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Abstract: The mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation
at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We
hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric
oxide metabolites (NOx) in gestation. To test for this, electron paramagnetic resonance was used
to provide unique measurements of iron, metalloproteins, and free radicals in the blood and aorta
of fetal and maternal sheep from either high or low altitudes (3801 or 300 m). Using ozone-based
chemiluminescence with selectivity for various NOx species, we determined the NOx levels in these
samples immediately after collection. These experiments demonstrated a systemic redistribution
of iron in high altitude fetuses as manifested by a decrease in both chelatable and total iron in the
aorta and an increase in non-transferrin bound iron and total iron in plasma. Likewise, high altitude
altered the redox status diversely in fetal blood and aorta. This study also found significant increases
in blood and aortic tissue NOx in fetuses and mothers at high altitude. In addition, gradients in NOx
concentrations observed between fetus and mother, umbilical artery and vein, and plasma and RBCs
demonstrated complex dynamic homeostasis of NOx among these circulatory compartments, such
as placental generation and efflux as well as fetal consumption of iron-nitrosyls in RBCs, probably
HbNO. In conclusion, these results may suggest the utilization of iron from non-hematopoietic tissues
iron for erythropoiesis in the fetus and increased NO bioavailability in response to chronic hypoxic
stress at high altitude during gestation.

Keywords: chronic hypoxia; pregnancy; oxidative stress; placenta; chemiluminescence nitric oxide
(NO) measurement; electron paramagnetic resonance (EPR)

1. Introduction

Hypoxia, a condition of insufficient oxygen availability, is one of the most common and
severe stresses to an organism’s maintenance of homeostasis. Partial pressure of oxygen
(PO2) decreases with increasing elevation in altitude, such that high altitude can result in
hypoxia that leads to various complex physiological adaptations such as redistribution
of cardiac output and increased erythropoiesis to improve oxygen delivery [1]. The fetus
lives in an environment where the oxygen availability is much lower than that of the
adult [2]. Even at sea level, arterial PO2 is ~25 mmHg in a fetus versus ~100 mmHg in
an adult. While fetal adaptations of increased cardiac output and hemoglobin O2 affinity
enable tissue O2 delivery to be similar to that of the adult, normal fetal tissue PO2 at sea
level are comparable to those of an adult at the top of Mount Everest. However, it is well
known that the perinatal period presents an extreme challenge to both the mother and
offspring, with the transition from fetus to newborn testing the physiological limits of
both the newborn and mother [1–4]. The superimposed hypoxia of high altitudes during
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pregnancy puts stress on the fetus which can lead to growth restriction and various lifelong
sequelae such as hypertension, obesity, diabetes, and cognitive and behavioral disorders [1].
In addition, pregnancy at high altitude also places mothers at higher risk of illness, such as
a 2- to 4-fold increased risk of preeclampsia at high altitude compared to low altitude [3].
Nevertheless, although there are >81 million people living at high altitude (>2500 m) [4],
our understanding of the mechanisms underlying the impacts of high altitude on gestation
is still very limited [1].

As a vital component of hemoglobin and many enzymes, iron is essential for the
oxygenation and normal function of cells and its concentrations are under tight regulation.
For example, the intracellular chelatable iron pool (CIP), defined methodologically as iron
that is accessible to chelators, is maintained at low levels by many mechanisms such as
ferroportin, the only known cellular iron exporter. Ferroportin, in turn, is suppressed by
the hormonal iron regulator hepcidin. The plasma analogue of the CIP, non-transferrin
bound iron (NTBI), is oxidized from Fe2+ to Fe3+ by ceruloplasmin, a multicopper oxidase,
and can then be captured by circulating transferrin for cell uptake. Iron in both the CIP
and NTBI can catalyze the production of reactive oxygen (ROS), nitrogen (RNS), and
sulfur (RSS) species from oxygen, nitric oxide, and hydrogen sulfide, respectively [5,6]. As
such, the CIP and NTBI are maintained at the lowest sufficient levels under physiological
conditions [6,7]. Given that the body’s largest pool of iron, hemoglobin, is essential for
oxygen delivery, it is perhaps not surprising that hypoxia affects iron homeostasis at many
levels. For example, ferroportin, ceruloplasmin, and hepcidin are all under the regulation
of hypoxia inducible factor [8]. During pregnancy, iron regulatory mechanisms must adapt
to supply the growing fetus with large quantities of iron, putting the mother at risk of iron
deficiency if dietary supplementation is not provided [9]. How chronic hypoxic stress affects
iron homeostasis in the fetus and mother, which have a simultaneously competitive and
cooperative relationship with regards to resource allocation [10], remains largely unclear.

