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Abstract: Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide.
Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the
host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing
was used, which provided information about composition but not about function. In our study,
we analyzed whole metagenome sequencing data to assess changes in both the composition and
functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy
volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium
prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli
and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of
bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate,
glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients.
These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased
levels of this species in the GM of MDD patients. These results show the potential impact of the
identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be
confirmed in future metabolomic studies.

Keywords: depression; gut microbiota; gut–brain axis; taxonomic composition; whole metagenome;
orthologs; neuroactive metabolites; signature; dysbiosis; biomarkers

1. Introduction

According to the World Health Organization, depression is one of the most prevalent
mental health disorders, the second leading cause of disability worldwide, and a major
contributor to deaths by suicide. Approximately 4.4% of the world’s population is affected
by depression [1]. The rise in global COVID-19 rates has been accompanied by an increase
in the prevalence of significant neuropsychiatric disorders such as depression, which can
result from social stressors such as isolation and unemployment [2,3]. This public health
problem is considered a global psychological pandemic [4], and has encouraged investment
into research on mental wellbeing [5]. Major depressive disorder (MDD) is a common
psychiatric illness, and typical symptoms include depressed mood and/or loss of interest
or pleasure in life activities for at least two weeks. Symptoms also include unintentional

Biomedicines 2022, 10, 2162. https://doi.org/10.3390/biomedicines10092162 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10092162
https://doi.org/10.3390/biomedicines10092162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-7655-1808
https://orcid.org/0000-0001-6283-6258
https://orcid.org/0000-0003-0247-2717
https://orcid.org/0000-0003-2742-552X
https://orcid.org/0000-0002-4334-1601
https://orcid.org/0000-0002-3073-6305
https://doi.org/10.3390/biomedicines10092162
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10092162?type=check_update&version=1


Biomedicines 2022, 10, 2162 2 of 18

weight change, insomnia or hypersomnia, agitation or psychomotor retardation, fatigue,
feelings of worthlessness or guilt, and attempting suicide. Thus, MDD significantly reduces
quality of life and has become a serious medical and social problem.

The mechanisms of disease development remain unclarified, as it has a heteroge-
neous etiology. It has been shown that genetics, neuro-endocrinology, neuro-immunity,
and structural and functional disorders of the brain all contribute to the pathophysiol-
ogy of MDD. Mechanisms that have been found to be linked to depression also include
a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis [6], immune-inflammatory
and oxidative pathways [7], altered vagus nerve tone [8], and imbalance between neural
excitatory and inhibitory signaling [9]. Other factors that can lead to the development
of depression includes chronic and acute stress [10], depletion of monoamines [11], poor
nutrition [12], mitochondrial dysfunction [13], disrupted metabolism [14], environmental
factors and epigenetics [15], infection [16], levels of sex hormones [17], etc. Inflammation is
now considered one of the primary pathologies that lead to depression. Various theories of
inflammation, such as the macrophage hypothesis or cytokine theory, have been proposed
as the main pathology in MDD. The main process when suppressing inflammation is
the activation of the immune response, in particular, the production of cytokines. This
affects the levels of neuro-compounds, which in turn leads to the development of MDD.
Recently, a novel kynurenine pathway (KP) has drawn attention in the cytokine theory [10].
Pro-inflammatory cytokines activate the KP by affecting tryptophan (TRP) metabolism and
releasing neurotoxins, which can either reduce serotonin production or promote serotonin
reuptake [13]. The COVID-19 pandemic has led to long-term psychiatric symptoms, possibly
due to an immunological reaction to the virus itself, as well as fundamental changes in life
associated with the pandemic. The immune response can lead to changes in the functioning of
the tryptophan–kynurenine pathway, which plays an important role in the pathophysiology
of mental illness [18]. The monoamine hypothesis has also been a prevailing theory for the
pathogenesis of depression. This hypothesis holds that depression is caused by the depletion
of 5-HT, norepinephrine, or dopamine in the central nervous system [19].

Depression is associated with an increased risk of atherosclerosis, cardiovascular
diseases, hypertension, stroke, dementia, neurodegenerative diseases, as well as metabolic
disorders, such as type 2 diabetes [20]. Depressive symptoms are also observed during
physical conditions, such as cancer, autoimmune diseases, or systemic infections, in which
chronic inflammation has been implicated [21].

Today, gut microbiota (GM)—which interacts with the host through the gut–brain axis
(GBA)—is considered an important factor associated with the pathology of depression. Clin-
ical and experimental data indicate a crosstalk between microbiota and intestinal cells and
the nervous system, as well as between microbiota and the brain through metabolic, neu-
roendocrine, and neuroimmune pathways. Increasing evidence suggests a close relationship
between MDD and the dysfunction of the GBA. Evidence from both animal and clinical studies
support the pivotal role of GM on mood modulation. For example, germ-free mice exhibited
decreased anxiety and depression-like behavior. However, following the transplantation of
flora from MDD patients, the mice began exhibiting the depressive phenotype [22].

