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Abstract: The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback
following exertion (“post-exertional malaise”), and variably presenting multi-system symptoms,
ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate
fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of
diagnostic biomarkers and finding these is a prominent direction of current work. Despite these
challenges, modern research demonstrates a tangible biomedical basis for the disorder across many
body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory
pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial
function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible
that these threads are together entangled as parts of an underlying molecular pathology reflecting a
far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or
precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological
cascades with similar outcomes stemming from different causes may be implicated in the condition.
Patient stratification to account for this heterogeneity is therefore one important consideration during
exploration of potential diagnostic developments.
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1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) encompasses diverse symptoms
that manifest variably across a range of body systems, the characteristic symptoms being chronic
unexplained fatigue (lasting more than 6 months) and post-exertional malaise (PEM)—a disabling and
exacerbated disease state following bouts of physical or mental exertion that exceed a patient-specific
threshold. ME/CFS also entails a varied kaleidoscope of other symptoms including muscle weakness,
migraine, flu-like symptoms, cognitive impairment (“brain fog”), and sensitivities to a variety of external
stimuli that may include light, sound, or specific odors. This can be accompanied by comorbidities,
such as fibromyalgia, postural orthostatic tachycardia (POTS), and Ehlers–Danlos syndrome.

A major challenge for this field of study has been the varied usage of multiple diagnostic case
criteria that may render comparison between studies difficult depending on the composition of the
participant cohort. Furthermore, these criteria are slow processes of exclusion that leave patients
without the support or acknowledgment that they need for extended periods and they may be subjected
to a protracted, harsh, and insensitive diagnostic gauntlet. These problems are further compounded
by medical guidelines in some developed countries that are out of date regarding ME/CFS clinical
practice and require urgent overdue revision.
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Case definitions, such as the commonly termed Oxford [1] or Fukuda [2] criteria, are most often
utilized throughout the UK and USA, respectively, yet may fail to discriminate between generalized
chronic fatigue and ME/CFS which specifically also involves PEM, which aids in characterizing this
disorder as a discrete clinical entity. Also in usage are the Canadian Consensus Criteria [3] and
International Consensus Criteria [4], which mandate PEM for a diagnosis of ME/CFS and therefore
may be considered more specific definitions. While the presence of PEM is an optional component of
the Fukuda criteria, PEM is, unfortunately, not required for research participation by all studies using
this or other less strict definitions. Consequently, the discovery of a reliable diagnostic biomarker is
perhaps the most common recurring theme in modern ME/CFS research. Despite myriad relevant
study outcomes [5–16], no such discovery has yet been widely validated or implemented as a suitable
diagnostic biomarker of ME/CFS.

Not only does ME/CFS affect multiple body systems and organs, but it does so with different
and time-varying levels of severity and different patterns of comorbidities in different individuals,
thereby producing a highly heterogeneous patient population [7,17–23]. This complexity represents
a major challenge to the task of incriminating one underlying pathological mechanism. It is also
possible that different causative molecular insults result in different subsequent clinical presentations
and this could contribute towards heterogeneity in the disorder. Patient subtyping to manage this
heterogeneity has been previously discussed in the field [20,23] and is lent credence by reproduced
patterns of differential disease-associated gene expression [24–26], gene expression profiles concurrent
with comorbid POTS [27], distinct DNA methylation profiles associated with quality of life scores and
PEM [28], severity and frequency of physical or mental fatigue [29], or irritable bowel syndrome (IBS)
comorbidity [30], which can be concurrent with specific changes to patient metabolism [31]. As timely,
objective, and accurate diagnosis remains the most clear challenge facing the field, patient subtyping
may be an important component of new diagnostic techniques and has seen early investigation with
stratification-based severity scores [32] or cytokine co-expression patterns [33].

In summation, ME/CFS etiology has been difficult to pin down due to the combination of a
diagnostic quagmire and the disorder’s heterogeneous symptom presentation across multiple body
systems. A traditional view has held that ME/CFS onset is often precipitated by some manner of bodily
insult, commonly infection, however, the disorder is left without any known single causative pathogen
to date. Given the heterogeneity of the patient population, this is unsurprising. It is possible that the
initial pathological insult may not always be pathogen-mediated and could instead be instigated by
alternative stresses of sufficient magnitude as to nudge homeostatic regulation loops into alternative
stable states [34], and these varying modes of initial insult may contribute to the heterogeneity of
ME/CFS clinical presentation.