Like iron, nitric oxide (NO) is also of significant developmental and biological impor-
tance [11]. NO is a reactive free radical that is rapidly metabolized (biological t1/2 < 2 s) into
various NO species (NOx), such as nitrite, nitrate, S-nitrosothiols (SNOs), and iron-nitrosyls
(FeNO) including hemoglobin-NO (HbNO) and dinitrosyl iron complexes (DNICs) [12,13].
These NOx are of differing abundances, bioactivities, and stabilities. For instance, nitrate
accounts for >95% of total NOx in plasma but is a poor indicator of endothelial NO synthase
(NOS) activity, whereas plasma nitrite reflects the endothelial function [14]. SNOs and
DNICs, which are as vasoactive as NO per se, are relatively unstable compared to nitrate
and nitrite and thus may vanish during sample collection and processing [15–17]. For ex-
ample, while DNICs have been proposed as the most abundant intracellular NOx [18], they
have been largely overlooked in previous studies due to challenges in detecting them before
they degrade to nitrite or nitrate [15–17]. Of relevance to the current studies, DNICs are
also involved in sequestration and export of both intracellular iron and nitric oxide [18,19].

Oxygen plays a complex role in regulating both the production and metabolism of
NO [20]. For example, O2 is a necessary substrate for the production of NO by NOS,
and thus NO production can be limited under hypoxic conditions in accordance with
the Km of NOS enzymes for O2 (eNOS = 23 µM, iNOS = 135 µM, nNOS = 350 µM). In
addition, NO reacts avidly with O2 that is bound to heme proteins such as oxyhemoglobin
to produce nitrate, or with free O2 to form nitrite, which tends to lower NO concentrations
under normoxic or hyperoxic conditions. Conversely, under hypoxic conditions NOS-
independent pathways for NO production become important, such as the conversion of
nitrite to NO by reaction with heme-containing proteins [21]. How high-altitude hypoxia
affects NO homeostasis, especially in the mother and fetus, remains largely unknown.
Although enhanced production of NO, debatably via upregulation of eNOS, has been
proposed as a universal response to hypoxic stress [22–25], most previous studies of the
effects of high-altitude hypoxia on NO homeostasis have been limited by the need to freeze
and process samples in a way that fails to preserve the most bioactive NOx species and
thus most have reported nitrate concentrations, which is a poor indicator of overall NO
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bioactivity [14]. Nevertheless, high-altitude has been associated with a decrease rather
than an increase in plasma nitrate concentrations in pregnant women [26]. In addition, we
recently demonstrated an efflux of FeNOs from the placenta to fetal plasma in sheep, further
raising the question of what role NOx metabolites play in fetal physiology, and whether
NO homeostasis adapts to high-altitude in gestation [27]. Therefore, further investigation
of the effects of high-altitude hypoxia on NOx in gestation with the focus on the bioactive
NOx is needed.

The current study hypothesizes that chronic hypoxia at high-altitude alters fetal and
maternal iron and NO homeostasis. To test this, we used electron paramagnetic resonance
(EPR) to measure iron, metalloproteins, and free radicals in blood and homogenized
aortas of fetal and maternal sheep maintained at either high or low altitude (3801 and
300 m). In addition, using chemiluminescent NOx measurement methodology capable of
distinguishing between various NOx species [28], this study determined the concentrations
of bioactive NOx in these samples immediately after collection.

2. Materials and Methods
2.1. Experimental Animals

Animal protocols (IACUC#8200001 approved on 9 February 2020 for the period of
9 February 2020 to 30 January 2023) were preapproved by the Institutional Animal Care
and Use Committee of Loma Linda University and were in accordance with guidelines of
the American Physiologic Society and the National Institutes of Health. The current study
used blood and thoracic aorta collected from two-year old pregnant ewes and their fetuses
at about 140 days gestation (term = ~150 days). High altitude animals maintained at 3801 m
for the latter ~90 days before study [29] were compared to low altitude (300 m) controls.

For each experiment, five to six sheep were used in each experimental group. For the
low-altitude group (normoxic), sheep were maintained at the supplier’s ranch (Nebeker
Ranch Inc. Lancaster, CA, USA) on alfalfa pellets ad libitum. For the high-altitude
group (long-term hypoxic), ewes at ~50 days gestation were transported from low al-
titude to the Barcroft Laboratory on White Mountain (Bishop, CA, USA; 3801 m elevation,
barometric pressure −480 mmHg), where they were kept until 135 days gestation (near
term) in an outdoor sheltered pen and were fed with alfalfa pellets ad libitum. Sheep
from both groups were kept in natural day-night conditions. In previous studies [1,29],
mean maternal arterial blood gas values from 12 adult sheep, of the same breed and age
as those used in the present study, while at high altitude, were PO2 = 60 ± 5 mmHg,
PCO2 = 30.0 ± 2.5 mmHg, and pH = 7.36 ± 0.06. In contrast, normoxic low-altitude sheep
had arterial PO2 of 100 ± 5 mmHg, PCO2 = 35.2 ± 0.9 mmHg, and pH = 7.44 ± 0.1. With
high altitude exposure, fetal arterial PO2 fell from 25 ± 1 to 19 ± 1 mmHg [1,29].