GM is a major source of metabolites, and can affect the host in various ways, such as
through vagus nerve stimulation, changes in central neurotransmission, modulation of
systemic and neuroinflammation, and crossing the blood–brain barrier and binding to re-
ceptors in the brain [23]. Some studies indicate an abnormal production of GM metabolites,
manifesting from various neuropsychiatric disorders [24,25]. GM exerts its effects through
immune system activation (e.g., inflammatory cytokines and chemokines) and production
of neurotransmitters and other neurometabolites (e.g., serotonin, gamma-aminobutyric
acid (GABA) and glutamate (GLU), short-chain fatty acids (SCFAs), and key amino acids,
such as TRP) [26]. Neurotransmitters synthesized by bacteria stimulate the secretion of
molecules by specific intestinal epithelial cells, for example, enterochromaffin cells, which
are responsible for signal transmission through the enteric nervous system [21,27]. Bacterial
products participate in stimulation of central receptors, peripheral stimulation of neural,
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endocrine, and immune mediators, and epigenetic regulation of histone acetylation and
DNA methylation, which have been implicated in depression [26].

Some studies suggested that altered gut microbe levels in conditions causing dysbiosis
are associated with changed brain structure [28]. Dysbiosis is accompanied by a decrease
in the number of Faecalibacterium prausnitzii and Roseburia intestinalis bacteria, known to
produce butyrate [29]. In addition, increased abundances of opportunistic pathogens, such
as Bacteroides caccae, Clostridium hathewayi, Clostridium symbiosum, Erysipelatoclostridium
ramosum, and Escherichia coli, has also been related to dysbiosis [30]. Such changes can
be a potential cause of inflammation in the brain through blood circulation and the in-
creased production of various cytokines, including IL-6, IL-1β, and TNF-α [31], which also
modulate processes in the brain that affect mood and behavior [32].

Human GM is a complex community of microorganisms largely composed of anaer-
obic and facultative anaerobic bacteria that significantly impact human health and well-
being [33]. It consists of 1014 to 1015 bacterial cells, and, to date, more than 1000 species
have been identified as part of GM [34,35]. The largest number of commensal bacteria is
detected in the colon. GM participates in the fermentation of food polysaccharides and
proteins, synthesis of vitamins, and enzymatic transformation of endogenous metabolites,
such as bile acids [36]. GM also produces microbial compounds that mediate crosstalk
with the immune system of the host and play an important role in the GBA [37]. Published
data on the composition of the GM of depressive patients are frequently contradictory,
and these discrepancies could be explained by the broad spectrum of MDD manifesta-
tions, geographical differences between participants (which may result in genetic and/or
dietary differences), potential sub-types of GM within MDD groups, inadequate statistics
for testing, and different molecular technologies used to investigate stool samples [26].

To determine the microbial community composition of patients with depression,
previous studies have mainly used 16S rRNA gene sequencing [38]. However, a limitation
of this method is that it only provides information on the taxonomic composition of the
studied specimens and cannot directly assess the functions of the microbiota. In this
work, we used whole metagenome sequencing analysis, which gave us an opportunity
to profile functional representations and metabolic pathways in the bacterial community.
Application of the developed algorithm for metagenomic analysis allowed us to link GM
neurometabolic capacity with depression.

2. Materials and Methods
2.1. Selection of the Cohorts of Patients with Depression and Healthy Volunteers

The cohorts used for the research included volunteers aged 18 to 54 years old from
Moscow or the Moscow region.

Patients with depressive outbreaks (group PwD) of medium or high severity (codes
F31.3, F31.4, F31.5, F32.1, F32.2, F32.3, F32.8, F32.9, F33.1, F33.2, and F33.3, according to
International Classification of Diseases Version 10, ICD-10) were selected among those
admitted for inpatient treatment at Psychiatric Hospital No. 1 named after N. A. Alekseyev
of the Department of Health in Moscow. Initial examination and history documentation
were performed in accordance with institutional clinical practice, including a physical
examination (height, weight, and body mass index (BMI)). Patient psychological evaluation
was conducted in two stages. First, patients filled out two questionnaires that allowed
estimation of their condition: the Center for Epidemiological Studies Depression scale
(CES-D) and the 7-item Generalized Anxiety Disorder questionnaire (GAD-7). Next, a
psychiatrist administered the 17-item Hamilton Depression scale (HAMD-17). The final
decision on patient inclusion was made by the psychiatrist, based on the following testing
criteria: HAMD-17 ≥ 14, CES-D ≥ 27, and GAD-7 < 10. The HAMD-17 scale was considered
the primary test, so a few patients whose CES-D or GAD-7 scale scores were slightly below
threshold were still included in the study, based on doctor recommendations. No patients
took medication prior to fecal sample collection.