Current research shows a tangible biomedical foundation underlying this clinical puzzle. Most of
this evidence pertains to disturbed muscle function, metabolism, mitochondria, immunity, signaling,
neurological, adrenal, and gut health. It is possible that these threads are together entangled as parts
of an underlying molecular pathology reflecting a far-reaching homeostatic shift influencing each of
these systems, perhaps differentially between individuals with varying clinical features. Furthermore,
evidence of abnormalities affecting multiple systems is based on associations and the causal mechanisms
responsible for the underlying pathology have yet to be determined. The following sections will
address the current evidence for dysfunction across these systems in ME/CFS with specific examples of
potential pathological interactions.

2. Abnormal Metabolism and Mitochondrial Function

The nature of the persistent fatigue and PEM experienced by patients renders the area of cellular
energetics fertile ground for investigation. However, in the intervening years since early studies [35–37],
mitochondria had been largely neglected in the field until their re-emergence as an area of interest
during the last 10 years [9]. The recent interest in this area has since generated a basis to support some
manner of both mitochondrial and broader metabolic dysfunction in ME/CFS.
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2.1. Dysregulated Amino Acid Metabolism and Impaired Provision of TCA Cycle Substrate

This accumulation of evidence supporting dysregulated metabolism and mitochondrial energetics
in ME/CFS has taken place across many experimental areas. There have been recent studies utilizing
the metabolomics approach, which captures a quantitative snapshot of steady-state metabolite levels
in a sample to infer underlying biochemical pathway modulation, typically achieved by either mass
spectrometry (MS) or nuclear magnetic resonance (NMR) spectroscopy applications. The first of these
studies used NMR to interrogate analytes within ME/CFS blood samples and reported decreases
in glutamine and ornithine concentrations, suggesting abnormal amino acid metabolism linked to
urea cycle dysregulation [38]. A subsequent study utilizing MS conversely reported an elevation in
ornithine concentration with a decrease in citrulline, but this also suggests urea cycle dysregulation [6].

Subsequent work undertaken by the authors of the first study proposed that impaired glycolytic
formation of pyruvate could be providing less downstream oxidized pyruvate derivatives to be used
as substrate for the tricarboxylic acid (TCA) cycle [39]. Work by others suggested that instead of a
reduction in the glycolytic pyruvate supply, a deficiency in pyruvate dehydrogenase (PDH) function
may form a bottleneck for the provision of TCA cycle substrate [40]. These and the previous amino
acid discrepancies could be due to differences in techniques (NMR vs. MS) and thus the range of
detectable molecules. What could be taken from both lines of approach—supported by data from other
similar studies [6,13,31] and one cell culture study [41]—is that there may be some manner of TCA
cycle disturbance in ME/CFS, possibly one that is substrate supply-driven.

2.2. Inefficient ATP Synthesis and Abnormal Energy Stress Signaling

If the TCA cycle output of oxidative phosphorylation (OXPHOS) complex substrates is reduced by
such a glycolysis [39] or PDH [40] defect, one might expect disturbances in cellular energy production
in ME/CFS cells. There have been several studies which report a reduction of steady-state ATP
levels [9,42,43], yet other studies have reported an elevation [44]. However, these steady-state measures
do not provide information as to the metabolic flux (rates of production and depletion) of the molecule
of interest. Real-time parameters of aerobic respiration and glycolysis can be measured in live cells
by extracellular flux assays, which measure oxygen consumption rates (OCRs) and extracellular
acidification rates (ECARs) using intact cells. Published studies of this type both found no significant
difference in absolute ATP synthesis rates between the ME/CFS and control cells [41,45]. However,
this does not necessarily mean that there is no ATP synthesis defect, since a defect/inefficiency in ATP
synthesis could be offset by compensatory homeostatic mechanisms.

