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ABSTRACT

A universal property of all rRNAs explored to date is the prevalence of post-transcriptional (“epitranscriptional”) modifi-
cations, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications
an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome?
In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously
thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a devel-
opmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting
such heterogeneity with function.
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Ribosomes are massive macromolecular complexes, often
conceptualizedasuniformentities and“factories”ofprotein
translation. The assumption that ribosomes are an invariable
homogenous entity suggests that they lack an inherent abil-
ityof regulating the translationaloutputof acell ororganism.
In recent years, however, it has become clear that ribosomes
are considerably more heterogeneous than had previously
been thought. Specifically, it was shown that ribosomes
can differ in their primary ribosomal RNA (rRNA) sequence,
in the composition of ribosomal proteins, as well as in the
post-translationalmodificationprofiles of the ribosomal pro-
teins (López-López et al. 2007; Slavov et al. 2015; Brown
et al. 2017; Shi et al. 2017; Simsek et al. 2017; Fujii et al.
2018; Małecki et al. 2021); this has been extensively re-
viewed (Sergiev et al. 2011; Xue and Barna 2012;
Kobayashi 2014; Sloan et al. 2016a; Bates et al. 2018;
Genuth and Barna 2018a,b; Gerst 2018; Ferretti and
Karbstein 2019). An emerging layer of heterogeneity be-
tween ribosomes lies in diverse post-transcriptional modifi-
cations to which the rRNA is subjected. This layer, and its
potential for regulating the functional properties of the ribo-
some, form the topic of this mini-Review.

rRNA MODIFICATIONS: DISTRIBUTION AND
BIOGENESIS

Ribosomes are composed of a highly conserved catalytic
rRNA core and dozens of auxiliary proteins. A universal

property of all rRNAs explored to date is the prevalence
of post-transcriptional (“epitranscriptional”) modifications,
which expand the chemical and topological properties of
the four standard nucleosides (Sharma and Lafontaine
2015; Sloan et al. 2016a). Dozens to hundreds of residues
are modified across ribosomes from different domains of
life, with E. coli rRNA harboring 36modifications (Golovina
et al. 2012), yeast 112 (Taoka et al. 2016), human 228
(Taoka et al. 2018), and the protist Euglena gracilis rRNA
containing 350 modified sites (Schnare and Gray 2011). A
core set of rRNA modifications is conserved across the
three domains of life (Sergiev et al. 2018), and these mod-
ifications typically cluster around the functional centers of
the ribosome (Ben-Shem et al. 2011; Sloan et al. 2016b).
There is a remarkable diversity of modifications that adorn
the ribosome, including diverse forms ofmethylation, acet-
ylation, and pseudouridylation. In terms of density of mod-
ification patterns, rRNA is second only to tRNA.
rRNA modifications are catalyzed through a diverse set

of RNA-modifying enzymes. The vast majority of enzymes
directly recognize and modify their targets. In eukaryotes
and archaea, a subset of RNA modifying enzymes are re-
cruited to their targets via small nucleolar RNAs
(snoRNAs), which harbor stretches of complementarity to-
ward specific rRNA targets and thereby guide the modify-
ing enzyme into place (Kiss-László et al. 1996; Ganot et al.
1997; Ni et al. 1997; Sharma et al. 2017b). The appearance
of snoRNAs in evolution correlates with a dramatic
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expansion of rRNA modifications guided by them, primar-
ily pseudouridine and ribose methylations (Lafontaine and
Tollervey 1998). This may be due to the relative ease with
which snoRNAs can evolve or duplicate and acquire new
targets, in comparison to the greater difficulty of an entire
enzyme evolving new specificity without compromising its
catalytic activity.

rRNA MODIFICATIONS: FUNCTIONS

Although the first rRNAmodifications were already discov-
ered six decades ago (Lane and Allen 1961; Lane 2014),
and have been subjected to considerable investigation
ever since, their functions are understood only to a limited
extent. We currently lack a systematic understanding of
which properties are conferred via which modifications,
and how. Nonetheless, it is becoming increasingly clear
that there is no single function of rRNA modifications.
This need not come as a surprise, given the highly hetero-
geneous chemical natureof rRNAmodifications, thewidely
distinct machineries giving rise to their formation, the dif-
ferent regions of the ribosome at which they are catalyzed,
the variability in the relative timing of their deposition with
respect to ribosome biogenesis and the different cellular
compartments at which they are deposited.

