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Abstract
Based upon a thorough review of published clinical observations regarding the
inhibitory system, I hypothesize that this system may play a key role in the
pathogenesis of a variety of neuromuscular and neurological diseases.
Specifically, excitatory overstimulation, which is commonly reported in
neuromuscular and neurological diseases, may be a homeostatic response to
inhibitory overstimulation. Involvement of the inhibitory system in disease
pathogenesis is highly relevant, given that most approaches currently being
developed for treating neuromuscular and neurological diseases focus on
reducing excitatory activity rather than reducing inhibitory activity.
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The clinical manifestations of neuromuscular and 
neurological diseases have high overlap
The pathogenesis of most neuromuscular and neurological  
diseases is poorly understood, despite their devastating impact 
on quality of life and the fact that they were first described more 
than a century ago. Clinically, neuromuscular diseases manifest  
as progressive muscle weakness together with a general set of 
motor symptoms, including speech-related difficulties, impaired 
mobility, and reduced fine motor skills1. In contrast, neurological  
diseases manifest primarily as a progressive decline in cognitive 
function. Interestingly, the clinical manifestations of neuromuscu-
lar and neurological diseases also overlap; this overlap is summa-
rized in Table 1 for primary lateral sclerosis (PLS), amyotrophic 
lateral sclerosis (ALS), ALS with frontotemporal dementia (ALS-
FTD), FTD with ALS (FTD-ALS), FTD, Alzheimer’s disease,  
Parkinson’s disease, and Huntington’s disease1–29. The clinical fea-
tures shared between the neuromuscular disease ALS and the neu-
rological disease FTD exemplify this overlap, as late-stage ALS can 
lead to the manifestation of FTD; conversely, FTD can progress to  
ALS, leading to the manifestation of FTD-ALS2–8.

Elevated glutamate levels are involved in the 
pathogenesis of both neuromuscular and 
neurological diseases
A key observation gleaned from analyzing Table 1 is the finding 
that glutamate levels are increased in the cerebrospinal fluid (CSF) 
of patients in all eight diseases22–29. Glutamatergic (i.e., excitatory) 
overstimulation induces excitotoxicity in cultured neurons and 
is believed to be an important factor in the pathogenesis of both  
neuromuscular and neurological diseases22–29. Glutamate-induced 
excitotoxicity can result in the decay of neuronal pathways that 
innervate muscles and other physiological systems22–29. This decay 
gives rise to the loss of physiological function and is consid-
ered to lead to the clinical manifestations that present with both  
neuromuscular disease and neurological disease22–29. I hypothesize 
that these increased glutamate levels are actually a homeostatic 
response to an overstimulated inhibitory nervous system. This novel 
hypothesis is based upon the observation that the clinical findings 
in neuromuscular and neurological diseases can be explained by 
inhibitory activity, as discussed below.

Despite increased glutamate levels, patients with 
neuromuscular and neurological diseases do not 
have increased epileptic activity
Since they were first diagnosed more than a century ago, the clinical 
manifestations of neuromuscular and neurologic diseases have been 
well described. Strikingly, however, the consequences of one key 
clinical feature of these diseases—the absence of an elevated risk 
of seizure activity—have been largely overlooked.

This is exemplified for ALS in which a broad, detailed retrospec-
tive study of the medical records of 657 ALS patients revealed 
that none of the patients presented with epilepsy as a co-morbid  
condition9. Moreover, a thorough search of PubMed for articles 
published from 1966 through 2016 using the key words “sei-
zure” or “epilepsy” in combination with “amyotrophic lateral  
sclerosis” or “ALS” confirms the striking absence of epilepsy 
and/or seizures in ALS patients. This finding is consistent with the  
absence of seizures and/or epilepsy in review articles describing  
the clinical manifestation of ALS2–6.

A key observation that makes the absence of seizure activity in 
ALS even more remarkable is increased glutamate levels in the  
cerebrospinal fluid (CSF) of patients with ALS; on average, gluta-
mate levels in the CSF of ALS patients are increased by 100%, 
and some ALS patients can have an increase of up to 800%23.  
Importantly, increased glutamate levels are generally associated 
with epileptic seizures30,31. Thus, given the increased glutamate 
levels typically measured in the CSF of ALS patients, one would  
logically expect that the prevalence of epilepsy in ALS 
patients should be elevated relative to the general population.  
However, despite this expectation, epileptic seizures are simply not 
reported among ALS patients.