The homeostatic regulation of cellular energy metabolism is centered on two stress-sensing protein
kinases, AMP-activated protein kinase (AMPK) [46] and target of rapamycin (TOR) [47], which play
key, often mutually inhibitory, roles. If their activities are chronically dysregulated by metabolic
abnormalities and energy insufficiencies in ME/CFS cells, they may be unable to respond to additional
energy demand. This is supported by reports of AMPK in muscle cells from people with ME/CFS
being unresponsive to stimulation by contraction-induced ATP depletion [43,48]. Such insensitivity
could result from AMPK already being in an activated state in these cells, or to its inhibition by
chronically hyperactivated TOR complex 1 (TORC1). Elevated TORC1 activity was recently observed in
ME/CFS cells (lymphoblasts) and this was accompanied by inefficient mitochondrial ATP synthesis and
abnormally high and presumably compensatory expression of mitochondrial proteins [41]. Elevated
expression of mitochondrial proteins has also been found in other studies of patient saliva, lymphocytes,
and platelets [41,49–51]. Furthermore, reduced creatine kinase (CK) levels in the serum of people with
ME/CFS may suggest reduced cellular CK presence [15], which could contribute to inefficient ATP
synthesis given the enzyme’s roles in ATP homeostasis [52]. Despite the breadth of sample types tested
that suggest dysregulated energy metabolism (serum, urine, feces, muscle, B cells, lymphoblasts), it
remains to be directly demonstrated that the perturbation of the associated stress-sensing pathways is
systemic and this should be an area of future investigation.
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As noted above, glycolytic catabolism of glucose is a major supplier of acetyl coenzyme A (CoA)
to the TCA cycle, and this can be assayed in intact cells by measuring the rate of acidification of the
medium by cells provided with glucose as a substrate. This has been reported recently using natural
killer (NK) cells from a small sample of six patients and six healthy controls [53]. Although the authors
found no differences in aerobic respiration rates, they did observe a reduced glycolytic reserve in
the ME/CFS cells. The glycolytic reserve is a measure of the excess capacity of glycolysis to meet
cellular ATP demands when mitochondrial ATP synthesis by oxidative phosphorylation is inhibited.
This small study reported individual O2 consumption and extracellular acidification rates that were
either negative or very small positive values, placing them at the threshold of reliable detection.
This caveat also applies to heterogeneous peripheral blood mononuclear cell (PBMC) populations,
which are commonly used for extracellular flux respirometry and have been previously employed
in ME/CFS work [45]. This difficulty arises because peripheral blood lymphocytes are metabolically
quiescent [54] and this not only makes metabolic rate assays technically difficult, but it may obscure
differences in metabolism that would be apparent in actively metabolizing cells.

2.3. A Shift Towards Lipid Metabolism

The TCA cycle can also be provided with acetyl CoA produced by fatty acid beta-oxidation when
glucose-derived sources are insufficient [55]. If the provision of substrate to the TCA cycle is indeed
deficient in ME/CFS as previously suggested [31,39,40], a role for the compensatory elevation of fatty
acid metabolism could be implicated in the disorder [41]. Fatty acid synthesis and beta-oxidation
are regulated by both AMPK [56] and TORC1 [57]. AMPK promotes fatty acid beta-oxidation when
activated by elevated ATP demand and promotes fatty acid biosynthesis when inactive, while TORC1
exerts the opposite effects. AMPK and TORC1 regulate each other in a complex reciprocal feedback
network [58], so that it is also possible for scenarios to arise where both are simultaneously activated [59].
This raises the question: If both AMPK [43,48] and TORC1 [41] activities are elevated in ME/CFS cells,
would we expect the rates of fatty acid catabolism to be increased or decreased? An answer may be
found within the specific mechanisms of regulatory action of these pathways in lipid homeostasis.
Activation of TORC1 promotes fatty acid biosynthesis by elevating the expression of gene products
including acetyl-CoA carboxylase (ACC) through the upregulation of transcription factors Sterol
Regulatory Element Binding Proteins 1 and 2 (SREBP-1 and SREBP-2) [60]. ACC activity results in
an accumulation of malonyl CoA, which is a potent inhibitor of the mitochondrial import of fatty
acids for beta oxidation. ACC, however, is a primary regulatory target of AMPK and is inactivated
by phosphorylation when AMPK is activated [61]. In this way, the concurrent activation of AMPK
and TORC1, if it does indeed occur in ME/CFS cells, may allow AMPK to constrain the effects of
TORC1’s upregulation of lipid-biosynthesis and downregulation of beta-oxidation. At the same time,
both AMPK and TORC1 directly or indirectly induce the expression of diverse mitochondrial proteins,
including those involved in fatty acid beta oxidation. The combined effects could be a steady state
in which the cells have increased their use of beta oxidation relative to glycolysis as a supplier of
acetyl CoA to the TCA cycle. Fatty acid oxidation is normally upregulated as a supplementary energy
pathway during fasting or exercise as a response to reduced blood glucose concentration [62]. An
increased reliance on fatty acid oxidation, even at rest, may therefore also contribute to the inability for
people with ME/CFS to meet the elevated energy demands imposed by exertion. Such a switch to lipid
oxidation can be mediated by elevated inflammation [63] and in combination with the pathological
inflammation seen in patients [64] could be evidence of a pathological interaction between inflammation
and metabolism in ME/CFS.
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3. Disturbed Immunity, Signaling, and Inflammatory Pathways

