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Environmental impacts of conventional agriculture have generated interest
in sustainable agriculture. Biological pest control is a fundamental tool,
and ants are key players providing ecological services, as well as some
disservices. We have used a meta-analytical approach to investigate the con-
tribution of ants to biological control, considering their effects on pest and
natural enemy abundance, plant damage and crop yield. We also evaluated
whether the effects of ants are modulated by traits of ants, pests and other
natural enemies, as well as by field size, crop system and experiment
duration. Overall (considering all meta-analyses), from 52 studies on 17
different crops, we found that ants decrease the abundance of non-honey-
dew-producing pests, decrease plant damage and increase crop yield
(services). In addition, ants decrease the abundance of natural enemies,
mainly the generalist ones, and increase honeydew-producing pest abun-
dance (disservices). We show that the pest control and plant protection
provided by ants are boosted in shaded crops compared to monocultures.
Furthermore, ants increase crop yield in shaded crops, and this effect
increases with time. Finally, we bring new insights such as the importance
of shaded crops to ant services, providing a good tool for farmers and
stakeholders considering sustainable farming practices.
1. Introduction
The rapid evolution of pesticide resistance and the risks pesticides pose to
human and ecosystem health call for sustainable agricultural practices [1,2].
Biological control of pests is a promising tool in which natural enemies regulate
pest densities and reduce damages [3]. Biological control (e.g. providing natural
enemies in the ecosystem) not only reduces the use of pesticides and production
costs but also helps to maintain local biodiversity [4]. However, the success of
biological control depends on many factors, such as the environmental factors
and traits of the species involved [5,6].

The citrus growers in China were pioneers in biological control using ants
centuries ago [7]. Over time, these organisms have been used to control pests
around the world, such as Spodoptera exempta (Walk.) in Kenya [8], forest
pests in Canada [9], cocoa pests in Ghana [10], crop pests in Nigeria [11] and
many other pests in different countries [12,13]. Despite the gradual evolution
over time in the use of ants against pests, a major challenge still is to identify
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positive and negative ant–crop matches, using management
to boost positive effects (services) and decrease negative
effects (disservices) [14].

Ants are considered as natural enemies of arthropods
because they are abundant generalist predators [14–18]. As pre-
dators, ants perform services on crops such as reducing pest
abundance and plant damage (e.g. lost leaf area, fruit and
seed damage), leading to an increase in crop yield [18,19].
However, the role of ants in agriculture is not yet completely
clear because they can also cause disservices [20]. For example,
ants can spread pathogens, increase the density of honeydew-
producing pest species (e.g. mealybugs, soft scales, aphids,
psyllids or whiteflies among others), and reduce the abun-
dance of other natural enemies and pollinators [18,20]. For
instance, pollinators are able to detect and avoid flowers if
ants are present, decreasing pollination services and compro-
mising fruit formation [21,22]. Therefore, it is essential to
understand the net effects of ants on biological control.

The main biotic traits driving the role of ants in the bio-
logical control of arthropod pests are related to the biology
of the species involved (i.e. ants, pests and natural enemies).
For instance, aggressive ant species, which are usually abun-
dant and/or large-bodied ant species, are expected to have
a greater capacity to reduce pest abundance, mainly non-
honeydew-producing ones [14,17]. This reduction can lead
to a decrease in plant damage and an increase in crop yield
[23–25]. By contrast, these large-bodied or aggressive ants
can also affect negatively the abundance and behaviour
of natural enemies of honeydew-producing pests [26,27].
The specialization and dispersal type (winged or wingless
species) of these natural enemies may be affected by ants
due to the lack of elaborate defence mechanisms (most non-
parasitoid species) and locomotion capacity of these enemies,
respectively [28]. Therefore, it can lead to an increase in
honeydew-producing pests [29–31], often causing disservices
to agroecosystems [18,20,32].