Strikingly, in addition to ALS, none of the other seven dis-
eases listed in Table 1 typically present with an increased risk of  
epileptic seizures, either2–15, even though all eight diseases present 
with elevated glutamate levels in the CSF22–29. With respect to  
Alzheimer’s disease, patients in the early stages of the disease 
occasionally develop seizures14,32; however, this seizure activity 
decreases as the disease progresses from the early stages to more 
advanced stages14,32,33.

Despite elevated glutamate levels, muscles in 
neuromuscular and neurological patients are 
inhibited
A second key observation is that neuromuscular and neurological 
diseases have an inhibitory effect on muscle function, rather than 
being excitatory. The diseases listed in Table 1 are characterized 
by muscle inhibition, even though glutamate—which, as discussed 
above, is generally increased in these diseases—is the major neuro-
transmitter that drives muscle activation by increasing the firing rate 
of motor neurons. Remarkably, however, despite having increased 
levels of glutamate in the CSF, patients with neuromuscular and 
neurological diseases do not have increased muscle activation. This 
is exemplified most clearly by ALS, a disease with highly elevated 
glutamate levels22,23 and complete muscle inhibition in the end 
stages. Although fasciculation and/or cramps can be observed in 
ALS patients2–4, these features occur in debilitated muscles as they 
progress from a fully functional state toward a fully inhibited state.

      Amendments from Version 1

The author wishes to thank the referees for their valuable comments. 
These have been included in version 2 of the manuscript as follows:

•   References to the increased seizure activity during the 
early stages of Alzheimer’s Disease have been included. 

•   The term inhibitory system has been made more explicit in 
the manuscript.

•   Reference to the link between GABA production by 
intestinal bacteria and gut GABA receptor stimulation has 
been included.

•   Reference to the Washington Post article is mentioned in 
the text, and no longer in the reference list.

See referee reports
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Table 1. Overview of the clinical manifestations in eight progressive neuromuscular 
and neurological diseases1–29.

Clinical manifestation
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Elevated glutamate CSF levels √ √ √ √ √ √ √ √

Elevated epileptic activity – – – – – – – –

Dysphagia √ √ √ √ √ √ √ √

Dysarthria √ √ √ √ √ √ √ √

Eye movement difficulties √ √ √ √ √ √ √ √
Bladder dysfunction √ √ √ √ √ √ √ √
Gastrointestinal dysfunction √ √ √ √ √ √ √ √
Cognitive dysfunction – √ √ √ √ √ √ √
Rest tremor – – – – – – √ –

Respiratory depression √ √ √ √ – √ √ √
Coordination difficulties √ √ √ √ – √ √ √
Impaired muscle function √ √ √ √ – √ √ √
Severe muscle wasting – √ √ √ – – – –

√, present; –, absent in most patients PLS, primary lateral sclerosis; ALS, amyotrophic lateral sclerosis; 
FTD, frontotemporal dementia; CSF, cerebrospinal fluid

One possible explanation for these seemingly contradictory find-
ings is a second system that exerts strong anticonvulsive activity in 
both neuromuscular and neurological diseases. Importantly, such 
a system should be as widespread throughout the nervous system 
as the glutamatergic system, and the inhibitory system fulfills 
these requirements. Specifically, the inhibitory (GABA) system  
i) functions to oppose the glutamatergic excitatory neurotransmit-
ter system, ii) inhibits muscle activity by reducing the firing rate of 
motor neurons, and iii) exerts strong anticonvulsive activity26,30,31.

The clinical features of neuromuscular and 
neurological diseases can be induced by increasing 
inhibitory activity
A third key observation is that the clinical manifestations of 
neuromuscular and neurological diseases can be induced using 
interventions that increase GABAergic (i.e., inhibitory) activity  
(Table 2). For example, activating the GABAergic inhibitory system 
using benzodiazepines can render healthy muscles dysfunctional34,35. 
In addition, fatal respiratory depression can be induced by adminis-
tering an overdose of the GABAergic benzodiazepine midazolam36. 
Chronically stimulating the inhibitory system can cause chronic 
muscle disuse that can lead to muscle atrophy37. Moreover, inges-
tion of alcohol (another GABAergic inhibitory compound38) 
impedes coordination and causes slurred speech (dysarthria), which 
are features of neuromuscular and neurological diseases. In cats, 
dysphagia (difficulty swallowing) can be either induced or reversed 
using GABA agonists or GABA antagonists, respectively39.  
Dysphagia has also been reported in humans following the admin-
istration of either benzodiazepines40–42 or alcohol43. Administration 

