms are Q/R at position
192 andM/L at position 55 which result in isozymes differing
greatly in their activity toward various substrates [2, 14, 15].
TheR isoformhydrolyzes paraoxon faster than theQ isoform,
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whereas diazoxon, soman, and sarin are hydrolyzed at a
higher rate by the Q than R isoform [2]. In contrast, the R iso-
form is less effective at hydrolyzing lipid peroxides than theQ
isoform [2].TheM and L alleles are associated with lower and
higher serum PON1 concentrations, respectively [16]. The
distribution of the Q192R and L55M polymorphisms widely
varies worldwide. For example, the frequency of the PON1
Q192 allele has a high frequency in Caucasians (0.70) [17,
18], but a considerably lower frequency in Mexicans (0.48)
[19] and African-Americans (0.34) [18]. The PON1 L55 allele
predominates in nearly all populations but variations still
exist, for example, between Taiwanese (0.97) [20], Gabonese
(0.695) [21], Turkish (0.39) [22], and Iranians (0.59) [23].

This study was undertaken to investigate the frequencies
of PON1 Q192R and L55M polymorphisms and their pos-
sible relationship with PON1 activity and indices oxidative
status (ferric reducing antioxidant power, trolox equivalent
antioxidant capacity, malondialdehyde, and oxidized LDL).
Herein, we investigated the mixed ancestry population from
South Africa that has been shown to have one of the highest
prevalence of type 2 diabetes in SouthAfrica and sub-Saharan
Africa at large [24].

2. Materials and Methods

2.1. Study Setting and Population. Details of the study includ-
ing survey design and procedures have been described
elsewhere [24, 25]. Study participants were members of a
cohort study conducted in a mixed ancestry township (Bel-
lville South) which is located within the Northern suburbs
of Cape Town, Western Cape, South Africa. The mixed
ancestry population of South Africa, sometimes referred
to as “coloured,” is of mixed genetic origin with contri-
butions from Europeans, South Asians, Indonesians, and
a population genetically close to the isiXhosa sub-Saharan
Bantu [26]. The study was approved by the research ethics
committees of Stellenbosch University (reference number:
N10/04/118) and theCapePeninsulaUniversity of Technology
(CPUT/HW-REC 2010/H017) and was conducted according
to the Code of Ethics of the World Medical Association
(Declaration of Helsinki). All participants signed written
informed consent after all the procedureswere fully explained
in the language of their choice. All participants received
a standardized interview and physical examination during
which blood pressure was measured according to the World
Health Organisation (WHO) guidelines [27] using a semi-
automated digital blood pressure monitor (Rossmax PA,
USA) on the right arm in a sitting position. Anthropometric
measurements were performed three times and their aver-
age used for analysis: weight (kg), height (cm), and waist
(cm) and hip (cm) circumferences. Participants with no
history of doctor diagnosed diabetes mellitus underwent a
75 g oral glucose tolerance test (OGTT) as recommended
by the WHO [28]. Further, the following biochemical
parameters were determined on the Cobas 6000 Clinical
Chemistry instrument (Roche Diagnostics, Germany): fast-
ing plasma glucose, insulin, total cholesterol (TC), high
density lipoprotein cholesterol (HDL-c), triglycerides (TG),

C-reactive protein (CRP), 𝛾-glutamyltransferase (GGT), and
glycated haemoglobin (HbA1c) certified by National Gly-
cohaemoglobin Standardisation Programme (NGSP). Low
density lipoprotein cholesterol (LDL-c) was calculated using
Friedewald’s formula [29]. Serum cotinine was measured by
chemiluminescent assay (Immulite 1000, Siemens).