3.1. NK Cells

The function of the immune system has been a focus of ME/CFS research for many years. Evidence
for immune dysfunction in ME/CFS has largely been sought through study of NK cells, which are
cytotoxic immune cells with roles in both the innate and adaptive immune responses. Multiple groups
have reported reduced NK cell cytotoxicity or numbers [65–69] combined with concordant alterations
to functional surface markers [70–72]. Conversely, other groups have reported increased cytotoxicity in
combination with alterations to functional surface markers. For example, perforin, a glycoprotein used
as a functional indicator of NK cell cytotoxicity due to its roles in NK cell mediated lysis [73,74], has
been reported as upregulated [71], downregulated [65], or, along with every other assessed phenotypic
parameter, unaltered in people with ME/CFS [75]. A recent, rigorous large-scale biobank study also
found no significant differences in NK cell numbers, subtype composition, or assessed functional
parameters [76]. In summation, NK research remains an area of active interest, but in light of conflicting
findings, the role of NK cells in the disorder is still not well understood.

3.2. Calcium Signaling

Calcium signaling is crucial to immune cell function [77] and is tied to the mitochondria
and endoplasmic reticulum as hubs of regulatory control and calcium storage [78]. Therefore, a
disturbance to calcium signaling could contribute to pathological outcomes involving immune system
or bioenergetic dysfunction, both of which have been implicated in ME/CFS. In addition to the previous
evidence of altered surface proteins on NK cells from ME/CFS patients, a reduction in the expression
of transient receptor potential melastatin 3 (TRPM3) calcium ion channels [79] has been reported in
a subpopulation of ME/CFS NK cells [80–82]. The reason for the reduced expression of TRPM3 in
these cells is unknown, but in other cell types, expression of TRPM3 is repressed by the activity of
microRNA-204 (miR-204), encoded by intron 6 of the TRPM3 gene [83]. However, miR-204 is not
amongst the microRNAs whose expression is reportedly altered in ME/CFS patients [84].

Reduced expression of TRPM3 receptors would be expected to cause a reduction in Ca2+ responses
to pregnenolone sulfate (PregS), a specific activating ligand for TRPM3 channels. However, the
opposite was observed when Ca2+ levels were assayed by flow cytometry using Indo1, a Ca2+-sensitive
fluorescent dye in the TRPM3-depleted NK cells [80]. Subsequent studies using whole cell patch
clamping, however, have reported a loss of PregS-stimulated Ca2+ responses [81,82].