of benzodiazepines reduces voluntary saccadic eye movement 
function44 and increases EEG beta-wave activity44, clinical mani-
festations that also occur in neuromuscular and neurological  
diseases18,45,46. Increased GABAergic inhibitory activity can also 
cause bladder47,48 and gastrointestinal dysfunction49,50, both of 
which can manifest in neuromuscular and neurological diseases19–21. 
Interestingly, Bravo et al. reported that chronically feeding mice the 
lactic acid bacterium L. rhamnosus increases expression of GABA 
receptors, suggesting a link between GABAergic activity and CNS 
disorders51. Strikingly, GABAergic activity can also explain the 
overlapping clinical manifestations between Alzheimer’s disease 
and alcohol-related dementia52, and it can explain the increase 
in dementia-like symptoms observed after the administration of 
the benzodiazepine diazepam53. Inhibitory activity can also explain  
neuromuscular and neurological disease predisposition in the eld-
erly, as the sensitivity to GABA inhibitory activity is known to 
increase with age54. Finally, GABAergic activity has been impli-
cated in cognitive dysfunction55–57, which is a hallmark feature of 
neurological diseases and is often observed in late-stage neuromus-
cular disease2–7. Taken together, these findings support the notion 
that the clinical features associated with neuromuscular and neuro-
logical diseases can be induced by activating the inhibitory system.

Modulating inhibitory activity can explain the 
progression of ALS in clinical trials
In addition to mimicking the majority of clinical manifestations 
observed in neuromuscular and neurological diseases, GABAergic 
activity can also explain the more rapid disease progression of ALS 
reported in clinical trials in which patients received GABAergic 
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Table 2. The clinical manifestations of neuromuscular and neurological diseases can be induced by administering compounds that 
increase inhibitory activity31,34–50,52–57.

Clinical manifestation Role of the inhibitory system

Dysphagia GABAergic compound administration leads to dysphagia that can be reversed by the administration of 
GABA antagonists

Dysarthria GABAergic alcohol ingestion can lead to dysarthria

Eye movement dysfunction GABAergic benzodiazepine administration can lead to eye movement dysfunction

Bladder dysfunction GABAergic activity can lead to bladder dysfunction

Bowel dysfunction GABAergic activity can lead to bowel dysfunction

Cognitive dysfunction GABAergic benzodiazepine administration can lead to increases in dementia scores

Dementia Long-term GABAergic alcohol ingestion can lead to alcohol-related dementia

Respiratory depression GABAergic benzodiazepine administration can lead to respiratory depression

Coordination difficulties GABAergic alcohol ingestion can lead to coordination difficulties

Muscle dysfunction GABAergic benzodiazepine administration can lead to muscle dysfunction

Muscle blockade GABAergic benzodiazepine administration can lead to muscle blockade even causing respiratory 
depression-related fatalities

Muscle atrophy GABAergic benzodiazepine administration can lead to muscle blockades that leads to muscle disuse that 
is associated with muscle atrophy

Muscle wasting GABAergic benzodiazepine administration can lead to muscle blockades that leads to muscle disuse that 
is associated with loss of muscle mass

ALS mortality GABAergic activity can account for the faster disease progression observed in clinical trials where ALS 
patients are treated with GABAergic compounds

Figure 1. Schematic overview of recurrent inhibition. With 
recurrent inhibition (RI), input from descending pathways (DP) 
reaches the motor neuron (MN). In response, the MN activates 
the target myocyte; in addition, the MN also activates Renshaw 
cells (RC), which then inhibit the motor neuron through a negative 
feedback loop.

compounds. For example, in two trials gabapentin increased the rate 
of disease progression in patients with ALS58. A similar effect was 
reported in patients with ALS who received the GABAergic com-
pound topiramate59. GABAergic action can also explain the more 
rapid disease progression of ALS in clinical trials in which patients 
received the antibiotic minocycline60, which has GABAergic  
activity61. Finally, GABAergic involvement can explain the observed 
efficacy of the taurine conjugate form of ursodeoxycholic acid  
(UDCA) in ALS patients62, as UDCA inhibits GABAergic action63.