2.2. Total Antioxidant Capacity. The total antioxidant capac-
ity in plasma samples was assessed using the ferric reducing
antioxidant power (FRAP) and trolox equivalent antioxidant
capacity (TEAC) assays. FRAP was done according to the
method of Benzie and Strain [30]. Briefly, plasma samples
were mixed with FRAP reagent, incubated for 30min at
37∘C, and the absorbance at 593 nm was recorded using a
spectrophotometer (Spectramax plus384 Molecular devices,
USA). The TEAC assay was according to Re et al. [31]
and is based on monitoring (at 734 nm) the oxidation of
2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radi-
cal (ABTS) cation formed by reacting ABTS and potassium
persulfate. Distilled water was used instead of PBS to dilute
the ABTS+ radical solution.

2.3. Paraoxonase Activity. Paraoxonase (PONase) and aryles-
terase (AREase) activities were measured using paraoxon
and phenylacetate (Sigma Aldrich, SA) as substrates, respec-
tively. PONase activity was measured using the method
of Richter and Furlong [32] from the initial velocity
of p-nitrophenol production at 37∘C and the increased
absorbance at 405 nm was monitored on a spectropho-
tometer (Spectramax plus384, Molecular devices, USA).
Each serum sample was incubated with 5mmol/L eserine
(Sigma Aldrich, SA) for 15 minutes at room temperature
to inhibit serum cholinesterase activity which is usually
elevated in diabetes and would otherwise interfere with the
determination of paraoxonase activity in serum fromdiabetic
individuals. PON-1 activity of 1 U/L was defined as 1 𝜇mol
of p-nitrophenol hydrolyzed per minute. A slightly modified
method of Browne et al. [33] was used to measure AREase
activity. The working reagent consisted of 20mmol/L Tris-
HCl, 4mmol/L phenyl acetate, pH 8.0, with 1.0mmol/L
CaCl
2
(Sigma Aldrich, SA). The reaction was initiated by

adding 5 𝜇L of 40-fold tris-diluted samples to 345𝜇L of the
working reagent at 25∘C.The change in absorbance at 270 nm
was recorded for 60 minutes after a 20-second lag time
on a Spectramax plus384 spectrophotometer. The activity,
expressed as kU/L, was based on themolar absorptivity (1310)
of phenol at 270 nm. In both assays, the rates used to generate
the data points were derived from the linear portions of the
rate versus time plots.

2.4. Lipid Peroxidation. Plasma MDA and ox-LDL were
used as markers of lipid peroxidation (LPO). The method
of Jentzsch et al. [34] was used to estimate the thiobar-
bituric acid reactive substances (TBARS) which reflect the
production of MDA. Plasma ox-LDLs were measured using
a quantitative sandwich ELISA kit (Cellbiolabs, San Diego,
California).
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Table 1: Genotype distributions, minor allele frequencies, and unadjusted 𝑃 values for comparing genotype distributions according to
diabetes status, and additive allelic effects between diabetes groups.

Without diabetes Diabetes 𝑃 Overall Men Women 𝑃

𝑁 606 238 844 208 636
PON1 rs662

QQ192, 𝑛 (%) 97 (16.0) 36 (15.1) 0.028 133 (15.8) 32 (15.4) 101 (15.9) 0.722
Q192R, 𝑛 (%) 272 (44.9) 130 (54.6) 402 (47.6) 104 (50.0) 298 (46.9)
192RR, 𝑛 (%) 237 (39.1) 72 (30.3) 309 (36.6) 72 (34.6) 237 (37.3)
Q, 𝑛 (%) 466 (38.4) 202 (42.4) 668 (39.6) 168 (40.4) 500 (39.3)
R, 𝑛 (%) 746 (61.6) 274 (57.6) 1020 (60.4) 248 (59.6) 772 (60.7)
HWE (𝑃 value) 0.199 0.085 0.943 0.666 0.678

PON1 rs854560
55MM, 𝑛 (%) 420 (69.3) 156 (65.6) 0.168 576 (68.3) 152 (73.1) 424 (66.7) 0.066
L55M, 𝑛 (%) 172 (28.4) 71 (29.8) 243 (28.8) 54 (26.0) 189 (29.7)
LL55, 𝑛 (%) 14 (2.3) 11 (4.6) 25 (3.0) 2 (1.0) 23 (3.62)
L, 𝑛 (%) 200 (16.5) 93 (19.5) 293 (17.4) 58 (13.9) 235 (18.5)
M, 𝑛 (%) 1012 (83.5) 383 (80.5) 1395 (82.6) 358 (86.1) 1037 (81.5)
HWE (𝑃 value) 0.556 0.412 >0.999 0.383 0.694
HWE: Hardy-Weinberg Equilibrium (HWE 𝑃 values are from exact tests).