Biomedicines 2022, 10, 2162 4 of 18

Healthy volunteers (group HC) were chosen for the control group by the following cri-
teria: no diagnosed psychiatric disease; CES-D < 18; GAD-7 < 5; no recent suicidal attempts
through poisoning; no current eating disorders in the absence of competing diagnoses of
post-traumatic stress disorder; no disorders connected to the use of psychoactive substances
(alcohol, drugs); no history of severe traumatic brain injury; no infectious, autoimmune or
somatic diseases that could affect molecular tests (for example, cancer, AIDS, or diabetes);
and no anti-, pro- or prebiotic curation in the three months before fecal sample submission.

The final cohort included 38 healthy volunteers and 36 patients with depression. All
information about both groups is presented in Table 1 and Supplementary Table S1.

Table 1. Characteristics of the final cohorts for study.

Sex, Male/Female
HC Group PwD Group

19/19 19/17

Age, y.o. (average, (min:max)) 34, (18:54) 30, (18:53)

BMI, kg/m2 (average, (min:max)) 24, (18:39) 22, (16:34)

CES-D (average, (min:max)) 5, (0:17) 31, (21:52)

GAD-7 (average, (min:max)) 1, (0:10) 7, (2:10)

HAMD-17 (average, (min:max)) 1, (0:8) 21, (14:28)

2.2. Preparation and Sequencing of Metagenomic Samples

Fecal samples were taken using the standardized approach [39]. All samples were
stored at a temperature of −80 ◦C. Total genomic DNA was extracted from fecal samples
using the QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The concentrations of the extracted DNA were determined
with Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). The
quality of DNA was checked on 0.8% agarose gel. For library construction, DNA was
fragmented to an average size of about 350 base pairs (bp) using Covaris M220 (Covaris
LLC., Woburn, MA, USA), and then paired-end libraries were produced using NEBNext
Ultra DNA Library Prep Kit for Illumina (Illumina Inc., San Diego, CA, USA) using
standard protocols. Quality control of the received DNA libraries was performed on an
Agilent Bioanalyzer 2100 device (Agilent Technologies, Santa Clara, CA, USA) using a High
Sensitivity Kit in accordance with the manufacturer’s protocol. Paired-end sequencing was
performed on Illumina HiSeqX Ten (Illumina Inc., San Diego, CA, USA) using standard
protocols. The sequenced samples in FASTQ format were deposited in the NCBI SRA
database (BioProject ID: PRJNA762199).

2.3. Quality Control and Trimming

For quality control of the raw sequencing data, FastQC v0.11.5 was used [40]. After
that, adapter sequences were clipped, and the quality of bases was improved with Trim-
momatic v0.39 [41]. The low-quality bases (Q < 20) and sequences shorter than 50 base
pairs were discarded from further analysis. Contamination with the human genome was
removed by mapping the reads on the human genome (assembly version hg19) using
bowtie2 v2.4.1 [42]. After all of the quality improvement processes, the final set of remain-
ing reads still comprised more than 80% of the initial set. The average size of one sample
was 6.34 gigabases and 38.9 million read pairs. Assembly of metagenomic reads into longer
contigs was carried out with metaSPADes v3.14.1 [43]. Basic statistics for samples and their
assemblies are shown in Supplementary Table S1.

2.4. Taxonomic Analysis

The taxonomic analysis of metagenomic reads was conducted using Kraken2 v2.1.2 with
the setup ‘–confidence 0.5’ [44]. The relative abundance was calculated with Braken v2.6.2 [45].
The obtained taxonomic profiles were then analyzed on different levels: ‘Phylum’, ‘Genus’,
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and ‘Species’. Alpha diversity was assessed using Shannon’s index, calculated from the
Kraken2 output using the Vegan package [46]. Beta-diversity was analyzed with the Vegan
package using the Bray-Curtis distance matrix.

Differences in taxonomic profiles on ‘Phylum’, ‘Genus’, and ‘Species’ levels between
the PwD and HC groups were identified using the Mann–Whitney U test with a significance
threshold of p < 0.05 and an FDR (false-discovery rate) correction for multiple comparisons
using the Benjamini–Hochberg method. Taxa identified in less than half of the samples
were excluded from comparative analysis.