Neuromuscular and neurological manifestations can 
be attributed to simple inhibition and/or recurrent 
inhibition
A fourth key observation is that the clinical manifestations asso-
ciated with neuromuscular and neurological diseases can be  
attributed to the activity of either simple inhibition (SI) or recurrent 
inhibition (RI) pathways. Specifically, I postulate that differences 
between muscles under the control of SI and/or RI underlie the 
important—yet poorly understood—manifestations of neuromus-
cular and neurological diseases.

The inhibitory system functions via both SI and RI64. The RI sys-
tem controls physiological functions that play a role in counter-
acting gravitational forces and other external forces acting on the 
body. During locomotion and/or to counteract the effects of grav-
ity, RI uses a negative inhibitory feedback loop (Figure 1), thereby  
providing muscles with additional, stabilizing input. Therefore, 
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muscles involved in movement and lifting heavy objects are sub-
ject to RI. Examples of RI-innervated muscles include the limb 
and thorax muscles, as well as the neck muscles that control head  
movement.

In contrast, neuronal pathways that do not play a role in locomo-
tion or counteracting gravity selectively utilize SI64. Examples of 
SI-innervated muscles include facial, speech, pharyngeal, and eye 
muscles, as well as muscles that are involved in bowel and bladder 
function.

Table 3 summarizes the involvement of SI and RI in the princi-
pal clinical manifestations of neuromuscular and/or neurological 
diseases. A close examination of Table 3 reveals that one set of  
muscles—namely, the respiratory muscles—is innervated by both 

Table 4. Limb-onset, bulbar-onset, and respiratory-onset ALS can be differentiated based on 
targets that are innervated by simple inhibition (SI) and/or recurrent inhibition (RI).

SI RI Projection target of affected neurons ALS onset type

√ Distal upper-limb muscles

Limb-onset ALS
√ Proximal upper-limb muscles

√ Distal lower-limb muscles

√ Proximal lower-limb muscles

√ Respiratory muscles involved in maintaining body posture Respiratory-onset ALS

√ Respiratory muscles not involved in maintaining body posture

√ Speech muscles

Bulbar-onset ALS

√ Swallowing muscles

√ Tongue, mouth, cheek, and palate muscles

√ Bladder muscles

√ Gastrointestinal muscles

√ Eye muscles

√ Facial movements

√ Emotional function

√ Cognitive function

SI and RI pathways64,65. This dual innervation arises because the 
respiratory muscles play a role in both respiratory function and 
maintaining body posture64.

SI and RI involvement can account for various onset 
manifestations in ALS
Strikingly, the categorization between SI-innervated and RI- 
innervated muscles coincides with the categorization of muscles 
affected in limb-onset ALS, bulbar-onset ALS, and respiratory-
onset ALS. Approximately 70%, 25%, and 5% of ALS patients 
present initially with limb involvement (limb-onset ALS), bulbar 
symptoms (bulbar-onset ALS), or respiratory symptoms (respira-
tory-onset ALS), respectively2, and this difference in onset can be 
explained by differences in SI versus RI involvement (Table 4). 
Patients with both SI and RI involvement at the onset of disease 

Table 3. Summary of neuronal pathways involved in neuromuscular and/or neurological diseases and their 
innervation by either simple inhibition (SI) or recurrent inhibition (RI)64.

SI RI Neuronal pathways involved in neuromuscular and/or neurological diseases

√ Neuronal pathways controlling muscles involved in dysphagia

√ Neuronal pathways controlling muscles involved in dysarthria

√ Neuronal pathways controlling muscles involved in bowel function

√ Neuronal pathways controlling muscles involved in bladder function

√ Neuronal pathways controlling muscles involved in eye movement

√ Neuronal pathways controlling cognitive function

√ Neuronal pathways controlling respiratory muscles not involved in maintaining body posture

√ Neuronal pathways controlling respiratory muscles involved in maintaining body posture

√ Neuronal pathways controlling limb muscles involved in body locomotion or maintaining body posture
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present with respiratory-onset ALS. In contrast, patients with pri-
marily SI involvement present with bulbar-onset ALS, whereas 
patients with primarily RI involvement present with limb-onset 
ALS (see Table 4). Thus, SI and RI differentiation can account for 
this difference in ALS onset.

SI versus RI involvement can account for differences 
in life expectancy among patients with ALS
The differential involvement of the SI or RI system can also explain 
the observed differences in life expectancy between patients who 
present with limb-onset, bulbar-onset, or respiratory-onset ALS. 
Specifically, patients with respiratory-onset ALS generally have the 
shortest life expectancy following diagnosis4. As discussed above, 
increased activity of both the SI and RI pathways leads to fatal res-
piratory depression, the principal cause of early death in patients 
with ALS.