Besides biotic traits, other factors such as field size, crop
system and ant exposure time (i.e. experiment duration)
might affect their ecosystem services on biological control in
agriculture [33,34]. For instance, the effect of field size on
pest density depends on the pest and natural enemy biology
but how field size as well crop system might interact with ant
services have rarely been evaluated [35]. For instance, more
conservative farming with less intensive management (e.g.
shaded crops) is expected to conserve or even increase ant
diversity and may reflect positively on ants services such as
herbivore predation [36,37]. Finally, numerous studies have
evaluated the effect of ant exclusion on pest and other natural
enemy densities but the experiment duration may have con-
trasting effects on pest abundance [34] and consequently in
plant damage and crop yield.

Despite some meta-analyses testing ant-plant protection
interactions [38,39], these studies focus on natural systems
rather than agriculture ones. Moreover, with the ongoing
increase in the conversion of natural systems into cultivated
land [40], we need to understand how biological and environ-
mental traits drive these ant-plant outcomes in agricultural
systems. Here, our main goal was to review the role of ants
in biological control, considering their services and disservices.
To do this, we evaluated the impact of ants on (i) pest abun-
dance, (ii) natural enemy abundance, (iii) plant damage
and (iv) crop yield. We used a meta-analytic approach, gather-
ing information from published papers that compared the
impacts of ant presence in crops. We also evaluated whether
ant effects were modulated by biotic traits, namely: (1) body
length of candidate ants (i.e. most abundant species); (2) pest
type (honeydew-producing species versus non-honeydew-
producing species); (3) pest group (taxonomic level of
non-honeydew-producing species); (4) natural enemy special-
ization (specialist versus generalist) and (5) natural enemy
dispersal type (winged versus wingless). In addition, we eval-
uated whether ant effects were modulated by: (6) field size;
(7) crop system (monoculture, intercropped or shaded crops)
and (8) experiment duration (e.g. ant exclusion experiment).
Our hypotheses of how these traits can affect biological control
are presented in table 1. Overall, we hypothesized that ant
presence (especially large-bodied ants) would decrease the
abundance of non-honeydew-producing pests, mainly those
with low locomotion and less defense (e.g. caterpillars, imma-
ture insects), leading to decreased plant damage and increased
crop yield.We also expected ant presence (and thosewith large
bodies) would decrease the abundance of natural enemies of
honeydew-producing pests without affecting the abundance
of natural enemies of other pests. In general, we expected
ants to decrease the abundance of generalist andwingless natu-
ral enemies of pests (compared to specialist andwinged natural
enemies) due to traits related to defense and locomotion,
respectively. Finally, we hypothesized that field size, crop
system and experiment duration would modulate the effects
of ants on the abundance of pests and their natural enemies,
plant damage and crop yield.
2. Material and methods
(a) Data collection and inclusion criteria
We searched for papers in Web of Science and Scopus databases
using all available years up to 31st March 2021. We used the pre-
ferred reporting items for systematic reviews and meta-analyses
protocol for paper search [41]. We used the following key terms
in our search: ‘ant’ AND ‘biological’ AND ‘control’. To comp-
lement our dataset, we searched for more studies in recent
reviews [14–17,28,38,39,42]. We selected studies according to
two criteria. Studies must have: (i) investigated ant effects on
the abundance of pests or natural enemies, or effects of ants on
plant damage (i.e. damaged leaves or fruit, lost fruit or lost leaf
area) or crop yield (i.e. fruit production and fruit biomass);
(ii) experimentally evaluated the influence of ants by contrasting
ant presence with ant exclusion (e.g. ants have been excluded
using physical or chemical barriers) on agrosystems.

Our initial search identified 2682 studies (1207 in Web of
Science and 1475 in Scopus) that were potentially appropriate
for our review. Of these, 678 were eliminated because they
were duplicates and 1953 because they were not about the sub-
ject of interest or they were not about studies that compared
the ant presence and exclusion protocols (electronic supplemen-
tary material, figure S1). Then, after applying our initial inclusion
criteria (i, ii), 52 studies from our search remained in our dataset
(electronic supplementary material, table S1). Overall, these
studies provided 857 cases (gathered through effect size esti-
mates) for our analyses. Despite the existence of pioneering
studies (see [9–13]), studies prior to 1987 that were located did
not meet the inclusion criteria. Therefore, our review included
studies carried out in the last 35 years. Our analyses performed
adequately according to the proposed meta-analysis, since we
had more than 10 effect sizes for each moderator included in
our models [43,44].