At ~135 days gestation, ewes from both groups were transported (a 6 to 7 h trip
for the high-altitude animals) to the laboratory at Loma Linda University. As previously
described [1], in order to maintain systemic hypoxia in the high-altitude animals while
they awaited study, soon after the arrival to the laboratory, the ewes were surgically
instrumented with a tracheal catheter for administration of humidified N2 gas and a
femoral arterial catheter for sampling arterial blood gases. The flow of N2 gas into the
trachea was adjusted to lower inspired PO2 to a level that maintained the arterial PO2
at ~60 Torr until study (≤4 days). At the time of sample collection, the N2 flow was
discontinued and the ewes breathed room air for ~4 min before anesthesia. In both groups,
the ewes were anesthetized with thiopental sodium (10 mg·kg−1, i.v.), and anesthesia
was maintained with inhalation of 1.5% isoflurane in 100% oxygen throughout sample
collection. The fetuses were delivered via C-section. After collection of blood samples and
euthanization of both the ewe and fetus by thoracotomy and removal of the hearts, the
thoracic aortas were collected.
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2.2. Sample Collection and Preparation

Blood samples were collected at around 8 am after overnight fasting with heparinized
MonojectTM Rigid Pack syringes (Dublin, OH, USA). In both high- and low-altitude groups,
the adult venous whole blood (AVWB) was collected from the jugular vein of the ewe right
before anesthesia (high-altitude ewes breathed room air for ~3 min). Fetal whole blood was
collected from the umbilical cord artery (UAWB; deoxygenated blood from fetus) and vein
(UVWB; oxygenated blood from placenta) after Cesarean section and before cord clamping.

Plasma was separated from red blood cells immediately after blood collection by
centrifugation in Eppendorf tubes (Hamburg, Germany) at 6740× g for 30 s. The red blood
cells were washed three times with cold saline and then reconstituted with saline to the
original volume of the whole blood sample, with the final product named RBC. One aliquot
of each of the whole blood (WB), plasma (P), and RBC samples was snap frozen in an EPR
tube. Whole blood and plasma were also analyzed immediately for NOx concentrations
via chemiluminescence. To guarantee that these samples could be analyzed within 4 min of
blood collection, two or three investigators (not including the technicians caring for the
sheep) were assigned to work together on sample collection, processing, and detection.

Isolated thoracic aorta was cleaned of blood with gauze and ice-cold HEPES buffer.
Within 2 h of collection, it was homogenized using a rotor-stator homogenizer (TissueRup-
tor, Qiagen Inc.; Hilden, Germany) in ice-cold HEPES buffer (1 g in 5 mL) and then
centrifuged at 2200× g for 15 min. This supernatant was divided into three aliquots. One
aliquot was snap frozen in an Eppendorf tube for analysis of NOx. Two aliquots received a
final concentration of 1 mM deferoxamine (DFO) or a similar volume of saline, respectively,
incubated at 37 ◦C for 4 h, and snap frozen in EPR tubes. Samples were then stored at
−80 ◦C until assayed.

2.3. Analytical Methods

EPR signals were recorded at 150 K using a Bruker X-Band EMX Plus EPR spectrom-
eter with a cavity of high sensitivity as previously described [15]. The EPR was set to a
microwave power of 20 mW, microwave frequency of 9.31 GHz, attenuator of 10 dB, mod-
ulation amplitude of 5 G, modulation frequency of 100 kHz, time constant of 10.24 msec,
conversion time of 40.96 msec, harmonic of 1, and scan number of 2. Standard curves
for metHb, transferrin (holo), and ceruloplasmin were prepared by spiking different con-
centrations of standards into HEPES buffer. Interpretation of the EPR spectra was based
on comparison of the position and structure of the resonance lines with those reported
previously [30–35] and with the standards shown in Figure 1J–L.

The CIP was detected with use of the chelator deferoxamine (DFO), which combines
with chelatable iron to give an EPR signal of DFO-iron at g = 4.33. Because the CIP signal
overlaps with that of ferritin, which appears in the absence of DFO [36], the latter was
subtracted before calculation of the CIP concentration. The concentration of the CIP was
calculated by comparison with the signal amplitude of known concentrations of DFO-iron
standards as previously described [37].