2.5. Development of the Reference Catalog

The general workflow for creation of the catalog is shown in Figure 1. Considering
the important roles of GM metabolites in brain function and behavior, we assembled a
list of those involved in depression pathology, based on previous studies [26]. Next, key
enzymes involved in the production and degradation of these metabolites were selected,
after analysis of published data. Then, we searched for the reference amino acid sequences
for each selected enzyme according to two key criteria: (1) Have bacterial origin (preferably
from human GM); (2) Be well described either in published papers, or in curated databases
(KEGG [47], MetaCyc [48], UniProtKB/Swiss-Prot [49], etc.). Next, protein BLAST [50] and
the NCBI protein database [51] were used to search for orthologs of the selected reference
sequences in genomes of the 46 most common bacterial genera of the human GM. The
full list of used bacterial genera is presented in Supplementary Table S2. New orthologs
have been added to our previously developed catalog of gene orthologs for neuroactive
compounds [52]. As a result, the final version of the assembled catalog included 1031 amino
acid sequences of homologs for 101 enzymes (Supplementary Table S3).
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2.6. Functional Metagenomic Analysis

For functional annotation, we analyzed the metagenomic assemblies using the updated
algorithm introduced in our previous study (Figure 1) [52,53]. First, open reading frames
(ORFs) were identified in the metagenomic contigs using MetaGeneMark [54]. The ORFs
were then annotated using BLASTp [55] and the updated catalog, as a reference. The
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BLASTp alignments were sorted according to the following thresholds: identity ≥ 60% and
relative alignment length ≥ 90%. After that, the abundances of each ORF were recovered
by mapping the reads to the sequences of ORFs using bwa mem [56]. The readCounts
were obtained with samtools idxstats [57] and then normalized using the Trimmed Mean
of M-values (TMM) normalization method implemented through the edgeR package [58].
The relative abundances of the genes were compared between the two groups using the
Mann–Whitney U test with a significance threshold of p < 0.05 and an FDR correction for
multiple comparisons using the Benjamini–Hochberg method. Genes identified in less than
half of the samples were excluded from analysis.

The contigs, which contain annotated ORFs, were analyzed using Kraken2 with the
setup ‘–confidence 0.01’ in order to determine the bacterial origins of the ORFs. All se-
quences assigned as «Unclassified» were discarded from further analysis. Contigs without
an assigned taxonomy on the ‘Species’ level were additionally aligned with BLASTn on
bacterial genomes with a ‘complete’ assembly status from the RefSeq database [59]. Align-
ments with identity ≤ 90% were filtered out. Thus, metagenomic signatures, i.e., signature
pairs (taxon; gene) with respective relative abundances, were obtained at the genus and
species levels.

Pairs (taxon; gene) identified in less than half of the samples were excluded from
comparative analysis. All remaining results were processed with the Mann–Whitney U test
with a significance threshold of p < 0.05 and an FDR correction for multiple comparisons
using the Benjamini–Hochberg method. Correlations between the relative abundance of
each signature pair (at the ‘Species’ taxonomic level) and severity of the disease measured
by the HAMD-7, CES-D, and GAD-7 scores were counted using Spearman’s correlation
test using scipy.stats library (FDR correction with the Benjamini–Hochberg method) [60].
For statistically significant signature pairs of microbial features and the corresponding
metadata, a multivariable analysis was performed using the MaAsLin2 package [61].

3. Results
3.1. Taxonomic Analysis of GM of Patients with Depression

Comparison of the alpha diversity of the GM of depressive patients and healthy volun-
teers did not show statistical significance, with p-values for both the ‘Genus’ and ‘Species’
taxonomic levels being higher than 0.8, according to the Wilcoxon test (Figure 2A,B). The
beta diversity analysis, on the other hand, demonstrated a difference at the ‘Species’ level
between the two groups (p-value = 0.001, PERMANOVA test, Figure 2D). The nMDS plots
also showed that the samples in the PwD group were more dispersed than in the HC group.
This, in combination with the Shannon metric, indicated that the GM of patients with
depression diverged more than the microbiota of healthy volunteers.
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Figure 2. Diversity analysis of GM of MDD patients and healthy controls. (A,B): comparison
of Shannon indexes between the HC and PwD groups at ‘Genus’ and ‘Species’ taxonomic levels,
respectively. (C,D): nMDS plots describing beta-diversity between the HC and PwD groups at ‘Genus’
and ‘Species’ taxonomic levels, respectively. The points representing HC are colored in blue and PwD
group are colored in red. Ellipses indicate confidence areas around the clusters of grouped samples.
(E–G): taxa with median relative abundance > 0.5% detected in GM of the HC and PwD groups at
’Phylum’, ‘Genus’, and ‘Species’ levels, respectively. Median values of relative abundances are stated
in percentages. Full taxonomic profiles are provided in Supplementary Table S4a–c.
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After diversity analyses, the changes in abundances of identified taxonomic units were
tested for statistical significance at three taxonomic levels: ‘Phylum’, ‘Genus’, and ‘Species’.

At the ‘Phylum’ level, Firmicutes showed a statistically significant decrease in the PwD
group according to the Wilcoxon test, although the correction for multiple comparisons described
this result as a false positive (corrected p-value = 0.41, Figure 2E, Supplementary Table S4a).