3.3. Links to Mitochondrial Dysfunction

Cytosolic Ca2+ is a key element in the cell’s extensive homeostatic networks, such that Ca2+ signals
are regulated by and play regulatory roles in multiple processes in cells, including mitochondrial
respiratory activity [85] as well as mitochondrial protein import [86] and the ion transport activity of
TRPM3 itself [87], both of which are activated by Ca2+-calmodulin. The mitochondria serve as both
a source and a sink for cytosolic Ca2+ and the mitochondria interact closely with the endoplasmic
reticulum at sites that mediate the exchange of lipids and Ca2+ signals [88]. The mitochondria thus form
a hub of interaction between Ca2+ and other molecular signals that regulate mitochondrial function,
such as AMPK and TORC1 activity. In NK cells specifically, where the calcium-signaling defect has been
reported, TORC1 activity is required for both effector function and cytokine production [89–91] and it
has been suggested that the development of NK cell antiviral memory is influenced by mitochondrial
function [92]. The reports of altered NK effector function in ME/CFS could therefore also be related
to abnormal mitochondrial function and TOR signaling. Disrupted intracellular signaling and
mitochondrial function in ME/CFS have also been previously linked through myriad other pathways
provoked by immune-inflammation and oxidative stress [93].
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3.4. Inflammation

Chronic system-wide inflammation is thought to be central to ME/CFS in the clinical setting
as it is associated with symptom severity [64], but the evidence demonstrating a role for specific
pro-inflammatory cytokines is inconsistent. While there are indeed reports of the elevation of various
pro-inflammatory cytokines in ME/CFS [33,71,94–99], which would tie in with the chronic inflammation
in the clinical setting, these findings contrast with reports of reduced expression of pro-inflammatory
agents, such as interleukin-8 or transforming growth factor-beta1 [100,101]. Consequently, evidence
for the specific directional shift of individual cytokines has been previously summarized as largely
inconsistent [102]. Despite these issues, cytokine expression has been previously associated with
ME/CFS disease duration and may have value in aiding the stratification of patient cohorts [33,94].
One group has shown that a cohort of ME/CFS patients with leaky gut syndrome as a comorbidity may
undergo significant symptom remission when the IgM and IgA immune responses are attenuated by
treatment with anti-inflammatory and antioxidant medications [103,104]. This finding has contributed
towards the potential link between gut hyperpermeability and inflammation in ME/CFS. Therefore, it
is likely that dysregulated chronic inflammatory action by the immune system is an aspect of ME/CFS,
despite inconsistent reports.

3.5. Autoimmunity

Autoimmunity in the condition is an area that remains little researched, and has been most recently
summarized and presented as a hypothetical model for ME/CFS, with some ties to gut dysbiosis
and aberrant metabolism [105]. Other autoimmune models for ME/CFS have been previously based
on rituximab’s role in B cell depletion as a possible therapeutic based on the promising outcomes
of earlier studies [106,107]. This would be concordant with other reports of elevated naïve and
transitional B cells in patients, which may suggest autoimmune tendencies [108]. However, a role
for such B cell-mediated autoimmunity in the disorder is now challenged by the negative outcome
of the more recent rituximab phase III clinical trial [109], which refutes the previous rituximab work.
This may also indicate that autoimmunity only applies as a key pathomechanism in a small subset
of patients who respond positively to rituximab treatment [110]. Other direct lines of evidence for
autoimmune behavior in the disorder come from elevated autoantibody levels in sera [111], supported
by the improvement of symptoms following autoantibody removal treatment [112], and abnormal IgM
immune recognition of both microbial and human heat shock protein 60 in a subset of patients [113] or
against phosphatidylinositol [114], despite the absence of an infective pathogen in each case.

4. Implications of Altered Gut Microbiota and Physiology

A disturbed gut microbiota [12,115–121] has been proposed to play a role in ME/CFS. This is
accompanied by physiological gut abnormalities, such as impaired motility [122], elevated intestinal
wall permeability [103,104,123,124], and IBS comorbidity [31,125,126], which has been proposed to
comprise part of a ME/CFS subtype [30]. The implications of these disturbances could be far-reaching,
since the intestinal microbiota both regulates [127,128] and is regulated by [129,130] the immune
system. Additionally, many studies have demonstrated a link between the gut microbiota and host
mitochondrial function or metabolism, with disturbances in one resulting in subsequent dysfunction
in the other [131–136].