NO metabolite (NOx) levels were measured by four different assays with an ozone-
based chemiluminescence NO analyzer (280i, Sievers, Boulder, CO, USA) as previously
described [28]. In each assay, the sample is injected into a purge vessel containing one of
four reagents known to selectively convert various combinations of NOx species into
free NO gas to be carried into the NO analyzer by sparging with argon. The four assay
reagents used were: (1) triiodide (I3; measures NO, nitrite, SNO, DNIC, and HbNO),
(2) ferricyanide + ascorbic acid (FeCN/HAc; measures NO, nitrite, DNIC, and HbNO),
(3) ferricyanide + PBS (FeCN/PBS; measures NO, DNIC, and HbNO), and (4) ascorbic
acid + acetic acid (VitC/HAc; measures NO, nitrite, and HbNO). All reagents were made
freshly on the day of experiment. After each injection, the purge vessel was rinsed with
saline and the reagents were replaced. Notably, none of these assays detect nitrate. To
minimize changes from metabolism during sample handling, all whole blood and plasma
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samples were measured within 2 to 4 min of blood collection, with each assay completed in
5 to 6 sheep.
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Figure 1. Representative EPR spectrum of blood from high- and low-altitude pregnant sheep.
(A–C) Plasma. (D–F) Whole blood. (G–I) Washed RBCs. (A,D,G) Blood from umbilical vein.
(B,E,H) Blood from the umbilical artery. (C,F,I) Blood from maternal jugular vein. (J–L) Standards
of metHb (60 µM), transferrin (14.5 µM), and ceruloplasmin (2.3 µM), respectively. Arrows indi-
cate g factors: 5.97 for metHb, 4.29 for transferrin, 2.39 and 2.30 for ferric heme proteins, 2.076 for
ceruloplasmin, and 1.997 for free radicals.

Total iron in plasma and aortic homogenates were measured using a colorimetric
ferrozine assay as previously described [38]. Briefly, 100 µL of sample was mixed with
100 µL of 10 mM HCl, and 100 µL of the iron-releasing reagent (a freshly mixed solution
of equal volumes of 1.4 M HCl and 4.5% (w/v) KMnO4 in H2O) for 2 h at 60 ◦C. After the
mixtures were cooled to room temperature, 30 µL of the iron-detection reagent (6.5 mM
ferrozine, 6.5 mM neocuproine, 2.5 M ammonium acetate, and 1 M ascorbic acid dissolved in
water) was added. After 30 min, 250 µL of the solution was transferred into a 96-well plate
and the absorbance was measured at 550 nm on a microplate reader. Iron concentrations
were estimated by comparing the absorbance of the sample to that of the known standards
of FeCl3 (mixture of 100 µL of FeCl3 standards (0–300 µM) in 10 mM HCl, 100 µL HEPES
buffer, 100 µL releasing reagent, and 30 µL detection reagent).

Non-transferrin-bound iron (NTBI) in plasma was measured using a commercially
available kit (BioVision; Milpitas, CA, USA). ELISA kits were used to measure plasma
hepcidin (Biosource; San Diego, CA, USA), and ferroportin (Biosource; San Diego, CA,
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USA) and nitrotyrosine (Millipore; Temecula, CA, USA) in aortic homogenates. The
antioxidant capacity was also measured using a kit that measures the antioxidant activity
as the equivalent of TroloxTM in the suppression of the radical formation from the reaction
of metmyoglobin and H2O2 (Sigma-Aldrich; St. Louis, MO, USA).

2.4. Statistics

Average values are given as mean ± SEM in the text and figures. One-way ANOVA,
two-way ANOVA, linear regression, and t tests were used as indicated in the figure legends
following normality tests. Repeated measures were used when applicable as specified
in the figure legends. Statistical analyses were carried out with Prism, v8.4.0 (Graphpad
Software, La Jolla, CA, USA) with significance accepted at p < 0.05.

3. Results
3.1. High Altitude-Induced Alterations of Metalloproteins, Free Radicals, and Iron Levels in Fetal
and Maternal Sheep Blood

Figure 1A–I shows the representative EPR spectra of blood samples from fetal and
maternal sheep from low and high altitude. Paramagnetic centers with g factors of 5.97,
4.29, 2.39–2.30, 2.076, and 1.997 were assigned to metHb, transferrin, ferric heme proteins,
ceruloplasmin, and free radicals, respectively [30–35]. Their quantified intensities are
shown in Figure 2A–E. Levels of NTBI and total iron in plasma are shown in Figure 2F.
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Figure 2. Metalloproteins, free radicals, and iron in blood from high and low altitude pregnant sheep.
(A–D) Metalloproteins quantified from EPR spectra. (A) MetHb. (B) Transferrin. (C) Ferric heme
proteins. (D) Ceruloplasmin. (E) Free radicals quantified from EPR spectra. (F) Plasma NTBI and
total iron quantified with colorimetric methods. Because of the lack of standards, the intensity of the
EPR signal of ferric heme proteins and free radicals are shown. UVP: umbilical vein plasma; UAP:
umbilical artery plasma; AVP: adult (maternal) vein plasma; WB: whole blood; RBC: washed red
blood cells. Two-way ANOVA with Tukey’s post-hoc tests for P, WB, or RBCs. * = p < 0.05 high vs. low
altitude; † = p < 0.05 umbilical artery vs. vein; # = p < 0.05 fetus vs. mother. One symbol = p < 0.05,
two symbols = p < 0.01.