Given the paramount importance of the ribosome, the
universality of rRNA modifications across all domains of
life, their enrichment at functional regions of the ribosome,
and their high conservation between very distantly related
species, it is to be expected that rRNAmodifications would
be critical components of cells, and that their absence re-
sults in dramatic phenotypes. Indeed, such is the case for
a number of modifications, where for example in yeast, ab-
senceof a singlemodifyingenzyme installingmodifications
at one of several sites required for 18S biogenesis is lethal
(Lafontaine et al. 1994, 1995; Liang et al. 2009; Schilling
et al. 2012; Peifer et al. 2013; Ito et al. 2014; Zorbas et al.
2015). Yet, genetic dissectionof rolesplayedby rRNAmod-
ifications have consistently given rise to two surprises. First,
despite the high conservation of many modifications and
associated modifying enzymes, their disruption often re-
sults in subtle or even indiscernible phenotypes. For exam-
ple, eliminationof one or even twomodifications in helix 69
of the ribosome, which interacts with both A and P site
tRNAs, resulted in no discernible phenotype (Liang et al.
2007). Only when three or more modifications were elimi-
nated from this helix, did phenotypes become apparent.
In one case, a lethal phenotype caused by deletion of an
rRNA modifying enzyme involved in ribosome biogenesis
could even be rescued by deletion of additional genes in-
volved in rRNA modifications (Buchhaupt et al. 2006,
2007; García-Gómez et al. 2011). A second—related—sur-
prise, consistently manifesting itself in yeast studies, is that
catalytically defective rRNA modifying enzymes often give
rise tomuchmilder phenotypes than deletions of the entire

genes (Lafontaineet al. 1995,1998; Zebarjadianet al. 1999;
Sardana and Johnson 2012; Peifer et al. 2013; Sharma et al.
2013a; Gigova et al. 2014; Zorbas et al. 2015; Liger et al.
2016; Shen et al. 2020). These studies suggest that in
many cases rRNAmodifications are dispensable (or partial-
ly so), whereas the rRNA modifying enzyme is not.

These insights from genetic studies coupled with exten-
sive follow-ups have given rise to two broad roles of ribo-
some modifying enzymes—modification dependent
functions and modification independent ones. A first set
of roles, which is often at least partially modification inde-
pendent, is in facilitating the multistep rRNA maturation.
rRNA is typically transcribed as a single precursor, which
is subsequently subject to complex exo- and endonucleo-
lytic cleavage events, giving rise to the large and small
rRNA subunits that concomitantly need to fold and as-
semble into their proper structure (Demirci et al.
2010; Polikanov et al. 2015; Jiang et al. 2016; Sloan et al.
2016a; Aubert et al. 2018; Birkedal et al. 2020). Loss-of-
function assays have revealed that some rRNA modifying
enzymes are required for this processing (Lafontaine et al.
1995; Liang et al. 2009; Sharma et al. 2013b) and their
loss results in accumulation of ribosome precursors. The
fact that rRNA modifying enzymes, but often not the mod-
ifications themselves, are required for mediating this role
suggests that in these contexts the enzymes serve a scaf-
folding or chaperoning function, assisting in the proper
folding of the ribosome (Lafontaine et al. 1995; Shen
et al. 2020). Indeed, ageneral chaperoning functionwas re-
cently also proposed for snoRNAs (Huang and Karbstein
2021). Such a modification-independent function of RNA
modifying enzymes is reminiscent of modification-inde-
pendent chaperone-like roles for tRNA modifying en-
zymes. Among the best characterized examples for this is
TruB, a highly conserved tRNApseudouridine synthase, in-
stalling pseudouridine at position 55 of tRNA. Remarkably,
studies in bacteria found that the catalytic activity of this en-
zyme is dispensable for bacterial fitness, whereas the RNA-
binding domain of this enzyme is essential for proper fold-
ing and aminoacylation of the tRNA (Gutgsell et al. 2000;
Keffer-Wilkes et al. 2016), strongly suggesting that the pri-
mary function of this enzyme is to chaperone the folding of
the tRNA. A second set of roles, dependent on the modifi-
cations, is in facilitating RNA:RNA or RNA:protein contacts
between the key components of the ribosome—rRNA,
tRNA, mRNA, and proteins (Sergiev et al. 2011; Polikanov
et al. 2015; Sharma and Lafontaine 2015; Sas-Chen et al.
2020). In principle, both modification-dependent and in-
dependent roles can manifest in the broad range of func-
tional outcomes associated with disruption of diverse
rRNA modifying enzymes, including aberrant assembly,
aberrant structures, aberrant translational activity, reduced
translational output, reduced amino acid incorporations,
increased stop codon readthrough, and modulation of
frameshift rate (King et al. 2003; Liang et al. 2007, 2009;
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Baudin-Baillieu et al. 2009; Sloan et al. 2016a; Sergiev et al.
2018). Yet, due to the subtlety of the phenotypes and the
difficulties in dissecting them, the functions of most modi-
fications remain to a large extent elusive (Lafontaine et al.
1995; Phillips and de Crécy-Lagard 2011; Spenkuch et al.
2014; Sharma and Lafontaine 2015; Popis et al. 2016;
Ayadi et al. 2019).