At the ‘Genus’ taxonomic level, we managed to identify 16 taxa with statistically signifi-
cant changes in relative abundances (FDR-corrected p-value < 0.05, Figure 2F, Supplementary
Table S4b). Among them were genera Escherichia, Faecalibacterium, Lachnospira, Roseburia,
and Rutenibacterium, whose average abundance was higher than 0.5% of the average of
all samples in both groups. Genera Faecalibacterium, Lachnospira, and Roseburia, which
widely occurs in human intestinal microbiota, were significantly decreased in the PwD
samples compared with the HC group (p-values of 0.004, 0.024, and 0.004, respectively),
whereas genera Escherichia and Rutenibacterium were increased (p-values of 0.041 and 0.004,
respectively). Despite showing statistically significant changes, genera Faecalibaculum, Intes-
tinibaculum, Kocuria, Lancefieldella, Pseudobutyrivibrio, and Trueperella had very low relative
abundances across the samples in both HC and PwD groups (approximately 10−5–10−4%).

We also identified 26 species with significantly different changes in abundances (FDR-
corrected p-value < 0.05, Figure 2G, Supplementary Table S4c). Six species, which had
an average abundance higher than 0.5% and showed significant changes, corresponded
to the five genera described above (Figure 2F). These included Escherichia coli (increased,
p-value = 0.039), Faecalibacterium prausnitzii (decreased, p-value = 0.008), Lachnospira eligens
(decreased, p-value = 0.035), Roseburia hominis (decreased, p-value = 0.035), Roseburia
intestinalis (decreased, p-value = 0.003), and Ruthenibacterium lactatiformans (increased,
p-value = 0.004). Also, four species of genus Veillonella showed a significant decrease:
Veillonella atypica (p-value = 0.004), Veillonella dispar (p-value = 0.008), Veillonella parvula
(p-value = 0.037), and Veillonella sp. T1-7 (p-value = 0.014, Supplementary Table S4c).

3.2. Genes

After taxonomic analysis, metagenomic reads for each sample were assembled into
contigs. Then, ORFs were predicted and annotated using the updated catalog of homologs.
Relative abundances for the putative genes encoding enzymes were counted and compared,
as described in the ‘Materials and Methods’ section. The genes encoding enzymes identified
in more than half of the analyzed samples are presented in Figure 3, and complete results
are listed in Supplementary Table S5. We found a statistically significant decrease in abun-
dances in the PwD group in comparison with the HC group (FDR-corrected p-value < 0.05)
for genes involved in the synthesis of arginine (argininosuccinate lyase), asparagine acid
(asparagine synthetase asnA), GLU (glutamate synthase subunits gltB and gltD), spermi-
dine (spermidine synthase), and in genes involved in the degradation of 17-beta-estradiol
(estradiol 17-beta-dehydrogenase), degradation of serotonin for melatonin production (sero-
tonin N-acetyltransferase), and linoleic acid conjugation (linoleic acid isomerase). Increased
abundances with an FDR-corrected p-value < 0.05 were shown for genes encoding catalase,
dihydroxyacetone formation (dihydroxyacetone phosphatase), transportation of GABA
(gamma-aminobutyrate antiporter), degradation of GLU (glutamate mutase subunits glmE
and glmS and methylaspartate ammonia-lyase), and histamine (histidine ammonia-lyase).
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3.3. Metagenomic Signatures

Taxonomic analysis of contigs containing the annotated ORFs allowed the reconstruc-
tion of metagenomic signatures on the ‘Genus’ and ‘Species’ taxonomic levels (Figure 4,
Supplementary Table S6a,b, respectively).
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Figure 4. Metagenomic signatures describing changes in GM of patients with MDD at the (A) ‘Genus’
and (B) ‘Species’ taxonomic levels. Only signature pairs identified in the 46 most common bacterial
genera (and corresponding species) of the human GM and found in more than 50% of the samples
are presented. The color gradient represents the logarithm of ratios of median abundances in the
PwD and HC groups. The green color gradient describes the increase in abundances of the signature
pairs, and the blue color describes the decrease in abundances. The ‘N.C.’ values (colored in black)
represent non-countable ratios, where the median abundance in the HC group was 0. The white color
represents ratios where the median value in the PwD group was 0 (logarithm is undefined). Signature
pairs with statistically significant changes in abundances are indicated with a red tick. More detailed
information is provided in Supplementary Table S6a,b.
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During the comparison of the metagenomic signatures of PwD and HC groups on the
‘Genus’ level, it was revealed that the genes that had shown an overall significant decrease
in abundances in the previous stage (Figure 3) originated from genera Faecalibacterium,
Coprococcus, and Roseburia (Figure 4A). The signature approach additionally revealed the
decrease of butyryl-CoA dehydrogenase (butyric acid formation) in the Faecalibacterium
genus, glutamine synthetase in Faecalibacterium, and phosphotransacetylase (acetic acid
formation) in Coprococcus, Faecalibacterium, and Roseburia. Statistically significant increases
in abundances was observed for genes encoding butyrate kinase, gamma-aminobutyrate
antiporter, glutamate decarboxylase, and serine hydroxymethyltransferase in genus Alis-
tipes; however, these signature pairs were identified in less than 60% of the samples, and
mostly corresponded to samples of the PwD group.