Compared with low altitude, high altitude significantly increased metHb and ferric
heme proteins, oxidation products of hemes, in both fetuses and mothers, indicating
increases of oxidative stresses caused by high altitude hypoxia (Figure 2A,C). Consistent
with these results, the plasma NTBI, a marker of oxidative stress, was increased by high
altitude in both the fetus and mother (Figure 1F). Notably, the levels of metHb, NTBI, and
free radical in umbilical arterial blood (venous blood from fetus) are higher than that in
maternal venous blood (Figure 2A,E,F). Together, these results suggest that high altitude
hypoxia results in oxidative stress during gestation, especially in the fetus.

Whole blood levels of transferrin in both fetus and mother were decreased by high
altitude (Figure 2B). In addition, while consistent with the previous work showing that fetal
sheep plasma is deficient in ceruloplasmin [39], the current study found ceruloplasmin in
the fraction of washed fetal RBCs, possibly bound to the RBC membrane [40,41] (Figure 2D).
In addition, the RBC ceruloplasmin in both fetus and mother was decreased by high altitude.
The altered levels of circulating metalloproteins important for iron metabolism, together
with the increased NTBI and total iron in fetal plasma (Figure 2F), demonstrate alterations
in circulatory iron homeostasis caused by high altitude hypoxia during gestation.

3.2. High Altitude Decreases Iron in Fetal and Maternal Aorta

Next, the effects of high altitude on iron homeostasis in the fetal and maternal aorta,
a representative non-hematopoietic tissue (Figure 3), were measured. At sea level, both
the CIP and total iron concentrations in the aorta of the fetus were about twice the levels
of the mother (Figure 3E,F), suggesting a higher steady-state level of iron homeostasis in
the fetus than the mother. The aortic CIP decreased with high altitude in both fetus and
mother significantly to levels that were hardly detectable (Figure 3A–E), suggesting chronic
hypoxia resulted in a significant alteration of cellular iron handling. The aortic total iron
level in the fetus was decreased (p = 0.05) by high altitude, although no significant change
was observed in the mother (Figure 3F). These results are suggestive of iron deficiency in
the high-altitude fetal aorta. To test whether the iron deficiency results from a decreased
supply of iron from the mother and/or increased export of iron, we measured the level of
the plasma hepcidin, which in the maternal plasma negatively regulates the iron transport
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across the placenta to the fetus [42]. This work also measured the level of aortic ferroportin,
the only known cellular iron exporter [43]. Contrary to either of these possibilities, high
altitude decreased plasma hepcidin levels in only the mother (Figure 3G) and did not alter
aortic ferroportin in either mother or fetus (Figure 3H).
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Figure 3. Iron in the aorta of high and low altitude pregnant sheep. (A–D) Representative EPR
spectrum of aorta. (A) Fetal aorta. (B) Fetal aorta + DFO. (C) Mother aorta. (D) Mother aorta + DFO.
(E) CIP in aorta. (F) Total metal iron. (G) Hepcidin in plasma. (H) Ferroportin in aorta. N.D.:
not detectable. Two-way ANOVA with Sidak’s post-hoc tests. * = p < 0.05 high vs. low altitude;
# = p < 0.05 fetus vs. mother. p value in (F) for t-test.
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3.3. High Altitude Increases NOx in Fetal and Maternal Blood

Four assays that are capable of detecting different NO species were utilized (Figure 4).
Therein, the results of the VitC/HAc assay in blood were incomplete and thus are not shown.
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Figure 4. NOx levels in blood from high and low altitude pregnant sheep. NOx were measured by
chemiluminescence NO analyzer with various purge vessel reagents. (A) I3 (measures nitrite, FeNOs,
and SNOs). (B) FeCN/HAc (nitrite and FeNOs). (C) FeCN/PBS (FeNOs). (D) Proposed diagram
for dynamic homeostasis of HbNO in gestation. UVP: umbilical vein plasma; UAP: umbilical artery
plasma; AVP: adult vein plasma; WB: whole blood. N.D.: not detectable. Two-way ANOVA with
Tukey’s post-hoc tests for plasma or WB. * = p < 0.05 high vs. low altitude; # = p < 0.05 fetus (UA) vs.
mother (AV); † = p < 0.05 umbilical artery vs. vein; ˆ = p < 0.05 plasma vs. WB. p value for paired
t test in (A). One symbol = p < 0.05, two symbols = p < 0.01.