Table 1. General expected effects of ant presence in biological control. (+) symbols represent positive effects (increase or gain), (–) symbols represent negative
effects (decrease or losses), (*) symbols represent neutral effects and NA represents non-evaluated effects.

interacting factors (i) abundance of pests
(ii) abundance of natural
enemies (iii) plant damage (iv) crop yield

overall (−) (−) (−) (+)

ant size (−) larger ants (−) larger ants (−) larger ants (+) larger ants

(*) smaller ants (*) smaller ants (*) smaller ants (*) smaller ants

pest type (+) honeydew-

producing

(−) honeydew-producing (+) honeydew-

producing

(−) honeydew-
producing

(−) non-honeydew-
producing

(*) non-honeydew-

producing

(−) non-honeydew-
producing

(+) non-honeydew-

producing

pest group (+) honeydew-

producing

(−) honeydew-producing (+) honeydew-

producing

(−) honeydew-
producing

(−) dipterans and
lepidopterans

(−) dipterans and
lepidopterans

(−) dipterans and
lepidopterans

(+) dipterans and

lepidopterans

(*) other groups (*) other groups (*) other groups (*) other groups

natural enemies

specialization

NA (−) generalist NA NA

(*) specialists

natural enemies

dispersal

NA (−) wingless/(*) winged NA NA

field size (−) (−) (−) (+)

crop system (*) monocultures (*) monocultures (*) monocultures (*) monocultures

(*) intercropped (*) intercropped (*) intercropped (*) intercropped

(−) shaded crops (−) shaded crops (−) shaded crops (+) shaded crops

experiment duration (−) (−) (−) (+)
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(b) Data extraction and effect sizes
From each selected paper, we recorded the mean abundance,
the variance and the sample size of evaluated variables (e.g.
abundance of pests and natural enemies, plant damage and
crop yield) in which ants were present in the trees/shrubs/
herbs of crop (hereafter, control) and in which ants were
excluded (hereafter, treatment). Where results were presented
graphically, we extracted the mean and variation (e.g. standard
error, standard deviance) from the figure using IMAGEJ. We
used Hedges’ g (J-corrected form) since this dataset had a
small sample size [45]. To calculate the Hedges’ g, we used the
ant exclusion treatments as reference groups from which we sub-
tracted the mean values of the control groups (ants present on
trees, shrubs or herbs of crops). Negative values of Hedges’ g
thus refer to effect sizes where ant presence reduced the abun-
dance of pests, natural enemies, plant damage, in addition, it is
also refers to effect sizes where ants reduce the crop yields.

Most of the studies (90%) were conducted on perennial
woody crops, with the exceptions of soya bean, cauliflower,
cotton and sweet potatoes, which are non-woody and generally
cropped as annual. We extracted information about the most
abundant ant species in each study. In addition, we used the
Global Ant Database [46] and additional literature to assess ant
body length (hereafter, ‘ant size’) (electronic supplementary
material, table S2). It is worth considering that the size of the
most abundant ant is a proxy for one important trait of this
organism among many others. Arthropod pests were classified
as honeydew producers or non-producers (i.e. pest type).
When information about honeydew production was not avail-
able within original studies, we searched for such information
in the available literature using the pest species name as key-
word. Although the red scale Aonidiella aurantii Maskell, 1879
(Hemiptera: Diaspididae) does not excrete honeydew, this sessile
species has been reported to increase in population size in associ-
ation with ants that tend honeydew-producing species in the
same plant organ [47,48]. Therefore, we classified this species
as ‘honeydew-producing’. Moreover, we also classified non-hon-
eydew-producing pests into groups considering their taxonomic
level (hereafter, ‘pest group’): Coleoptera, Lepidoptera, Hemi-
ptera, Diptera and phytopathogen (e.g. fungi). Orders with few
cases (less than 4) (e.g. Orthoptera, Thysanoptera) were excluded
from the analyses. We also excluded effect sizes when the
authors evaluated more than one dominant pest species in the
same study and did not discriminate which one was considered
in the analyses.