HETEROGENEOUS AND DYNAMIC rRNA
MODIFICATIONS

In recent years, compelling evidence has accumulated for
heterogeneity in ribosome composition at various levels.
In zebrafish, ribosomes are expressed from two separate
genomic loci, differing significantly in sequence, whereby
one locus serves for transcription of maternal rRNA and
the other for zygotic rRNA (Locati et al. 2017). Similarly, in
Plasmodium falciparum, different diverging copies of
rRNA are encoded, one of which is utilized during themos-
quito-stage and another during the human-stage of the in-
fection (Rogers et al. 1996; Vembar et al. 2016). At the level
of protein composition, compelling evidence has emerged
that ribosomes lacking specific ribosomal proteins exist
within mouse embryonic stem cells (Slavov et al. 2015;
Shi et al. 2017), yeast (Ferretti et al. 2017; Collins et al.
2018; Samir et al. 2018) and bacteria (Loveland et al.
2016), though questions remain as to the functionality of
such ribosomes. Moreover, there are numerous amino ac-
ids within ribosomal proteins that accomodate post-trans-
lational modifications, affecting stability, structure,
localization, and function (Hornbeck et al. 2015; Simsek
and Barna 2017; Emmott et al. 2019; Li and Wang 2020).
Many post-translational modifications are heterogeneous,
and are responsive to stimuli like growth signals (Imami
et al. 2018), and immune response (Mukhopadhyay et al.
2008), often leading to preferential translation of mRNAs.
Protein and rRNA paralogs provide yet another source of
heterogeneity, where gene duplication has resulted in
very similar or identical isoforms but expressed from differ-
ent genomic loci (Gerst 2018; Segev and Gerst 2018; Nurk
et al. 2021).
These discoveries, combined with advances in genomic

and mass-spectrometry based approaches for systemati-
cally measuring RNA modifications, have spurred explora-
tions into the extent of heterogeneity of rRNA
modifications. Such heterogeneity is of interest at two lev-
els: First, howheterogeneous is an rRNAmodificationwith-
in a specific condition, that is, what is the stoichiometry of
thatmodification in the ribosomes. Second, howheteroge-
neous is an rRNAmodification between samples, for exam-
ple, across different conditions, stimuli or pathological
states. These two levels are not completely unrelated: sites
that are substoichiometric within a sample also tend to
change across samples (Sharma and Lafontaine 2015;
Ayadi et al. 2019). To date, both dimensions have been

sampled relatively sparsely, and our knowledge is hence
partial at best. Below we review some of the key themes
that have been uncovered to date.

1. Less than half of modified sites in yeast and human
ribosomes are substoichiometric: To date, most
studies have focused primarily on yeast and human ri-
bosomes. Quantitative mass-spectrometry based mea-
surements revealed that in yeast, 12 (of 112) sites have
stoichiometries ranging from 50%–80% and 28 sites
from 80%–95%. In addition, one site (25S:U2345) can
be either modified with a ribose methylation or with a
pseudouridine or both (Taoka et al. 2016), highlighting
that heterogeneity can stem from a single position har-
boring multiple modification types. In human the het-
erogeneity is even more dramatic, whereby almost
half the sites are modified at substoichiometric levels:
22 (of 228) sites are modified at levels ranging from
5%–49%, 23 sites from 50%–79%, and 64 sites falling
in the range of 80%–95% (Taoka et al. 2018). Similar
findings, pertaining to a subset of sites exhibiting sub-
stoichiometric pseudouridines and 2′-O methylation
sites were found by later studies (Sharma et al. 2017a;
Marchand et al. 2020).