2.5. Genotyping. DNAwas extracted fromwhole blood using
the salting-out method of Miller et al. [35]. Conventional
polymerase chain reaction (PCR) followed by direct DNA
sequencing was performed for detection of the wild type,
heterozygous, and homozygous genotypes of PON1 single
nucleotide polymorphisms (SNPs),Q192R (rs662, A>G), and
L55M (rs854560, T>A). These internal control samples were
subsequently used for analytical validation of high through-
put genotyping performed on DNA samples extracted from
the study participants, using the Applied Biosystems (ABI)
TaqMan SNP Genotyping Assays on the ABI Prism 7900HT
platform (Applied Biosystems, USA).

2.6. Definitions. Body mass index (BMI) was calculated as
weight per square meter (kg/m2) and waist-hip-ratio (WHR)
as waist/hip circumferences (cm). Type 2 diabetes status was
based on a history of doctor-diagnosis, a fasting plasma
glucose ≥7.0mmol/L, and/or a 2-hour post-OGTT plasma
glucose ≥11.1mmol/L. The homeostatic model assessment of
insulin resistance (HOMA-IR) was calculated according to
the following formula: HOMA-IR = [fasting insulin concen-
tration (mIU/L) × fasting plasma glucose (mmol/L)]/22.5;
while functional 𝛽-cells (HOMA-B%) were estimated using
the formula: 20 × fasting insulin (𝜇IU/mL)/fasting glu-
cose (mmol/mL) − 3.5. The quantitative insulin-sensitivity
check index (QUICKI) as 1/[log(fasting insulin (𝜇U/mL)) ×
log(fasting glucose (mg/dL))].

2.7. Statistical Methods. Of the 946 participants who took
part in the survey, 941 consented for genetic studies. Among
the latter, 103 were excluded for missing data on the genetic
variables. Oxidative status profilewas assessed in 491 subjects,
but 121 were also excluded on account of missing consent
or fully matching biochemical and genetic data. Therefore,
844 and 370 subjects had valid data for the overall genetic

and genetic-oxidative stress analyses, respectively. General
characteristics of the study participants are summarized as
count and percentage for dichotomous traits, mean and stan-
dard deviation (SD), or median and 25th–75th percentiles
for quantitative traits. Traits were log-transformed to approx-
imate normality, where necessary, prior to analysis. SNPs
were tested for departure from Hardy-Weinberg Equilibrium
(HWE) expectation via a chi square goodness of fit test. Link-
age disequilibrium (LD) was estimated using the D statistic.
The chi square analysis of the variance (ANOVA) andKruskal
Wallis test were used to compare baseline characteristics
across allele’s distribution.The interaction between SNPs was
assessed through robust linear regression models, assuming
additive models for the SNPs. Results corresponding to 𝑃
values below 5% are described as significant. We did not
adjust for multiple testing. All analyses used the statistical
package R (version 3.0.0 [2013-04-03], The R Foundation for
statistical computing, Vienna, Austria).

3. Results

3.1. Distribution of PON1 Polymorphisms. Of the 844 subjects
(men 208, 24.6%) 238 (28.2%) had diabetes, 478 (56.6%)
were hypertensive, and the average age was 56.6 (15.5)
years. Genotype and allele frequencies for the L55M and
Q192R polymorphisms in the overall cohort as well as across
genders and diabetes status are summarized in Table 1. The
frequencies of Q192R and L55M were 47.6% and 28.8%,
respectively, and the most common corresponding alleles
were 192R (60.4%) and 55M (82.6%). Frequencies for both
polymorphisms were not different betweenmajor subgroups,
except for the Q192R genotype which differed significantly
according to diabetes status (𝑃 = 0.028). Observed and
expected frequencies for both polymorphismswere inHardy-
Weinberg equilibrium overall and within major subgroups
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(all 𝑃 ≥ 0.085). The linkage between the two polymorphisms
was moderate in the overall sample (D = 0.470, 𝑃 < 0.0001)
but comparatively weaker in men (D = 0.199, 𝑃 = 0.0001),
women (D = 0.290, 𝑃 < 0.0001), and in participants with
(D = 0.219, 𝑃 < 0.0001) or without diabetes (D = 0.283,
𝑃 < 0.0001).