In comparison to the low altitude, the I3 assay (nitrite, FeNOs, and SNOs) detected
increased NOx at high altitude in plasma and whole blood samples from both umbilical
artery and vein and also in maternal venous plasma (Figure 4A). As the gold standard
assay for bioactive NOx including nitrite, these I3 results suggest a significant increase in
NO bioavailability in gestation at high altitude, although no such increase was observed by
the FeCN/HAc (FeNO and nitrite) or FeCN/PBS (FeNO) assays (Figure 4B–C).

In the I3 and FeCN/PBS assays, NOx gradients were demonstrated between fetus and
mother (for example, fetal vs. maternal whole blood; Figure 4A,C), umbilical artery and vein
(UAP vs. UVP), and plasma and RBCs (UVP vs. UVWB and UAP vs. UAWB), suggesting
a complex dynamic homeostasis of NO species among these circulatory compartments
in gestation (Figure 4A,C). Notably, in the FeCN/PBS assay, the FeNO levels in high
altitude sheep were highest in umbilical venous whole blood, lower in umbilical arterial
whole blood, and not detectable in maternal venous whole blood (Figure 4C). These results
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suggest the generation and efflux of FeNO from the placenta with consumption of FeNO
by the fetus (Figure 4D).

3.4. High Altitude Increases NOx in Fetal and Maternal Aorta

We then measured the effects of high altitude on NOx in the aorta (Figure 5). Measure-
ments with I3 (nitrite, FeNOs, and SNOs), FeCN/HAc (nitrite and FeNOs), and VitC/HAc
(only nitrite) assays all showed higher NOx levels in high altitude in both fetuses and
mothers, while the differences observed between fetuses and mothers were not significant.
No FeNO was detected in either fetal or adult, high or low altitude samples with the
FeCN/PBS assay.
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Figure 5. NOx levels in aorta homogenates from high and low altitude pregnant sheep. NOx were
measured by chemiluminescence NO analyzer with various purge vessel reagents. (A) I3 (mea-
sures nitrite, FeNOs, and SNOs). (B) FeCN/HAc (nitrite and FeNOs). (C) FeCN/PBS (FeNOs).
(D) VitC/HAc (nitrite only). Measurements were normalized to protein concentrations in the ho-
mogenates. N.D. = not detectable. Two-way ANOVA. * = p < 0.05 high vs. low altitude.

3.5. Effects of High Altitude on Nitrotyrosine and Antioxidant Capacity in Aorta

The increase in NOx and decrease in CIP in high altitude aortas led us to measure the
levels of nitrotyrosine and antioxidant capacity in aortic homogenates. Aortic nitrotyrosine
level in the high-altitude fetus was higher than that in the low-altitude fetus and the high-
altitude mother (Figure 6A). However, no significant difference was observed in antioxidant
capacity between high- and low-altitude fetus and mother (Figure 6B).
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4. Discussion

The thin air at high altitude presents a formidable challenge to human physiology.
Gestation at high altitude is associated with increased risk of illness [44]. Although many
adaptations have been described in both the fetus and mother [1], the effects on iron
homeostasis and NO, both of which are under the influence of O2 at multiple levels, have
not been characterized.

By comparing pregnant ewes from high and low altitudes (3801 and 300 m), the current
study demonstrated a systemic redistribution of iron in high altitude fetuses as manifested
by depletion of the CIP and a decrease of total iron in the aorta, a non-hematopoietic tissue,
and an increase of the NTBI and total iron in the plasma. This study also found significant
increases in circulatory and aortic tissue NOx in both fetuses and mothers at high altitude.
In addition, the NOx gradients observed between fetus and mother, umbilical artery and
vein, and plasma and RBCs, demonstrated a complex dynamic homeostasis of NOx among
these circulatory compartments. Specifically, the results are consistent with the recent
work that suggests the placenta serves as a source of FeNOs to the fetus [27], and that a
measurable portion of these FeNOs in the RBCs are consumed within one circulatory time
from the umbilical vein to the umbilical artery.