2. A minority of modified sites exhibit changes in mod-
ification levels across different conditions in human
and yeast: Variability in rRNAmodification levels across
conditions have been observed, to date, in aminority of
instances in human and yeast. In a study in S. pombe,
modification stoichiometries were sampled via mass-
spectrometry across a range of different temperatures,
and of the 40 sites that could be quantified across all
temperatures, six sites displayed a >20% difference in
stoichiometries across conditions, all of which harbor
pseudouridines (Taoka et al. 2015). An analysis of
pseudouridine on rRNA during human chondrogenic
differentiation revealed that a small subset of sites dis-
played relatively moderate changes in stoichiometry
over the course of this process. The same study report-
ed that typically subtle changes in pseudouridylation
levels were present across many sites, when comparing
fibroblasts, HEK293, and HeLa cells (Marchand et al.
2020). Another recent study observed a change in
pseudouridylation levels of one site during stem cell
differentiation, corresponding to induced levels of the
snoRNA targeting it (McCann et al. 2020). Differences
in ribose methylation levels were also observed in p53
knockout models, whereupon 13 (of 106) sites in human
were hypomodified in comparison to WT (Sharma et al.
2017a). Furthermore, it was recently observed that
many types of cancer show substoichiometric levels of
the highly conserved hypermodified base m1acp3Y
(Babaian et al. 2020). Finally, it was found that the uni-
versally conserved tandem adenosines at the 3′ end
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of 18S rRNA, thought to be constitutively di-methylated
(m6,6A), can also be mono-methylated (m6A), and that
the extent of monomethylation versus dimethylation is
regulated by sulfur levels (Liu et al. 2021).

3. The majority of substoichiometric and “dynamic”
sites are ribose methylations and pseudouridines: A
shared finding in many of the above studies is that the
majority of sites reported to be either “substoichiomet-
ric” or “dynamically regulated” in human and yeast are
modified either with pseudouridine or with 2′-O-meth-
ylation. To some extent, this mirrors the relative abun-
dance of these modifications, and that the techniques
used by some studies were directed exclusively against
these modifications and hence blind to all others.
Nonetheless, this conclusion is also based on mass-
spectrometry based approaches, which do not suffer
from these limitations, and hence may suggest that
these two modifications may be inherently less “consti-
tutive” in human and yeast. Given that these two modi-
fications are both guided by snoRNAs, it is tempting
to speculate that the substoichiometric modifications
associated with a subset of them may reflect this
snoRNA-mediated biogenesis. By separating the cata-
lytic from the targeting machinery, individual snoRNAs
may have acquired more flexibility in evolving optimal
affinities toward their targets (whereby “optimal” can,
at times, also be substoichiometric) and may have at-
tained more freedom in evolving optimal expression
levels for their individual targets.With respect to the lat-
ter, snoRNAs certainly provide a potential platform via
which rRNA modifications could be controlled, given
that dramatic variations in snoRNA levels have been ob-
served between different tissues, stimuli and disease
states (Jorjani et al. 2016; Gong et al. 2017; Warner
et al. 2018; McCann et al. 2020). However, only few
studies have linked such heterogeneous expression
with differences in modification levels (Khoshnevis
et al. 2019; McCann et al. 2020). This notwithstanding,
additional mechanisms for achieving substoichiometric
levels of these modifications have been documented.
Depletion of fibrillarin—the rRNA ribose methyltrans-
ferase—impacts methylation of different sites in varying
ways, establishing that alterations of fibrillarin levels
could serve as a potential mechanism for achieving het-
erogeneous levels of methylation across sites (Erales
et al. 2017; Sharma et al. 2017a). It was also shown
that methylation at a subset of sites requires the nucleo-
lar protein Nucleophosmin (NPM1), and hence disrup-
tion of NPM1, as occurs in dyskeratosis congenita, a
rare bone marrow disease, can lead to substoichiomet-
ric modification of its targets (Nachmani et al. 2019).
Heterogeneity in rRNA modifications was also shown
to be associatedwith the relative timing atwhich amod-
ification is deposited, with modifications arriving late in

ribosome biogenesis being more prone to substoichio-
metric levels (Birkedal et al. 2015). In this context, it is im-
portant to rule out that the observed heterogeneity is
present in mature ribosomes and does not merely re-
flect the relative compositionofmature and immature ri-
bosomes in a sample.