We classified the type of dispersal of natural enemies and their
level of specialization. The enemy dispersal type (winged versus
wingless) was based on the stage of development of individuals
considered in each study. For example, coccinellid larvaewere con-
sidered wingless and adults winged. We considered specialized
natural enemies to include parasitoid wasps (Hymenoptera) and
predators with extremely specialized pest predation behaviour
(e.g. Scymnus posticalis Sicard, 1913 (Coleoptera: Coccinellidae);
or Episyrphus balteatus De Geer, 1776 (Diptera: Syrphidae)) (see
[49]). By contrast, natural enemies without specialized predation
behaviour were considered generalists. As Mataeomera dubia
Butler, 1886 (Lepidoptera: Noctuidae) preys upon black scale
insects [50], we have considered it a natural enemy.

The field size (hectares of the fieldwhere an experimentwas car-
ried out), crop system and experiment duration (days) were
extracted from each paper. For woody crops, we classified the
crop system according to the levels of plant diversity. For instance,
when there was only one plant species grown, we classified the
system as a monoculture. When the main crop was combined
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with another plant species, we considered as intercropped (e.g.
banana intercropped with coffee tree). Finally, when there were
many plant species covering the crops we classified the system as
shaded crops sensu Perfecto et al. [51].

(c) Statistical analysis
We built four multilevel meta-analytic models (one for each of the
following variables: pest and natural enemy abundance, plant
damage and crop yield) using the ‘rma.mv’ function of the ‘meta-
for’ package [52] on R software [53]. We used the study identity
and the effect size inside each study as random factors to estimate
the variation between and within studies, respectively. We con-
sidered the overall effect size of ants (without moderators)
significantly different from zero if 95% confidential intervals (CI)
did not include zero [45]. Finally, we performed separatemultilevel
mixed-effects models with each ant size, pest type, pest group,
enemy specialization and dispersal, field size, crop system and
experiment duration as moderators to investigate how these fac-
tors separately can modulate the effect size of ants on the main
variables of biological control.

To explore the possibility of publication bias we used funnel
plots (graphical approach) and Egger’s regression test (statistical
approach) [54], modified according to Habeck & Schultz [55]. In
Egger’s regression test, we maintained the same structure of the
model evaluating the effect of ants on abundance of pests, for
instance, but included the variances of Hedges’ g as a moderator.
If the intercept of the regression test significantly deviated from
zero, the overall relationship between the effect size and its
respective variance in each study is considered asymmetrical,
therefore, biased [56]. Since our dataset consists of a relatively
small number of studies, we based our evidence of publication
asymmetries on p < 0.1 [54]. In addition, we estimated the
effect size heterogeneity in the models using I2. The I2 statistic
describes the percentage of variation across studies due to data
heterogeneity rather than chance [57].