It has been widely held that the fetus behaves as a parasite for maternal iron in that the
fetus is able to acquire iron from the mother irrespective of her iron status [45]. In contrast
to this notion, the current experiments demonstrated that high altitude only decreased the
total iron in fetal aorta but did not alter the total iron in maternal aorta, suggesting that high
altitude results in iron deficiency in the fetus but not in the mother. Nevertheless, in striking
contrast to the aorta, both the NTBI and total iron levels in fetal plasma were increased
by high altitude, suggesting that high altitude results in iron overload in the fetus. This
simultaneous deficiency of iron in aorta and overload of iron in plasma observed in high-
altitude fetuses demonstrated an intriguing systemic redistribution of fetal iron. Reports
on systemic iron redistribution are quite rare. While several diseases such as chronic
anemia, hypotransferrinemia, and aceruloplasminemia have been related to systemic iron
redistribution, deprivation rather than accumulation of plasma iron was found under these
conditions [39,46–48]. It has been reported that high altitude hypoxia caused a net loss
of skeletal muscle iron associated with a high rate of iron uptake by bone marrow for
erythropoiesis [49]. Given the 21% increase in hemoglobin concentration in fetuses exposed
to high altitude [7], it is reasonable to speculate that the observed iron redistribution
in the present study was also an erythropoietic response to hypoxia. Because the aorta
is a non-hematopoietic tissue, these results suggest the mobilization of iron from non-
hematopoietic tissues into the circulation to be utilized for erythropoiesis in the fetus to
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cope with the high-altitude hypoxia. Notably, hepcidin has been proposed to be a central
regulator of systemic iron balance, with maternal plasma hepcidin regulating placental
iron transport while the fetal plasma hepcidin operates autonomously to regulate fetal
iron homeostasis, including erythropoiesis [50,51]. It is generally accepted that hypoxia
decreases hepcidin [52]. Consistent with this notion, maternal hepcidin was decreased
at high altitude, favoring iron transport across the placenta to the fetus. However, the
fetal hepcidin was unaltered by high altitude, which would suggest that the systemic
redistribution of iron observed in high altitude fetuses was not mediated by hepcidin.

The iron deficiency observed in the aorta of high-altitude fetuses is in contrast to
the well-documented increase of cellular iron availability in response to hypoxia [18,52].
Cellular iron availability is regulated by the balance of iron uptake and export. Hypoxia
has been shown to upregulate circulating levels of transferrin and ceruloplasmin, which
increases the uptake of iron into cells [52]. In contrast, the current study found decreased
blood transferrin and decreased RBC membrane-bound ceruloplasmin in high altitude
fetuses and mothers. It is possible that these alterations in circulating transferrin and
ceruloplasmin contribute to decreased iron uptake to the aorta in the high-altitude fetuses.
Another possibility is that fetal aorta cells may have enhanced rates of iron export at high
altitude. Indeed, hypoxia is known to increase ferroportin, the only known cellular iron
exporter, by suppressing hepcidin [16,53]. However, contrary to this possibility, neither
aortic ferroportin nor plasma hepcidin were altered in fetuses at high altitude. Alternatively,
it is important to note the possibility that cellular iron, particularly the CIP, may also be
actively exported as DNICs, which are formed via incorporation of iron and NO [14,18,54].
The depletion of the aorta CIP and increased aorta NO availability in high-altitude fetuses
are both supportive of this possibility. Although the current assays failed to detect DNICs
in aorta homogenates from either high- or low-altitude fetuses (Figure 5C), it is also worth
noting that these null results should be taken with caution due to the likelihood of DNICs
degrading to other forms of NOx [28,55] during freeze-thaw cycles for storage or the ~2 h
tissue homogenization process. The mechanisms driving the iron deficiency in the aorta of
high-altitude fetuses merits further investigation.

Many signals measured by EPR are of value as indices of redox status. For instance,
metHb and ferric heme proteins are products of heme oxidation, ceruloplasmin is a su-
peroxide scavenger and also an antioxidant enzyme, and free radicals serve as a direct
measurement of reactive species. As described in the Results section, all these measure-
ments in blood were altered in the direction of increased oxidative stress at high altitude,
particularly in the fetus. In addition, the NTBI, a circulatory marker of oxidative stress, was
upregulated at high altitude in both the fetus and mother. One might argue that the increase
in MetHb and NTBI was simply due to the hypoxia-induced increase in hemoglobin con-
centration. However, although total hemoglobin concentrations were not measured in the
current study, previous work with this animal model would predict a ~21% increase in the
hypoxic fetuses [7], which is significantly less than the >2-fold increase observed for MetHb
and the NTBI in the current animals. Furthermore, plasma nitrotyrosine, another marker of
oxidative stress, was also increased in the fetuses at high altitude, although no significant
alteration was observed in the mother. Together, these circulatory measurements suggest
that gestation at high altitude is associated with increased oxidative stress, especially in
the fetus.