3.2. Baseline Profile Overall and Across PON1 Genotypes. The
distribution of the baseline characteristics was not different
within the various PON1 genotypes with respect to age,
sex, adiposity, lipid profile prevalence of hypertension, and
insulin resistance (Table 2). This, however, was not the case
for prevalent diabetes (𝑃 = 0.028) and systolic blood pressure
levels (𝑃 = 0.04) across Q192R polymorphism, and fasting
plasma glucose (𝑃 = 0.019), 2 hr glucose (𝑃 = 0.038), and
HbA1c (𝑃 = 0.004) across L55M polymorphism (Table 2).

3.3. PON1 and Oxidative Status Profile Across Genotypes.
Table 3 shows the distribution of indices of PON1 and
antioxidant activities across the genotypes. PON1 (𝑃 =
0.015), PONase (𝑃 < 0.0001), Ox-LDL (𝑃 = 0.029), TBARS
(𝑃 = 0.006), and to some extent TEAC (𝑃 = 0.053)
were significantly different across genotype of PON1 Q192R
polymorphism, whereas fasting glucose (𝑃 = 0.019), 2-hour
glucose (𝑃 = 0.038), and HbA1c (𝑃 = 0.0004) varied across
PON1 L55M genotypes.

Table 4 shows the results from robust linear regression
analyses for the prediction of PON1 and antioxidant status
indices by the two PON1 variants. The PON1 Q192 polymor-
phism was significantly associated with PON1 concentration
and PONase activity resulting in unit increases of 6.8 and
decreases of 18.3, respectively. The association remained sig-
nificant when the models were expanded stepwise to include
age, sex, BMI, and diabetes with only modest attenuation
of the effect size. However, when the interaction term of
diabetes and Q192 was added to multivariable models, the
main effect of the polymorphism remained significant for
the prediction of PONase but was substantially attenuated
for PON1 concentration with a borderline association (𝛽 =
3.79, 𝑃 = 0.08). Furthermore, the effect of the interaction
term diabetes∗Q192 was significant for the prediction of
PON1 concentration (interaction 𝑃 = 0.007), but not
for PONase, suggesting that the effect of the variant on
PON1 concentrationwasmore important in participants with
diabetes (Table 4). Alone or with the other covariates in the
models, the PON1 L55 was not significantly associated with
any of the measured indices. However, there was a suggestion
of a significant interaction by diabetes status in the effect of
PON1 L55 on ox-LDL levels (interaction 𝑃 = 0.013), with
suggestion of a positive effect on ox-LDL levels in participants
with diabetes and a negative or no effect in participants
without diabetes (𝛽 = −395.49, 𝑃 = 0.075) for the main
effect of the variant in themultivariablemodel containing the
interaction term gene∗diabetes. In the polymorphisms only
model (with and without their interaction term), the effects
of variants on PON1 concentration and PONase remained
significant for PON1 Q192 and nonsignificant for PON1 L55.

Effects on other analytes remained unchangedwith always no
evidence of Q192∗L55 polymorphic interaction (Table 4).