Increased activity of either the SI or RI pathway—but not both—
can also lead to respiratory depression, albeit not to fatal levels. 
Under these conditions, respiratory function, though impaired, 
can be maintained by either SI or RI pathway activity. However, 
due to impaired respiratory function resulting from either SI or RI  
overstimulation (see Table 4), these patients can die from dys-
phagia-related malnutrition and/or aspiration pneumonia. Thus, 
patients with either SI or RI involvement—but not both—generally 
live longer than patients with both SI and RI involvement. Impor-
tantly, this observation can also explain why patients with motor 
neuron diseases at either end of the SI/RI spectrum—for example, 
primary lateral sclerosis, progressive muscular atrophy, progressive 
bulbar palsy, or pseudobulbar palsy—have a longer life expectancy 
than patients with ALS4, which lies in the middle of the spectrum.

The SI and RI pathways can explain both the 
progression of ALS into FTD and the progression 
from FTD into ALS
Differences between the effects of SI versus RI involvement can 
explain the fact that although ALS and FTD generally involve 
two distinct systems, these two diseases have a certain degree of 
overlap with respect to their clinical manifestations (see Table 1). 
Thus, if RI overstimulation precedes SI involvement, the patient can 
present with an initial diagnosis of ALS and can progress to ALS-
FTD, a common manifestation of cognitive dysfunction observed 
in 20–50% of patients with late-state ALS patients2–7. Alternatively, 
if SI overstimulation precedes RI involvement, FTD is the initial 
diagnosis, and the disease can progress to FTD-ALS when the  
RI pathway becomes involved. Moreover, the division between SI 
and RI can also explain the overlap between subcategories of ALS 
and FTD with respect to impaired cognition and altered behavior 
that involve SI, and movement dysfunction that involves RI.

Differential involvement of SI and RI can account for 
the wide variety of clinical manifestations in ALS
Although it is generally considered one disease, ALS can present 
with a wide spectrum of clinical manifestations, and this spectrum 
can be explained by the involvement of SI and/or RI pathways. 
For example, SI overstimulation can lead to bulbar, cognitive, and  
frontotemporal dementia-related manifestations without causing 
severe muscle wasting or respiratory malfunction (for example, as 

observed in patients with bulbar-onset ALS). On the other hand, RI 
overstimulation can lead to locked-in syndrome, a state in which 
the patient retains cognitive and emotional function but becomes 
“locked” in their body, with all of the muscles that counteract 
gravity and other external forces rendered essentially dysfunc-
tional. Interestingly, the only muscles that are spared in locked-in  
syndrome—and the only way in which end-stage patients can 
communicate with the outside world—are the muscles that control 
eye movement. This is an important observation, given that the 
muscles that control eye movement are not controlled by RI 
pathways (see Table 3). The distinction between SI and RI can also 
explain the observation that some patients with ALS have fully 
intact cognitive and emotional functions even after their muscles 
involved in countering gravity have become dysfunctional; the 
most famous example of this phenomenon is Stephen Hawking, 
who despite being diagnosed with ALS in his early twenties remains 
active as a prominent theoretical physicist, now in his seventies.

Split-hand syndrome in ALS can be explained by 
differential innervation of SI and RI pathways
Split-hand syndrome is common among patients with ALS66. With 
split-hand syndrome, the abductor pollicis brevis (APB) and first 
dorsal interosseous (FDI) muscles are affected, whereas the abduc-
tor digiti minimi (ADM) muscle is relatively spared. This syndrome 
is particularly puzzling, as these muscles are innervated identically, 
yet are affected differently66. I propose that split-hand syndrome 
can be attributed to differences in the extent to which RI pathways 
innervate the hand muscles that are involved in precision gripping, 
versus muscles that also play a role in power gripping. With pre-
cision gripping (for example, when using a pen), the fingers and 
thumb press against each other; this type of grip does not involve 
lifting a relatively heavy object67. In contrast, power gripping (for 
example, when gripping a hammer or lifting a heavy pan) uses 
the fingers, palm, and thumb to clamp down on a heavy object in 
order to lift and control the object67. Napier67 used this distinction 
to distinguish muscle activities that are involved in body loco-
motion and/or posture from muscle activities that do not involve  
locomotion or posture. Thus, Napier’s separation also categorizes 
muscle activities into those that are controlled by RI and those that 
are controlled by SI. Because the primary function of the ADM 
muscle is to move the little finger (i.e., the fifth digit) away from 
the hand, the ADM muscle is only involved in precision gripping 
and would therefore not be affected by RI overstimulation. This 
is consistent with the reported absence of RI in motor neurons 
that innervate the ADM64,68. On the other hand, the APB and FDI  
muscles are involved in the opposition and extension of the thumb 
and are therefore involved in power gripping64; thus, these two  
muscles are affected by RI overstimulation.