Analysis of the signature pairs on the ‘Species’ level revealed that all described
changes in the genus Faecalibacterium corresponded with changes in the species F. prausntizii
(Figure 4B). Another gene from the same species encoding serine hydroxymethyltransferase
also decreased; however, on the ‘Genus’ level, the significance of the signature pair (serine
hydroxymethyltransferase; Faecalibacterium) did not pass the threshold (FDR-corrected
p-value = 0.0566, Supplementary Table S6a). The signature pair (asparagine synthetase
asnA; Coprococcus comes) had a p-value below threshold but was identified in only half of
the analyzed samples.

After recreating the metagenomic signatures, we checked whether the abundances of
signature pairs correlated with severity of depression measured by CES-D and HAMD-17
indexes (Supplementary Table S7a–d). The correlation tests were conducted for signatures
on both the ‘Genus’ and ‘Species’ taxonomic levels. The Spearman test showed very weak
correlations with various signature pairs, although the FDR-corrected p-values easily passed
the threshold value of 0.01. The strongest correlations with each of the examined indexes
(with the absolute correlation coefficient being higher than 0.4 and lower than 0.5) were
observed for signature pairs (asparagine synthetase asnA; F. prausnitzii), (glutamine synthetase;
F. prausnitzii), (estradiol 17-beta-dehydrogenase; F. prausnitzii), and (linoleic acid isomerase;
F. prausnitzii). All of these correlations were negative, which means that the decreased
abundance of the corresponding gene was associated with increased severity of disease.
The multifactor analysis in MaAsLin2 also did not identify strong correlations with indexes.
However, it evidence for the correlations of signature pairs (glutamine synthetase; F. prausnitzii)
and (estradiol 17-beta-dehydrogenase; F. prausnitzii) with severity of depression.

As most of the significant genes were identified in F. prausnitzii, we analyzed how the
genes were distributed amongst the various strains of this species. For this, we downloaded
all 276 genomic assemblies of F. prausnitzii available on the GenBank database (June 2022)
and conducted a search using BLASTp and our reference catalog. The complete list of
analyzed genomes is presented in Supplementary Table S8a. According to the results of this
analysis, most of the genes of interest were quite broadly presented across the F. prausnitzii
species, being found in 47–93% of the analyzed genomes (Supplementary Table S8b).

4. Discussion

Research on the role of GM in depression is still an evolving area of study. This work
presents data on the taxonomic composition and metabolic potential of GM in patients
with depression compared healthy controls from the Moscow region. We studied whole
metagenomes that were obtained using next-generation sequencing (NGS) technologies,
which allowed us to identify unique microbial signatures of patients with depression
relative to healthy controls. These are the first data obtained using this approach with a
focus on the gut microbial community in Russian patients with depression.

The results obtained during the taxonomic analysis of GM in the PwD and HC groups
were partially concordant with the previous studies. There were no significant differences
in alpha-diversity. This is consistent with numerous studies that have also reported no
differences in alpha-diversity between MDD and control groups [62–64]. The differences
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between groups during the beta-diversity analysis at the ‘Species’ taxonomic level were
also similar to other studies [65,66].

On the other hand, we identified no significant differences at the ‘Phylum’ level. Only
Proteobacteria were at relatively higher levels in the PwD metagenomes. However, changes
in the relative abundances of Firmicutes, Bacteroidetes, and Proteobacteria phylotypes have
been previously shown [67–69].

Changes in the abundances of bacterial genera and species in our study are also supported
by the published data on taxonomic differences in MDD microbiota. Genera Faecalibacterium
and Roseburia were present in significantly lower abundances in the PwD metagenomes.
Decreased levels of Faecalibacterium and Roseburia may contribute to disease pathology, as
depression is associated with a mild chronic inflammatory response, and Faecalibacterium is re-
garded to have a strong anti-inflammatory effect in GM [70]. Genus Escherichia, which belongs
to the Enterobacteriaceae family, was also significantly increased in the PwD metagenomes.
Overgrowth of Escherichia bacteria could lead to gut inflammation and increase permeability
of the gut wall, which in turn favors bacterial translocation, promoting systemic inflamma-
tion [71]. Clinical depression has been shown to be accompanied with an increase in the
pro-inflammatory cytokine, interleukin, such as IL-1b and IL-6 [72,73]. Elevated abundances
of Enterobacteriaceae in the gastrointestinal tract has been shown to induce behavioral and
psychological changes in animals and humans [74,75].