4.1. The Gut Microbiota and Metabolism

People with ME/CFS have been reported to present with gut microbiota disturbances and either
metabolite variation [31,118] or mitochondrial dysfunction [116] and the two conditions could be
linked. Sheedy et al. observed elevated Gram positive intestinal bacteria, which produce lactic acid that
may lower the gut pH and lead to elevated gut permeability [137]. Furthermore, the translocation of
these enteric lactic acid products into the bloodstream could contribute to the elevated lactate reported
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in the cerebrospinal fluid of ME/CFS patients [138–140] and in the blood of a subgroup of patients [141].
This contrasts with reports of reduced blood lactate as measured by H-NMR metabolomics [39], which
suggests that lactic acidosis may only affect a subgroup of patients. If IBS comorbidity accompanied by
gut dysbiosis and hyperpermeability is indeed a subtype of ME/CFS, the translocation of lactic acid
produced by abnormally enriched Gram positive enteric bacteria in the affected individuals, rather
than excessive production by the host metabolism, could explain this inconsistency.

4.2. Pathological Interactions between Gut Hyperpermeability and the Mitochondria

Broader implications for the immune system and mitochondrial function may come from reports
of increased translocation of immunogenic bacterial secretions from the gut into the bloodstream, which
in ME/CFS may be mediated by intestinal wall hyperpermeability in patients affected with IBS [104,142].
For example, the generation of excess free radicals, which occurs in the mitochondria [143], has been
proposed to form part of a microbial defense mechanism [144–146], with enteric species, such as
Escherichia coli, highly susceptible to the bactericidal properties of free radical derived reactive nitrogen
species (RNS) [147]. Excess free radical generation not only results in the formation of RNS but also
reactive oxygen species (ROS), whose production may be elevated in ME/CFS given the many reports of
elevated oxidative stress in the disorder [148–153]. Therefore, excessive free radical generation as such
an antimicrobial response to circulating antagonists of enteric origin could provide one explanation
for the reports of elevated oxidative stress in the disorder. Such a response may indeed be elicited
by the ordinarily commensal Gram negative bacteria E. coli, which, while also known to target the
mitochondria by the secretion of other toxins [154,155], secretes immunogenic lipopolysaccharide
(LPS). This endotoxin secretion is normally suppressed by the host microbiota at large [131], however,
the composition of the host microbiota is reportedly altered in cases of ME/CFS [12,115–121]. Such a
disturbance to the normal LPS secretion-suppressing host microbiota in ME/CFS and the presence of
gut hyperpermeability may therefore not only lead to the synergistic amplification of bacterial toxin
translocation into the blood and the consequent activation of inflammatory pathways [104,142], but
may also expose body-wide mitochondria to circulating virulent factors produced by Gram negative
antagonists, such as E.coli. This is supported by the increase in E. coli gut colonization reported in cases
of IBS [156], which, again, can be an ME/CFS comorbidity.

4.3. The Gut–Brain Axis: Autonomic and Hormonal Dysregulation

Physiological stress, considered one predisposing factor for ME/CFS [157], has been suggested
to play a role in modifying the gut microbiota in such a way that would reduce the numbers
of Bifidobacterium and Lactobacillus, two genera responsible for the suppression of LPS-secreting
commensal bacteria and has been implicated in this way in ME/CFS [158,159]. While the translocation of
immunogenic LPS into the bloodstream is generally associated with body-wide inflammation [160,161],
it may also lead to the elevation of proinflammatory elements and the stress hormone cortisol in the
brain [162]. The transduction of immunogenic pathogen signals is but one aspect of the gut–brain
axis, so it is pertinent to address the potential for broader gut-brain driven [163,164] or autonomic
nervous dysregulation that may play a part in the disorder. Indeed, there is some evidence to
support such dysregulation associated with vasomotor abnormalities [165] or mitochondrial Coenzyme
Q10 deficiency associated with cardiovascular lesions [166]. There are relevant, respectively, to the
ME/CFS comorbidity POTS, which likely involves vasomotor dysfunction [167], or to the cardinal
symptom of chronic fatigue. Further, the linkage of cortisol-driven stress responses to the gut through
the hypothalamic-pituitary-adrenal (HPA) axis [168] could be dysfunctional in ME/CFS due to the
hypocortisolism previously suggested to play a role in the condition [169,170]. This possibility could
weave another perturbed regulatory loop into the system, which may aid in perpetuating an altered
homeostasis. This has been previously reviewed at length [171].
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5. Multi-System Pathological Interactions