Parkinson’s disease rest tremors can be attributed to 
differences between SI and RI involvement
In Parkinson’s disease, rest tremors arise from involuntary rhyth-
mic oscillatory movements of a body part at rest; these tremors 
stop when the patient actively moves the affected body part. The  
pathways that underlie rest tremors have not been identified, and 
the fact that rest tremors resolve during voluntary movement is 
one of the most puzzling observations associated with Parkinson’s 
disease69. However, because these tremors occur at rest (and not  
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during active motion or while countering the effects of gravity), 
the muscles involved are likely innervated by SI pathways, mak-
ing rest tremors an SI-specific phenomenon. This is further illus-
trated by the finding that rest tremors resolve when the affected 
body part becomes involved in locomotion, stance, or maintaining 
inertia69, actions that involve muscles that are controlled by RI64.  
Interestingly, the hand tremor that is most specific to patients with 
Parkinson’s disease—the so-called “pill-rolling tremor”—also 
results from muscles that are innervated solely by SI pathways. 
Specifically, the pill-rolling tremor involves muscles that play 
a role in precision gripping but not in power gripping, a distinc-
tion that is highly reminiscent of split-hand syndrome in ALS 
(see above). Furthermore, involvement of the inhibitory system in  
Parkinson’s disease rest tremors is supported by the observation that 
the rest tremors observed in restless legs syndrome resolve after 
the administration of quinine (FDA Drug safety communication, 
2010), a compound that reduces inhibitory activity70.

The differentiation of clinical manifestations in 
neuromuscular and neurological diseases can be 
attributed to SI versus RI pathways
The differentiation between SI and RI summarized in Table 3 can 
explain the three categories of fatal symptoms that arise in end-
stage neuromuscular and neurological diseases (Table 5). One 
striking observation from Table 5 is that both SI and RI can be 
attributed to fatal respiratory failure, the major cause of death 
among ALS patients. Overstimulation of SI pathways leads to 
bowel dysfunction, bladder dysfunction, and dysphagia-related 
malnutrition and aspiration pneumonia; these symptoms are the 
major causes of death among patients with FTD, Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s disease. On the 
other hand, overstimulation of RI pathways can lead to end-stage 
locked-in syndrome.

Differential SI and RI involvement can also account for the  
wide variety of clinical manifestations in neuromuscular and  

neurological diseases during disease progression. As a group, neu-
romuscular and neurological diseases present with a wide spec-
trum of clinical manifestations (see Table 1), and stimulation of SI 
and/or RI pathways can account for this spectrum. For example, SI 
overstimulation can lead to FTD, Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease, whereas RI overstimulation can 
lead to locked-in syndrome. Finally, overstimulation of both the  
SI and RI pathways can lead to ALS.

Finally, the differentiation between SI and RI can help explain 
the differences in life expectancy among patients with various 
neuromuscular and neurological diseases. As discussed above, 
increased activity of both the SI and RI pathways leads to fatal 
respiratory depression (see Table 5), the principal cause of death 
in patients with ALS, the neuromuscular disease with the short-
est life expectancy. Increased activity of either the SI or RI path-
way—but not both—can also lead to respiratory depression, albeit 
not to direct fatal levels. Thus, patients with either SI or RI over-
stimulation generally live longer than patients with both SI and RI 
overstimulation. This coincides with the observation that patients 
with ALS—in which both the SI and RI pathways are overstim-
ulated—have a shorter life expectancy than patients with FTD, 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, 
and locked-in syndrome, diseases in which either SI or RI activity 
is increased.