In the three main variables (abundance of natural enemies,
plant damage and crop yield), we found evidence for a publication
bias in our dataset, as shown by both the funnel plots and the
intercept of Egger’s regression (electronic supplementarymaterial,
figure S2). There were higher (for pest abundance and plant
damage analysis; I2 = 87.35% and I2 = 90.56%, respectively) and
moderate (for natural enemy abundance and crop yield analysis;
I2 = 70.14% and I2 = 68.24, respectively) levels of heterogeneity in
our models [58]. Such bias is likely to be associated with outlier
comparisons (natural enemies’ abundance: five outliers; plant
damage: 12; andCrop yield: 11) (through the funnel plot, electronic
supplementary material, figure S2) as it seems to disappear when
those are removed (see [59,60]). Therefore, we obtained an
unbiased dataset according to Egger’s regression model [58] but
the models’ heterogeneity was weakly reduced, especially for
those with higher levels of heterogeneity (electronic supple-
mentary material, table S3). The removal of the outliers led to
the same qualitative result in most analyses, with differences
found only in plant damage analyses considering crop system
and pest order as moderators and in the overall effect of ants on
crop yield (electronic supplementary material, table S4). Below,
we present all results using our unbiased datasets (electronic
supplementary material, appendix S1 and table S1).
3. Results
(a) Effects of ants on pest abundance
Our dataset (308 cases) for the effect of ants on pest abun-
dance included 28 studies which comprise 15 countries
(figure 1a), 26 ant species (from 16 genera) and 30 pest
species. The California red scale A. aurantii (Hemiptera:
Diaspididae) (84 cases), brown citrus aphid Toxoptera citrici-
dus Kirkaldy, 1907 (Hemiptera: Aphididae) (38) and the soya
bean aphid Aphis glycines Matsumura, 1917 (Hemiptera: Aphi-
didae) (16)were themost studied pest species.Most pest species
were honeydew-producing (220 cases) compared to non-produ-
cing ones (72). Thirteen different crops were assessed, with
citrus (169 cases), mango (22), apple and cocoa (21 cases each)
crops being the most abundant. Pheidole pallidula Nylander,
1849 (Myrmicinae) (62 cases), Lasius niger (Linnaeus, 1758) (For-
micinae) (49) and Lasius grandis Forel, 1909 (Formicinae) (39)
were the most abundant ants in the dataset.

We found a non-significant overall effect of ant presence
on pest abundance (Hedges’ g = 0.19; CI = [−0.17, 0.56];
p = 0.31) (figure 1b). However, the effect of ants on pest abun-
dance was modulated by pest type (QM = 14.29, d.f. = 1,
p < 0.01, n = 292), showing that ant presence decreased the
abundance of non-honeydew-producing species (Hedges’
g =−0.52; CI = [−1.03, −0.005]; p < 0.01) and increased the
abundance of honeydew-producing ones (Hedges’ g = 0.60;
CI = [0.21, 0.99]; p = 0.04) (figure 2a). The effect of ants on
pest abundance was not significant considering the pest
group (QM = 5.51, d.f. = 2, p = 0.06, n = 66) (figure 2b).

(b) Effects of ants on non-honeydew-producing pests
For non-honeydew-producing pests, we found that the effect
of ants on pest abundance was not modulated by ant size and
experiment duration (electronic supplementary material,
table S4). As we found only three field size classes, it was
not possible to test this moderator effect. Finally, the crop
system modulated the effect of ant presence on the abun-
dance of non-honeydew-producing pests. Ant presence
reduced the abundance of these pests on shaded crops but
not in monocultures (figure 3a; electronic supplementary
material, table S4), being that there were no intercropped
crops for this analysis.

(c) Effects of ants on honeydew-producing pests
We found no effects of ants on the abundance of honeydew-
producing pests considering the ant size, field size and exper-
iment duration (electronic supplementary material, table S4).
For honeydew-producing pests, it was not possible to test the
effect of the crop system because all cases were monocultures.

(d) Effects of ants on natural enemies of pests
The natural enemies dataset (236 cases) included 16 studies,
comprising eight countries, nine ant species (from seven
genera) and 87 species of natural enemies of pests (figure 1a).
Six different crops were assessed, with citrus (152 cases),
apple (53) and cherry crops (13) being the most abundant.
Hymenoptera (49 cases), Coleoptera (45) and Arachnida (29)
were the most studied orders of natural enemies. Lasius niger
(66 cases), L. grandis (57) and Iridomyrmex rufoniger (Lowne,
1865) (Dolichoderinae) (25) were the most studied ant species.
We found a significant negative overall effect of ant presence
on the abundance of natural enemies (Hedges’ g =−0.23;
CI = [−0.41, −0.06]; p < 0.01) (figure 1b), regardless of the pest
type of the natural enemy (i.e. non-honeydew-producing
or honeydew-producing ones) (electronic supplementary
material, table S4).