5.1. Exposure to Stressors and the Theoretical Homeostatic Perpetuation of a Disease State

The reported disturbances to ME/CFS metabolism have been linked to chronic activation of
emergency cell survival mechanisms to cope with adverse conditions [7]. These adverse conditions
could include energy stress, inflammation, HPA axis dysregulation, or pathogen exposure. They elicit
a conserved homeostatic cell danger response [172] that could result in the cell shifting to an alternative
resting steady state and contribute to ME/CFS pathology [34]. An alternative explanation would involve
chronic ongoing exposure of cells to a causative insult. However, chronic pathogen exposure as the
precipitating factor for such a response in ME/CFS seems unlikely, as theories of viral persistence have
been thoroughly investigated and the evidence for chronic viral infection in ME/CFS is inconsistent [173].

Another feature of ME/CFS is the characteristic symptom heterogeneity. Patient histories suggest
that the initial insult eliciting the shift to the ME/CFS state differs between individuals and so may
dysregulate the underlying cellular stress signaling pathways in different ways. This could contribute
to inconsistencies between various studies and highlights the need for sensitive diagnostics and patient
stratification into recognizably different categories.

No matter the initial insult, each of the aforementioned possibilities can involve the interaction
between chronic inflammation and immunological and mitochondrial dysfunction [99,174,175]. This is
similar to theories previously presented by others pertaining to dysregulated homeostatic feedback
loops [34]. Faced with a new challenge, such as the re-emergence of a dormant pathogen, over-exertion,
or other stress depending on the tolerance of the individual, the affected pathways could again be
perturbed, triggering a molecular cascade during bouts of PEM. In some patients, this may mimic the
response to a recurrent infection regardless of whether the new trigger is pathogen-driven. Symptom
flare-ups characteristic of ME/CFS may therefore result from antagonization of just one of the underlying
nodes of a multi-system pathological web and a symptomatic body-wide cascade ensues.

For example, the elevated oxidative stress reported in the disorder [148–153] may be entangled
with perturbed immune-inflammatory pathways [175–178], gut inflammation [158], and dysfunctional
mitochondria. This may be exacerbated by other disturbances, such as the reported reduction in
CK levels [15], which can lead to the absence of CK-mediated ROS suppression [179]. This raises
the possibility of a vicious cycle of immunodysregulation and gut dysbiosis accompanied by poor
physiological gut function [122] that contribute to the perpetuation of a chronic bowel disease state.
Such an altered state could interact with the previously suggested HPA dysregulation [34] and
contribute to the perpetuation of an alternative resting homeostasis.

5.2. Identifying Underlying Mechanisms

The earlier sections of this review have discussed the evidence for dysregulated biological
mechanisms in ME/CFS patients at the molecular, cellular, tissue, organ, and whole body levels.
These changes are summarized in Table 1 and together provide insights into potential underlying
disease mechanisms.

Based on current biomedical literature, perturbations to the various systems listed in Table 1 are
implicated in the underlying pathological mechanisms in ME/CFS. These phenomena are correlated
clinically in that they appear in people with the disorder. However, the causal links between them
are unknown and cannot be discerned purely on the basis of clinical correlation. There are many
scenarios where more than one of the affected systems may exert pathological effects on another and
vice versa. This complex and often reciprocal regulatory cross-talk between systems makes it difficult
to distinguish cause from effect, so there is great need for the potential causal relationships to be
addressed directly using appropriate experimental models.
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Table 1. Brief summary of relevant reports contributing towards the biomedical basis of ME/CFS.

Area of Study Brief Summary of Key Reports in ME/CFS

Metabolomics

• Multiple reports of disturbed amino acid metabolism [6,38–40,180].
• Dysregulated lipid metabolism [7,13,31,39], possible glycolysis

impairment [39], possible PDH impairment [40], urea cycle
dysregulation [6,38].

• Overall: TCA cycle substrate provision deficiency and reliance on
alternative fuel sources.

Mitochondrial function

• Reduced [9] vs. elevated steady-state ATP levels [42,44,48] but
resting ATP synthesis rates are normal [41,45].