In agreement with previous reports [76], an abundance of the genus Bifidobacterium
was non-significantly increased in PwD metagenomes. Bifidobacteria are known to exhibit
probiotic properties and, recently, it has been proposed as a ‘psychobiotic,’ given its ability
to produce neuromodulators and influence gut–brain relationships through interactions
with other commensal bacteria [77–81]. The reason for these contradicting results remains
unclear and requires further research.

Previous studies on changes in the GM of patients with MDD have had different
outcomes concerning the genus Bacteroides, with some studies indicating a decrease in their
abundance [82], whereas others have found an increase in abundance [76,83]. In our study,
the genus Bacteroides was more abundant in the GM of depressed patients, although without
statistical significance. Previously, it was hypothesized that species of Bacteroides produced
neurotoxic compounds. Bacteria of this genus synthesize lipopolysaccharides (LPS), which
have been shown to be important stimuli for neuroinflammation and development of
neurodegenerative disease [84,85].

Another statistically significant change in the GM of the PwD group includes the
decrease in abundance of the genus Lachnospira and increase of the genus Ruthenibacterium.
Lachnospira was among the most abundant genera in the HC group along with Roseburia and
Faecalibacterium. Previous studies have described a negative correlation between Lachnospira
and severity of depressive symptoms [86]. Lachnospira may promote behavioral changes
through interactions with neurotransmitter systems, which is also one of the primary
interactions in the gut–brain axis [87]. Bacteria of genus Ruthenibacterium are pathogens
and were observed in COVID-19 patients, who showed decreased levels of immune cells
and refractory hypoxemia [88].

At the species level, F. prausnitzii was more abundant in the control group, which
is similar with previous findings on MDD microbiota. This species is known to produce
butyric acid and other SCFAs [89]. In addition, a recent study on preclinical tests demon-
strated that the intake of F. prausnitzii (ATC 27766) improved behavior associated with
anxiety and depression, suggesting that this strain can be used as a psychobiotic [90]. In
our research, statistically significant decreases in average abundance were observed for
species Lachnospira eligens, Roseburia hominis, and Roseburia intestinalis in the microbiota of
patients with depression, whereas the species Ruthenibacterium lactatiformans and Escherichia
coli showed elevated abundances. Species R. intestinalis, like F. prausnitzii, are among the
most prevalent butyrate-producing commensal bacteria [91]. Metabolites of R. hominis,
propionate and butyrate, can stimulate synthesis of melatonin in the intestine by increasing
5-HT levels and promoting p-CREB-mediated transcription of Aanat gene [92].
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Using the analytical workflow developed in-house for the targeted profiling of micro-
bial pathways involved in the metabolism of compounds known as depression biomarkers,
we detected changes in the neurometabolic potential of the GM of depressed patients.
In the PwD metagenomes, we observed a statistically significant decrease in the abun-
dances of genes encoding enzymes involved in the production of amino acids (arginine,
asparagine, glutamine, and GLU), linoleic acid conjugation, melatonin production, syn-
thesis of spermidine, and 17-beta-estradiol degradation, and an increase in abundances
of genes encoding catalase, enzymes involved in the formation of gamma-aminobutyrate
antiporter and GABA, dihydroxyacetone, and degradation of glutamate and histamine.

According to previous clinical studies, levels of arginine, asparagine, GLU, and TRP
in the blood were decreased in patients with depression [93,94].

GLU and its metabolite GABA are known as key excitatory or inhibitory neurotrans-
mitters in the neurovascular system, and dysfunctions in their signaling pathways are
closely related to depression [95,96]. Bacteroides ssp., Parabacteroides, and Escherichia species,
which were increased in the PwD group, are GABA producers. However, the increase in
abundance of the gene encoding glutamate decarboxylase (production of GABA) in the
PwD metagenomes was statistically insignificant.

Lowered SCFA formation levels may lead to increased gut permeability, inducing a
“leaky gut” [97]. This loss in integrity can cause the migration of bacteria and their products
through the mucosal membrane [98]. Butyrate, as well as melatonin, may potentially
serve as sleep-inducing signaling molecules to enhance sleep [99]. More than 90% of
patients with depression have sleep disorders, and a small number of patients complain
of drowsiness [100]. SCFAs have also been noted to cause an eight- to ten-fold increase in
serotonin production, at least in in vitro colonic mucosal systems [101].

Spermidine is the most abundant among the polyamines in the human brain. Exoge-
nously administered spermidine helps in the treatment of brain diseases [102]. Spermidine
is also involved in cognitive function [103]. MDD patients demonstrate more frequent
cognitive disturbances than the general population [104]. Altered polyamine levels and
altered expression of polyamine genes were observed in the cortical brain areas of suicide
completers [105]. Hippocampal levels of putrescine, spermidine, and spermine were shown
to be significantly decreased in a rat model of depression [106].

Depression is accompanied by increased oxidative stress [107]; thus, metabolites
associated with depression can serve as markers for developing depressive disorders.
Our data showed increased levels in genes for antioxidants catalase and glutathione, and
decreased abundance of the gene responsible for linoleic acid conjugation [108].