We found no effects of ants on the abundance of natural
enemies considering the ant size, pest type, field size and
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experiment duration (electronic supplementary material,
table S4). We also found no effect of ants on enemy abun-
dance considering the enemy dispersal (winged: Hedges’
g =−0.20; CI = [−0.40, −0.001]; wingless: Hedges’ g =−0.21;
CI = [−0.44, 0.02]; p = 0.93). However, the enemy specializ-
ation modulated the effects of ants on enemy abundance,
with ants having a significant negative effect on generalist
but not on specialist natural enemies (figure 4; electronic
supplementary material, table S4).
(e) Effects of ants on plant damage
The plant damage dataset (165 cases) included 15 studies,
which comprise 13 countries, 15 ant species (from ten differ-
ent genera) and 10 different crops (figure 1a). Cocoa (35
cases), coffee (31) and citrus (30) were the most abundant
crops in this dataset. Oecophylla longinoda Latreille, 1802
(Formicinae) (40 cases) and O. smaragdina Fabricius, 1775
(26), L. grandis and P. pallidula (seven cases each) were the
most abundant ants considering ant effects on plant
damage. We found a significant negative overall effect of
ant presence on plant damage caused by pests (Hedges’
g =−0.63; CI = [−1.09, −0.16]; p < 0.01) (figure 1b).

We found no effects of ants on plant damage considering
the ant size, field size and the experiment duration (electronic
supplementary material, table S4). We also found no signifi-
cant effect of ants on plant damage considering the pest type
(figure 2c), but considering the pest group there was a signifi-
cant effect (figure 2d). Ants decreased plant damage when the
pests belonged to the orders Diptera and Lepidoptera. By con-
trast, ant presence had no effects on plant damage caused by
Coleoptera, Hemiptera and phytopathogens (figure 2d).
Finally, we found that the crop system modulated the effect of
ant presence on plant damage. Ant presence reduced the



(a)

non-honeydew-producing

honeydew-producing

(c) (d)

(b)

non-honeydew-producing

Lepidoptera

Coleoptera

Diptera

Hemiptera

Coleoptera

Diptera

Hemiptera

phytopathogen

honeydew-producing

(72)

(220)
(13)

(17)

(36)

(34)

(40)

(16)

(14)

(8)

(116)

(21)

–1.0 –0.5 0 0.5 1.0 –1 0 1 2

–2 –1
effect size (Hedges’ g)

0 1–3–1.0 –0.5
effect size (Hedges’ g)

0 0.5

Figure 2. (a,b) Effect of ants on pest abundance considering (a) pest type (honeydew-producing or non-honeydew-producing) (b) and pest group. (c,d) Effect of
ants on plant damage considering (c) pest type and (d) pest group. Effect sizes and 95% confidence intervals are shown. In parenthesis, the number of effect sizes
included in each of the analyses, note that the x-axis scales are different for (a), (b), (c) and (d ). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20221316

6

plant damage in shaded crops (Hedges’ g =−1.30; CI = [−2.03,
−0.58]) but not in intercropped (Hedges’ g =−0.07; CI = [−
1.01, 0.86]) and monocultures (Hedges’ g =−0.25; CI = [−0.63,
0.12]) (figure 3b; electronic supplementary material, table S4).
Considering the analyses with outliers, the shaded crops
cease to be significant because of the cases coming from
Dwomoh et al. [61], which account for 11 of the 12 outliers
found. This analysis may suffer from a methodological bias,
for instance, which we were unable to detect.

( f ) Effects of ants on crop yield
Our dataset for crop yield (62 cases) included 10 studies,
which comprise nine countries, 11 ant species (from nine
different genera) in seven different crops (figure 1a). Coffee
(24 cases), citrus (17) and cocoa (15) were the most abundant
crops. Oecophylla longinoda (16), L. grandis (5) and O. smarag-
dina (4) were the most represented ants in these studies. We
found a significant positive overall effect of ant presence on
crop yield (Hedges’ g = 0.32; CI = [0.05, 0.60]; p = 0.02)
(figure 1b; electronic supplementary material, table S4). It is
important to consider that this latter result and the others
below should be interpreted with caution due to the small
sample size.