4. Two examples for dramatic and systematic changes
in rRNAmodification levels:As indicated above, in hu-
man and yeast, differences in modification levels of
rRNA across conditions are relatively rare and often
subtle. Two cases have been reported, to date, in which
rRNA modifications are dramatically and systematically
altered in response to an environmental cue.
Trypanosoma brucei, the parasitic kinetoplastid re-
sponsible for widespread sleeping sickness in sub-
Saharan Africa, was found to have life-cycle dependent
rRNA pseudouridylation patterns. In total, 68 pseu-
douridine modifications were identified on rRNA in
both the procyclic and bloodstream forms, and 21 of
these sites were hypermodified (>1.3-fold) during the
bloodstream form, during which the corresponding H/
ACA snoRNAs were also induced (Chikne et al. 2016).
It is thought that this is a developmentally regulated ad-
aptation resulting from the 10°C difference between
the tsetse fly vector and human host, and interestingly
enough the sites cluster around functional domains of
the ribosome. The second case, discovered in our lab-
oratory, is a dramatic induction of cytidine acetylation
(ac4C) in ribosomes of an archaeal hyperthermophile
in response to increased growth temperatures. T. koda-
karensis ribosomes grown under 55°C are modified at
only seven sites whereas under optimal growth condi-
tions of 85°C the ribosomes undergo acetylation at
>170 sites. Consistently, loss of the single acetyltrans-
ferase enzyme, required for acetylation of all sites, led
to growth defects at higher—but not at lower—temper-
atures. Acetylation at a minority of the target sites con-
tributed to RNA:RNA and RNA:protein interactions, or
to interactions with solvents, whereas the vast majority
of sites were proposed to contribute to thermostabiliza-
tion of the RNA structure at higher temperature (Sas-
Chen et al. 2020). Common to both cases is that a single
modification was found to be dramatically and system-
atically induced across the majority of harboring sites.

HORIZONS

Our understanding pertaining to rRNA modifications is by
and large limited to few modifications, few species, and
few conditions. Many fundamental questions thus remain
wide open. Key questions include the following:

1. Extent of heterogeneity: To what extent are substoi-
chiometric modifications an exception or a rule? And
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towhat extent are dynamically modulated rRNAmodifi-
cations an exception or a rule? How abundant are these
phenomena across evolution? And how abundant are
they across different tissues or across physiological
and pathological responses? We anticipate that explo-
ration of these dimensions will be hugely facilitated by
the ever-expanding arsenal of genomic methodologies
for assaying distinct modifications (Schaefer et al. 2009;
Meyer et al. 2012; Ryvkin et al. 2013; Carlile et al. 2014;
Schwartz et al. 2014a; Birkedal et al. 2015; Hauenschild
et al. 2015; Linder et al. 2015; Zheng et al. 2015;
Marchand et al. 2016; Dai et al. 2017; Li et al. 2017;
Safra et al. 2017; Marchand et al. 2018; Enroth et al.
2019; Lin et al. 2019; Pandolfini et al. 2019; Zhang
et al. 2019; Sas-Chen et al. 2020).

2. Rules of heterogeneity: Can rules be defined pertain-
ing to which modifications are prone to be substoichio-
metric or regulated, versus constitutive? Are certain
modifications more prone to be so than others? Might
modifications catalyzedby snoRNAsbemore heteroge-
neous than ones catalyzed by site specific enzymes?Are
modifications within certain domains of the ribosome
more prone to be regulated or substoichiometric? In
our studies into dynamic ac4C in archaea, we found,
for example, that a small subset of sites clusteredaround
functional regions of the ribosomewere invariably acet-
ylated across all temperatures, typically at relatively high
stoichiometries, whereas the vastmajorityof the remain-
ing sites were distributed randomly throughout the
ribosome and only catalyzed, typically at lower stoichi-
ometries, under higher temperatures (Sas-Chen et al.
2020). Similarly, in an analysis of substoichiometric
2′-O methylated sites it was found that nucleotides par-
ticipating directly in translation at the A- and P-sites,
intersubunit bridges, and peptide exit tunnel were sus-
ceptible to variation in methylation, while the peptidyl
transferase center and decoding center were not affect-
ed (Erales et al. 2017; Sharma et al. 2017a). These find-
ings suggest that there may be a structurally coherent
set of constitutive modifications.