Homeostatic interactions between inhibitory 
transmission and excitatory transmission
Taken together, the wealth of observations discussed above sug-
gest that the opposing excitatory and inhibitory systems may play 
a role in the pathogenesis of the same disease. This phenomenon 
has precedent, as inhibitory/excitatory homeostasis processes are 
also involved in seizure activity30,31. Neurons that receive exces-
sive excitatory stimulation can subsequently become overstimu-
lated by inhibitory transmission, and vice versa. This raises 
the intriguing question of which system in neuromuscular and  

Table 5. The fatal symptom categories associated with neuromuscular and neurological diseases 
can be attributed to simple inhibition (SI) and/or recurrent inhibition (RI).

SI RI Fatal symptoms
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√ Dysphagia-related malnutrition √ √ √ √ √

√ Dysphagia-related aspiration pneumonia √ √ √ √ √

√ Bowel dysfunction √ √ √ √ √

√ Bladder dysfunction √ √ √ √ √

√ √ Respiratory malfunction √

√ Complete dysfunction of muscles involved in countering gravity √ √
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neurological diseases is overstimulated first, and which system 
becomes overstimulated as a homeostatic response. This question 
has been addressed with respect to epileptic seizures30. With respect 
to neuromuscular and neurological diseases, it is important to note 
that the administration of glutamatergic excitatory compounds 
does not lead to the clinical manifestations summarized in Table 1;  
glutamatergic overstimulation can give rise to clinical manifesta-
tions only through excitotoxicity (i.e., overstimulation-induced 
neuronal cell death). However, inhibitory overstimulation can 
give rise to the clinical manifestations in Table 1, even in the 
absence of neuronal cell death. Thus, I hypothesize that inhibitory  
overstimulation occurs first, and excitatory overstimulation is a 
homeostatic response. As inhibitory overstimulation increases, the 
excitatory system is stimulated further, until it reaches a level that 
induces neuronal cell death. This process is depicted schemati-
cally in Figure 2. Importantly, the order of the homeostatic process 

hypothesized here is precisely opposite to the homeostatic proc-
esses observed during epileptic seizures, in which excitatory over-
stimulation proceeds inhibitory overstimulation30.

Other possible interpretations of these observations
Other possible interpretations of the findings summarized in  
Table 1 should be considered. If inhibitory overstimulation plays 
a key role in neuromuscular and neurological diseases, one would 
expect these patients to present with sedation, thus indicating the  
possibility that physiological systems other than the inhibitory 
system may be involved. However, not all GABA receptor sub-
types are involved in sedation71,72. Thus, inhibitory activity can 
occur without inducing pronounced sedation. This is supported by 
reports that benzodiazepine-induced dysphagia can occur even in 
non-sedated patients40–42. Second, the absence of seizures despite 
high glutamate levels could be due to a slow, but non-epileptogenic 
increase in glutamate levels during the progression of neuromus-
cular and neurological diseases. However, even small increases 
in glutamate levels can increase glutamatergic synchronization 
of a small subset of critical neurons, thereby leading to epileptic 
activity30,31. Moreover, epileptic seizures are simply not reported 
among ALS patients, an observation that cannot be explained 
by a slow increase in glutamate levels, as glutamate does not 
cause inhibitory activity22–29. Furthermore, slow increasing lev-
els of glutamate in the absence of seizure activity may reflect the 
involvement of an inhibitory homeostatic process30,31. Finally, the 
differentiation between SI and RI depicted in Table 4 and Table 5 
may be attributed to the involvement of neuronal pathways project-
ing to either voluntary or involuntary muscles. However, this can-
not explain split-hand syndrome in ALS patients or rest tremors 
in Parkinson’s disease, as these phenomena involve only voluntary 
muscles. Moreover, split-hand syndrome involves identically inner-
vated muscles that cannot be differentiated by any aspect other than 
SI/RI innervation.

Therapeutic potential for targeting inhibitory activity
From a clinical perspective, an important consequence that emerges 
from the inhibitory overstimulation hypothesis is that the clinical 
manifestations summarized in Table 1 develop before neurons 
have undergone cell death. The implication of this possibility is 
that decreasing inhibitory activity may be beneficial in terms of 
slowing—or even preventing—the progression of neuromuscu-
lar and neurological diseases. Compounds that can reduce inhibi-
tory activity are currently available; unfortunately, however, these  
compounds can induce seizure activity and are therefore not used 
therapeutically. Nevertheless, their potential for preventing the 
pathogenesis of neuromuscular and neurological diseases sug-
gests that compounds that target the inhibitory system could be 
developed for clinical applications. For example, the average life 
expectancy of a patient with ALS is 3–5 years after onset, and most 
neuromuscular and neurological diseases are severe and ultimately 
fatal. With respect to Alzheimer’s disease and Parkinson’s disease, 
dysphagia and respiratory depression–related aspiration pneumonia 
are the most common causes of death16,17. Neuromuscular diseases 
also present with the severe and potential fatal clinical manifesta-
tions listed in Table 1;1–7,9–11,13,15,17–21 thus, the ability to prevent these 
symptoms could significantly prolong the life expectancy of these 