We found no effects of ants on crop yield considering the
ant size (electronic supplementary material, table S4). The
experiment duration significantly increased the positive
effects of ants on crop yield (figure 5; electronic supplemen-
tary material, table S4). The crop system modulated the
effect of ants on crop yield. Moreover, ant presence increased
the crop yield in shaded crops (Hedges’ g = 0.68, [0.20, 1.15])
but not monocultures (Hedges’ g = 0.10, [−0.16, 0.37])
(figure 3c). As there were only three cases of intercropped,
this category was excluded from this analysis.
4. Discussion
Our results indicate that disservices (mean effect size: with
absolute values = 0.40) such as the increased abundance of hon-
eydew-producing pests and decreased abundance of natural
enemies are outweighed by biological control ecosystem ser-
vices provided by ants. Overall, the mere presence of ants,
regardless of their body size, provided pivotal services for
crops (mean effect size: with absolute values = 0.55) such as
the decreased abundance of non-honeydew-producing pests,
decreasedplantdamageand increased cropyield corroborating,
at least partially, most of our hypotheses.

Ants decrease the abundance of non-honeydew-producing
pests while they increase the abundance of honeydew-
producing ones. This occurs because non-honeydew-producing
pests are a source of protein for ants and do not offer additional
food resources [30,62]. Moreover, all non-honeydew-producing
pests considered in this study, except Panonychus citri
(McGregor 1916) (Acari: Tetranychidae), spend part of their
life cycle in the soil, where they are often exposed to predation
by ants [28,63].

Crop systems that allow greater plant diversity in the
environment (e.g. shaded crops) favour the role of ants in
the control of non-honeydew-producing pests. In these sys-
tems, there may be a dilution of pest resources, allowing
better biological control by ants. Compared to monoculture
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(Hedges’ g = 0.05), ants decreased the abundance of these
pests by 104% in shaded crops (Hedges’ g =−1.21)
(figure 3a). The presence of other plant species and less inten-
sive tilling in shaded crops reduce the use of pesticides and
favour biodiversity preservation [64], including that of pred-
atory arthropods such as ants [51,65]. These traits and
management practices in shaded crops provide more ant
niches (e.g. nesting sites and food resources) which lead to
an increase in ant diversity, i.e. more species inhibiting and
preying on pests in these environments [36,66,67]. For
instance, regarding arboreal ants, a diverse array of twigs
(from different plant species) attracts higher abundance and
richness of ants than a monospecific collection of twigs [68].
Diverse ant communities can provide protection against a
wider range of pests [37]. Finally, it is worth noting that
our data mostly considered the ant community as whole
and did not allow comparisons of ant community effects
versus single ant species.

Overall, our analyses show that ants tend to increase
honeydew-producing pests. Ants often establish mutualistic
associations with these pests, receiving honeydew and offer-
ing protection from predators [18,30,62]. These associations
are often considered a disservice by ants on crops mainly
through damage caused by honeydew-producing pests and
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sometimes by inhibition of natural enemies [37,69]. However,
the outcomes of these associations for plants are still uncer-
tain (see [27]). An environmentally friendly management
practice to interrupt these associations is to offer an alterna-
tive source of sugars (on the ground, near the trunk or on
the tree branches). This distraction of ants leads to an increase
in natural enemy abundance and a reduction in the size of
hemipteran colonies [63,70].

One of the major disservices of ants in crops is to deter or
prey on natural enemies of pests (intra-guild predation).
Overall, ants consistently decreased the abundance of natural
enemies, regardless of the biological traits (i.e. ants, pests
and natural enemies), field size and experiment duration.
For instance, pest type (honeydew-producing or not), ant
size or enemy dispersal (i.e. winged or wingless) did not
affect the role of ants, contrary to our initial hypotheses.
However, ants decreased the abundance of generalist natural
enemies (Hedges’ g =−0.37) by up to 95% compared to
specialists (Hedges’ g =−0.02). Specialist natural enemies
(specialist predators and parasitoids) have evolved some
adaptations to deal with ants, such as chemical camouflage
[49]. For instance, Mouratidis et al. [71] have recently reported
that parasitoids of mealybugs use cuticular hydrocarbons left
by ants to avoid mutualistic ants. The effects of ants on
natural enemies may be, therefore, less harmful since the sim-
ultaneous use of generalist and specialist natural enemies
often enhances the effect of these on biological control [72].
This simultaneous effect might partially explain why ant
presence reduced plant damage even as the number of
natural enemies decreased.