3. Sources of heterogeneity: What regulates heteroge-
neity in rRNA modifications? Why are some sites sub-
stoichiometric? What gives rise to changes in rRNA
modifications across different conditions? Is this due
to changes in the levels of modifying enzymes? Or in
their activity? Or also due to variability in the accessibil-
ity of the rRNA between conditions? In assessing these
questions it will be critical to consider the populations
of ribosomes in which such heterogeneity is observed.
Is heterogeneity observed in total RNA? Or in rRNA pu-
rified from polysomes? In the case of the former, such
heterogeneity can potentially also reflect a mixture of
mature and immature ribosomes, modified at varying
levels.

4. Consequences of heterogeneity: Arguably the most
important question is whether differentially modified ri-
bosomes give rise to differential functions. Such func-
tionality should ideally be established at multiple
levels, among which are the structural level (how does
the modification impact rRNA structure), the molecular
level (how does the modification impact the catalytic
properties of the ribosome) and the phenotypic level
(what fitness benefit is provided by the modification),
with the ultimate, highly challenging goal of drawing
a causal, connecting line between these three layers.
The challenges of drawing such a causal line from het-
erogeneity to function is by no means unique to rRNA
modifications. Indeed, in the vast majority of cases in
which ribosome heterogeneity has been unequivocally
observed, directly linking such heterogeneity to a func-
tion has proven to be challenging (for review, see
Ferretti and Karbstein 2019). Such difficulties are a con-
sequence of the complex nature of the ribosome and of
its processing and assembly pathways, rendering it
highly challenging to address functions in vitro, but
also limiting the conclusions that can be drawn from
in vivo studies. One powerful game-changer in recent
years are the major leaps in cryoEM (Kirmizialtin et al.
2015; Shalev-Benami et al. 2016; Natchiar et al. 2017;
Nikolay et al. 2021), permitting the relatively rapid ac-
quisition of ribosome structures at low Å resolutions.

5. Evolution of heterogeneity: Finally, a fascinating di-
mension to explore is how rRNA modifications in gen-
eral, and heterogenous modifications in particular,
evolved over the course of evolution. How did they
emerge? How did the machineries regulating them
emerge? From an evolutionary perspective, are sub-
stoichiometric or dynamic modifications relatively re-
cently acquired sets of modifications that have not yet
undergone fixation? Or, in contrast, did they originate
from evolutionary-fixed stoichiometric modifications,
and evolve to become heterogeneous over time? A
comprehensive dissection of these questions will re-
quire measurements of rRNA modifications across a
wide set of species. Such endeavors, conducted via
cryoEM and mass-spectrometry based approaches
(Taoka et al. 2016, 2018), are likely to also give rise to
discoveries of new rRNA modifications, of which our
knowledge is likely still incomplete, as suggested by
the continuous discovery of new forms of modifications
(Boccaletto et al. 2018; Flynn et al. 2021).

From a historical perspective, it is surprising that investi-
gations into substoichiometric and dynamically modified
modifications on ribosomes are somewhat lagging behind
with respect to their counterparts onmRNA (Schwartz et al.
2014b; Darnell et al. 2018), given that modifications on
rRNA were discovered and explored decades before their
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mRNA counterparts. To some extent, this may reflect the
different disciplines, and associated philosophies, through
which these modifications were studied: rRNA modifica-
tions were classically studied through the lens of structure
and of post-transcriptional processing, whereas mRNA
modifications—coined “RNA epigenetics” (He 2010) and
the “epitranscriptome” (Meyer et al. 2012)—were intui-
tively connected with “epigenetics,” wherein key compo-
nents are dynamics and reversibility. We anticipate that
new insights into ribosome heterogeneity in recent and
forthcoming years, combined with the advent of new tools
for systematically interrogating rRNAmodifications, will al-
low revisiting this exciting field, pertaining to the regulato-
ry potential of the core translational apparatus.
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