4. Discussion

Paraoxonase 1 polymorphisms Q192R and L55M have been
reported to explain over 90% of total phenotypic variance in
PON1 activity using several substrates of the enzyme [36]. In
this study, we used paraoxon and phenylacetate substrates to
characterize the influence of both Q192R and L55M PON1
polymorphisms onPON1 concentrations and enzyme activity
in a mixed ancestry population from South Africa. Only
the Q192R appeared to be functional in this population as
it was associated with both PON1 concentration and the
paraoxonase activity. We observed that the presence of Q192
was associated with 15.4U/L decrease and 5.8𝜇g/mL increase
in PON1 activity and concentration after accounting for the
effects of age, sex, BMI, and diabetes. There was indication
that the effect of the variant on PON1 concentrationwasmore
important in participants with diabetes. In parallel, we report
PON1 QQ192 to be associated markers of oxidative stress
(ox-LDL and TBARS) and total antioxidants (TEAC) only
in cross-genotype comparison, but not in linear regression
(irrespective of the level of adjustment), possibly suggesting
the absence of a relationship, the nonlinearity of the associ-
ation if any, or the inadequacy of the log-additive model to
approximate such an association.

PON1 activity can be measured using different substrates
and reports have shown that the effect of PON1 polymor-
phisms varies according to the substrate used [2, 14, 15].
Among three of the commonly used substrates (paraoxon,
phenyl acetate, and dihydrocoumarin), the most pronounced
genotype effects were for PON1 paraoxon [36]. Previous
studies have associated the R allele with higher risk and/or
incidence of atherosclerotic heart disease in various popu-
lations such as Indians [37], Japanese [38], and Dutch [39].
On the other hand, Bhattacharyya et al. [40] conducted
a prospective study of 1399 patients and reported higher
serum levels of PON1 activity, lower systemic indices of sys-
temic oxidative stress, and corresponding reductions in both
prevalent coronary artery disease and prospective cardiac
events in PON1 192RR carriers. Similarly, the findings of the
present study appear to suggest a decreased atherosclerotic
risk in subjects with PON1 192R since the presence in the
PON1 Q192 was significantly associated with reduction of
PON1 activity which in turn has been associated with the
development of CVD [41, 42]. Furthermore, PON1 QQ192
genotype was associated with increased PON1 concentration
especially in subjects with diabetes. Our results could perhaps
be explained by the different effect of the genotypes on HDL-
bound PON1 since PON1 has to be bound toHDL to perform
its antiatherosclerosis function [4]. The Q192 alloenzyme
binds to the HDL particle with 3-fold lower affinity than
the R192 alloenzyme [43], but the HDL-bound QQ192 PON1
has been shown to be more effective at protecting the
oxidation of LDL [2, 44]. Furthermore, it has been shown
that increased HDL-bound PON1 content does not alter the
HDL composition or properties but protects it from lipid
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peroxidation [4]. Taken together, our results show that the
R allele increases PON1 activity but also indicate that the
PON1QQ192may be important in individuals with increased
oxidative stress such as diabetes even though it suppresses
the activity of the enzyme. Our findings, however, need to be
confirmed in prospective studies with a larger sample size.

In our study we also show the predominance of PON1
55M (82.6%) in this population, an unusual finding reported
in only one other study in much lower proportion (61%)
[22].The PON1 L55 PON1 has been associated with increased
PON1 activity [45]; however, this was not apparent in this
study. It is however worth noting that the distribution of
indices of glycaemic control (FBG, 2 hr glucose, and HbA1c)
differs significantly across the L55M genotypes which may
suggest an association with poorer glucose control and there-
fore glycation-enhanced oxidative stress. Although we had a
relatively large population for robust linear regression studies
based on the number of predictors assessed in the current
study, it is likely that the low frequency of some genotypes (in
PON1 L55M in particular) has affected our power for uncov-
ering some significant associations. However, our study also
hasmajor strengths. Unlikemany existing studies, in addition
to PON1 polymorphisms, we measured PON1 protein levels
and activity by two methods and assessed oxidative status
via several methods to demonstrate the consistency of our
results.

In conclusion, we have shown that the Q192R poly-
morphism is a determinant of both PON1 concentration
and activity. This association appeared to be enhanced in
subjects with diabetes, thus suggesting a need to adjust
for potential genetic confounding in future PON1 studies,
involving diabetic subjects.
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