The ants reduced the plant damage regardless of whether it
was caused by non-honeydew-producing pests or honeydew-
producing pests (see [38]). When we consider pest groups
(only those non-honeydew-producing species), ant presence
did not affect any abundance of the groups assessed. However,
ants reduced plant damage caused by Diptera and Lepidoptera.
Fruit flies (the main group of dipterans studied in this review)
avoid laying eggs in fruit with ant pheromones [73,74] and
ants preyon fruit flies that pupate in the soil [63]. In addition, dip-
teran larvae and caterpillars may also be especially vulnerable to
ants due to their few defense mechanisms [20,23,75]. Aluja et al.
[76] found that larvae of Anastrepha spp. (Diptera: Tephritidae)
on the ground are mostly attacked by ants within 5 min after
leaving the fruit. Ants had no effect on plant damage caused
by Coleoptera, Hemiptera and phytopathogens. However, this
latter result should be interpreted with caution since we had
only eight cases of phytopathogens. Finally, the crop system
also modulated the effect of ants on plant damage. As ant diver-
sity may increase in plant-richness environments [68] such as
shaded crops [67], whereby ants tend to increase the predation
rate [36,66]. These effects can directly reflect in the reduction of
plant damage and consequently in the increase in crop yield
(figure 3b,c). Therefore, shaded crops, as well as other crop
systems like organic agriculture and agroforestry [64], can
enhance the beneficial services provided by ants (e.g. pest
control) that increase the economic benefits to farmers.

The crop yield is the ultimate ecosystem service and one
of the most important to agricultural systems, mainly from
the point of view of farmers. Our meta-analysis shows that
ants increase crop yield. In Northern Australia, for instance,
economic estimates have shown that the use of top dominant
ant, O. smaragdina, can increase cashew production by 49%,
generating a net income of 70% (including costs and gains
from the use of ants instead of chemical insecticides) [77].
The longer the duration of the study the greater the effect
sizes on crop yield. Therefore, once ant colonies are estab-
lished, the benefits to crops tend to increase over time (at
least ± 2 years, as shown in our dataset). This may be a key
benefit of using ants in biological control because pesticides
cannot have effect on some pest species or they develop
resistance over time, requiring new pesticides and increasing
costs [78,79]. However, we cannot rule out that assessing the
effect of ants in the short term may be controversial.
5. Conclusion
Our study is the first evidence synthesis investigating ants’
primary services and disservices in the pest control of mul-
tiple crops. It is worth noting that different ant species act
as biological controls in different ways [28]. The services pro-
vided by ants outweigh the disservices. Overall, our results
corroborate general patterns and hypotheses and bring new
insights to the role of ants in biological control. Our meta-
analyses show that the effect of ants as biological controls is
more pronounced in shaded crops, aligning two major
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sustainable management practices. The presence of ants in
shaded crops can improve pest management and increase
crop yield, as well as increase biodiversity within agroecosys-
tems (see [80]). Therefore, from our results, we encourage
practices of shaded crops as a way to naturally promote
ants in crop systems. In most cases, ants are low-cost solution.
However, in others, it is necessary to move colonies into the
crop areas and provide food and/or nests for their survival,
as occurs with Oecophylla ants in many locations world-
wide [42]. In general, with proper management, ants can be
useful pest controls and increase crop yield over time. Some
ant species have similar or higher efficacy than pesticides,
at lower costs [14]. Moreover, ants can be used with inte-
grated pest management when ants alone are not enough
to control the pest [24]. Finally, further studies investigating
other factors that can affect the role of ants on pest control
in a changing world, such as landscape composition, climate
change and ant invasive status should be encouraged.
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