Figure 2. Schematic overview of glutamatergic overstimulation 
(yellow) and the inhibitory overstimulation hypothesis 
(blue and yellow). In the inhibitory overstimulation hypothesis, 
excitatory overstimulation is a homeostatic response to inhibitory 
overstimulation. A key feature of this model is that inhibitory 
overstimulation can be sufficient to cause symptoms (left blue  
arrow). As the disease progresses, increasing inhibitory 
overstimulation can eventually lead to excitatory overstimulation  
and neuronal cell death, making the symptoms irreversible.
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patients. From a treatment perspective, it is interesting to note that 
the selective GABA antagonist SGS-742 has been shown to be both 
clinically feasible and safe55.

Conclusions and future perspectives
Based upon the plethora of observations regarding the inhibitory 
system, I hypothesize that this system plays an important role in 
the pathogenesis of both neuromuscular and neurological diseases. 
Importantly, overstimulation of the inhibitory system can explain 
both the absence of epileptic seizures despite the elevated glutamate 
levels and the pharmacological induction of symptoms present in 
patients with neuromuscular and neurological diseases. Moreo-
ver, the separation between SI and RI can account for the various  
categories of clinical manifestations observed in these patients. 
Specifically, I hypothesize that increased glutamate levels in neu-
romuscular and neurological diseases are actually a homeostatic 
response to an overstimulated inhibitory system. Implicating the 
inhibitory system in the pathogenesis of neuromuscular and neu-
rological diseases is highly relevant, given that the majority of 
approaches being developed for treating these diseases focus on 
reducing glutamatergic activity, rather than reducing inhibitory 
activity. Moreover, this putative connection between the inhibi-
tory system and neuromuscular/neurological diseases may have  

long-reaching implications, including the need to develop  
therapies designed to reduce inhibitory overstimulation in  
neuromuscular and neurological patients.
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The opinion paper by Tuk provides an overview of the inhibitory system involved in neural signal
transduction. Based on an extensive review of the literature the author provides a number of challenging

but well-reasoned hypotheses about the impact of this system on both neuromuscular and neurological
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but well-reasoned hypotheses about the impact of this system on both neuromuscular and neurological
diseases. This potential connection may have important implications for the understanding and future
treatment of these so far (almost) untreatable diseases.
 
Only few minor points should be addressed.  
 

The use of the term ‘inhibitory system’ is somewhat confusing – the context is often not specified
(inhibitory system of what…) although the author means neural signal transduction – however,  this
should be mentioned where relevant and certainly in the title.
 
The link between GABA production by intestinal bacteria and gut GABA receptor stimulation could
be further addressed as it provides a way how other factors such as food or the gut microbiome
may modulate GABA response (see also reference 47 and later work of these authors like Bravo et

(2011).al. 
 
The literature is well reviewed and the paper is supported by 5 useful Tables, 2 clear Figures and
70 references of peer reviewed papers – the one Washington Post article may be better mentioned
in the text.
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The manuscript by B.Tuk provides a comprehensive and up-to-date review of the clinical observations of
neurodegenerative diseases relevant to the discussion on pathogenesis. The methodology of linking the
clinical observations to a common pathology that is different in sequence of events compared to other
scientific literature is sound. The data and the proposed theory are presented in a suitable manner.
The position that there is an absence of elevated seizure activity in all 8 of the neurological and
neuromuscular diseases should be revised to my opinion. While this can be said for ALS, there is
substantial epidemiological data to support an higher frequency of epileptic seizures in the early stages of
Alzheimer's Disease (ref 1-5). Based on the enormous increase of glutamate levels in ALS patients and
the absence of elevated risk for epileptic activity in that population, there is still good support for
postulating the theory of the inhibitory system as a plausible trigger for these diseases, but I propose that
that section of the article and Table 1 be revised to reflect that nuance.
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postulating the theory of the inhibitory system as a plausible trigger for these diseases, but I propose that
that section of the article and Table 1 be revised to reflect that nuance.

I recommend that the article be indexed, with the minor revision outlined above.
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