• Complex V inefficient and compensated for by upregulation of
supporting pathways [41].

Muscle activity • Unresponsive AMPK and reduced glucose [43,48,141] and oxygen
uptake [181].

Natural killer cells • Overall inconsistent evidence—role mostly unknown [65–72].

Calcium signaling • Evidence for impaired TRPM3 function [81,82].

Inflammation and cytokines
• Inconsistent molecular evidence [102,182], yet is likely to play a

role based on clinical presentation and the many reported
disturbances in related systems.

Autoimmunity

• Little researched, but proposed to form a subtype comorbid with
IBS [114].

• Role for B cell-mediated autoimmunity challenged by negative
outcome of rituximab trial [106,109,110].

B cells • Linked to mitochondrial disturbances, subset proportions may
vary [41,45,183].

Gut microbiota and physiology
• Widely reported disturbances to the gut microbiota

[12,103,115–117,119,120,184] and gut hyperpermeability
[103,123,124].

Autonomic and hormonal
dysregulation

• Vasomotor abnormalities [165,185], hypocortisolism [169,170],
broad HPA axis disturbance [186,187].

For example, the potential impact of gut hyperpermeability on body-wide mitochondrial function
has been outlined in Section 4.2. However, the reverse may also take place. The differentiation,
proliferation, and function of intestinal epithelial cells is known to depend upon normal mitochondrial
function, with mitochondrial dysfunction resulting in subsequent hyperpermeability of the intestinal
wall [188–190]. Therefore, it is impossible to distinguish cause from effect in this case with correlations
alone. Similarly, changes in metabolite levels in ME/CFS have been associated with both IBS
comorbidity [31] and alterations to intestinal flora composition [118]. However, it has not been
experimentally shown whether the IBS is caused by host metabolic dysfunction or irregular metabolite
production and excretion by an altered gut microbiota, or if the gut microflora and metabolic
abnormalities are caused by the IBS.

The influence of the mitochondria upon the function of the immune system has similar
implications. The mitochondria can partake in activation or suppression of inflammation indirectly by
regulating autophagy, which in turn bears downstream regulatory consequences for the activation of
inflammation [191]. Mitochondria also regulate elements of the innate immune system by the release
of immunogenic ligands [178] and are important for immune cell effector function due to their classical
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roles in energy production and metabolism. Furthermore, immunological dysfunction is common
in conditions which are primarily mitochondrial diseases [192]. This is an important consideration
with regard to the gut microbiota since it, in turn, influences and is influenced by the function of the
immune system and [128,163,193,194] immune cell population composition [195]. Therefore, changes
to any one of the mitochondria, immune system, or gut may dysregulate the others, again emphasizing
the importance of future research addressing cause–effect relationships.

6. Conclusions

ME/CFS is a heterogeneous condition that may encompass scenarios where uncertain, and possibly
varying, underlying insults trigger body-wide molecular and cellular perturbations perpetuated by
an alternative stable homeostatic states. Diagnostic advancement and the development of tools
which objectively and accurately phenotype patients is therefore paramount for the development of
mechanistic insight and effective therapeutics.

It is likely that the inflammation and immune dysfunction classically studied in ME/CFS are
entangled with dysfunctional energetics, gut health, or autonomic and adrenal dysregulation. The
evidence for metabolic and mitochondrial dysfunction indicates inefficient respiration, impaired
provision of TCA cycle substrate, and metabolic shifts towards the utilization of alternative metabolites.
Immune effector cell dysfunction, chronic inflammation, defective signaling, and elevated oxidative
stress may interact with not only the dysfunctional energetics but also with abnormal gut physiology
and microbiota composition. These effects on the gut may also tie back to mitochondrial function
and vice versa. The reciprocal interactions between these affected systems and the varied clinical
presentation of relevant symptoms between individuals make it difficult to postulate cause–effect
relationships with confidence. Furthermore, while disturbances to this range of interconnected
systems across the body have been demonstrated, in some cases concurrently, this body of research
has historically relied upon correlations, which creates the urgent need for research utilizing direct
experimental investigation of cause–effect relationships.
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