The differences in gene abundances that we found describe overall changes taking
place across the whole metagenome; however, identifying the metabolic signature, which
provides more detailed information about a metagenome, was the key point of our study.
The signature approach allowed us to connect the differences in taxonomy with the de-
scribed genes. Alterations in taxonomy and gene abundances appeared to be consistent
with one another. At the ‘Genus’ level, the observed decrease in levels of genes involved in
the formation of acetic and butyric acids was significant in SCFA-producing Faecalibacterium
and Roseburia genera, which also showed significant decreases during the taxonomic analy-
sis. The decreased abundance of the gene involved in the degradation of 17β-estradiol (E2)
also corresponded with a decrease in the genus Faecalibacterium. E2 is the most potent natu-
rally circulating estrogen, which affects cognition, anxiety, depression, and the GM [109].
Genus Faecalibacterium was also found to be associated with sex hormone levels [110].
Other changes correlating with the decreased abundances in Faecalibacterium included
genes involved in the production of arginine, asparagine, conjugated linoleic acid, GLU,
glutamine, melatonin, and spermidine.

At the ‘Species’ level, the signature pairs revealed that each gene from the genus
Faecalibacterium that had significantly decreased abundances corresponded with the species
F. prausntizii. These data represent the neurometabolic signature of the GM of depressive
patients and can be used as biomarkers.
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Although we did not find any strong correlations in our tests, there was a connec-
tion between severity of disease and decreased abundances of the genes involved in the
metabolic pathways of 17-beta-estradiol, asparagine, GLU, and conjugated linoleic. The
relatively low correlation coefficients might have resulted from the heterogeneity of patient
conditions in the cohort.

A limitation of the current study was the relatively moderate size of the sample. Testing
more participants with stricter inclusion criteria for patient selection would provide stronger
statistical evidence and allow for deeper digging into the characteristics and relations of GM
functionality in patients with various subtypes of depression (for example, different severity
levels of the disease). Moreover, we mainly focused on the identification of certain genes (neu-
roactive compounds and biomarkers of depression) from the reference catalog. Using a broader
reference may lead to the identification of additional metabolites correlated with manifestations
of depressive disorder. It should also be noted that research based on metagenomic sequencing
can only reveal associations between the compositional and functional changes in microbiota
and the host’s condition. Metagenomic sequancing does not inform about causal relationships
or the direction of interactions in the microbiota–gut–brain axis.

Another limitation is connected with the strain-specificity of some functional prop-
erties, as outlined in our study regarding the described genes in different strains of
F. prausnitzii. The current algorithm to identify metagenomic signatures only allows it at
the ‘Species’ taxonomic level. Future studies should describe the genomic characteristics
of species strains, and the differences between healthy controls and depressed patients.
Thus, it is essential that currently existing methodologies are improved to identify bacterial
diversity at the ‘Strains’ taxonomic level.

Further transcriptomic, proteomic, and metabolomic analysis of the GM and analysis
of the GM of the MDD population in other countries will provide a broader view on the com-
positional and functional changes of microbiota. These results can be used as biomarkers
to develop diagnostic tools for assessing the progression of depressive disorders.

5. Conclusions

In summary, this whole metagenome study indicated compositional changes in the
GM of patients with MDD and subsequent changes in its neurometabolic potential. Our
data support a number of previous studies that demonstrated a decrease in beneficial
bacteria, such as Faecalibacterium, Roseburia, and Lachnospira, along with an increase in
abundances of opportunistic pathogens, such as Ruthenibacterium and Escherichia in the
PwD group compared with healthy controls. These changes characterized the dysbiosis
of GM and could be contibuting factors to the development of depression. Therefore,
stimulating growth of diminished beneficial bacteria and reducing numbers of undesirable
bacteria may be a strategy for the correction of GM in depressive patients. Psychobiotics
and pharmabiotics with well-described positive properties and mechanisms of action could
be used for this purpose. Their application could maintain the balanced composition of the
GM and may improve the symptoms of depressive disorders.

One of the key features of this study was the use of the metagenomic signatures (gene;
genus) and (gene; species) to identify potential biomarkers of GM associated with MDD.
Our analyses revealed statistically significant decreases in the levels of genes encoding
enzymes involved in the production of amino acids in arginine, asparagine, glutamate,
glutamine acetic and butyric SCFAs, melatonin, spermidine, and conjugated linoleic acid in
the GM of patients with depression. All of these genes were found in signature pairs with
F. prausntizii and correlated with decreases in this species in the GM of the PwD group.

These results may assist scientists in further exploration of MDD pathogenesis. The
described biomarker bacteria and their metabolites can be used to determine differences in
the GM of individuals suffering from depression. The identification of changes in the GM
may provide valuable information for future choices of treatment.
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