In contrast to the circulatory measurements suggesting increased oxidative stress at
high altitude, the depletion of the CIP in the aorta of both fetus and mother at high altitude
would go against the production of reactive species [56]. Likewise, antioxidant capacity in
the aortic homogenates was not affected by high altitude in either the fetus or the mother,
again suggesting that high altitude does not result in oxidative stress in the aorta. These
results are consistent with previous metabolomic findings in this animal model wherein
high altitude did not alter markers of oxidative stress or antioxidant thiol-metabolism
pathways in fetal carotid arteries [57]. Therefore, the effects of high-altitude hypoxia on
fetal redox status appear to be different in the blood than in the aorta.
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The current study found that high altitude resulted in significant increases in NOx
levels both in circulation and in the aorta of both fetuses and mothers. These results
are consistent with the majority of previous reports, which propose the increase of NO
species as a compensating response to high altitude-induced hypoxia stress [1,24,58,59].
In addition, contrary to a report that NOx species decrease in pregnant women at high
altitude [26], the current results suggest that the increase of NOx at high altitude occurs
irrespective of pregnancy and happens to both fetus and mother. Notably, unlike previous
reports, the I3 assay detected the bioactive nitrite, FeNO, and SNOs but not nitrate, which
is not reflective of endothelial function and is also orders of magnitude more abundant
than the bioactive NO metabolites [14]. In addition, it is also important to note that the
current measurements were performed with fresh blood samples and freshly homogenized
aorta samples, in contrast to previous reports. Many of the commonly assayed bioactive
NO species are under dynamic equilibria during sample handling which can affect their
final measured concentrations [15–17]. Therefore, the current measurements with fresh
samples were more likely to reflect actual in vivo NOx concentrations. As a result of these
advantages, the observation of increased NOx levels at high altitude in the current study
provides stronger evidence than previous reports that NO bioavailability is increased in
response to the hypoxic stress of high altitude. The identity of the specific NOx species
that make up the increases in response to hypoxia remains unclear. Based on the selectivity
of the various chemiluminescence reagents, it appears that much of the increase can be
attributed to SNOs. However, caution is warranted for this assumption. Notably, although
the chemiluminescence NOx assays represent state-of-the-art methodology [28], a mass
balance of the measured species could not be achieved by comparison of the various
selective reagents. For example, the levels of nitrite + FeNO measured by the FeCN/HAc
assay were often double the levels of nitrite + FeNO + SNOs measured by the I3 assay.

The increase of NOx at high altitude has been proposed to result from the upregula-
tion of eNOS via the hypoxia-induced factor 1alpha (HIF-1α) pathway [24,25]. However,
previous examination in the high-altitude model found eNOS levels to be unaltered, at
least in the pulmonary vasculature [60]. Furthermore, while HIF-1α levels were increased
during the initial period of exposure to hypoxia, levels returned to baseline after chronic
exposure [1]. Decreased eNOS levels have also been reported in fetal sheep brains and
guinea pig hearts after exposure to hypoxia [61,62], raising further questions about the
role of eNOS in the increase of NOx at high altitude. The homeostasis of NOx is a com-
plicated balance of NO production by NOS, dietary intake, and oral microbiome activity,
various pathways of metabolism, many of which are O2-sensitive, and renal excretion [20].
Further study is needed to investigate the mechanisms underlying the increase of NOx at
high altitude.

An intriguing finding of the current study is the NOx gradients observed between
fetus and mother, umbilical artery and vein, and plasma and RBCs. These NOx gradients
are of significant physiological importance in that they demonstrate complex dynamic
homeostasis of different NOx species across these circulatory compartments. For instance,
it is worth noting the FeNO gradients between umbilical venous whole blood (highest),
umbilical arterial whole blood (lower), and maternal venous whole blood (null), which
suggested the placental generation and efflux into the fetal circulation. The arteriovenous
gradient of FeNO species also suggests there is dynamic production of this specific NOx
species in the placenta as well as consumption by the fetus at rates that result in significant
turnover of the overall FeNO pool within the circulatory transit time through the body.
Gradients of various NOx species between fetus and mother, artery and vein, and plasma
and blood/RBCs have been reported previously [63–68]. However, no consensus has
been reached, in large part due to methodological concerns about the specificity of the
assays for various NOx species, leading to debate over which NOx species, if any, is the
prevalent bioactive metabolite of NO in the circulation [69,70]. The current results not only
confirm the previous report that placenta excretes FeNO into plasma [27], but also further
demonstrated that most of the placental efflux of FeNO is within the RBCs. It is worth
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noting that the fetal arterio-venous difference of placental-derived FeNO would suggest that
FeNO levels should fall rapidly at birth when the umbilical cord is ligated. This may play a
significant role in the rapid increase in systemic vascular tone that occurs in the newborn
within minutes after birth [27]. In addition, our recent work demonstrated that the placenta
efficiently converts nitrite into heme-iron nitrosyl complexes [66], an endogenous placental
NOx that may be altered in pregnancies complicated by preeclampsia [28]. Therefore, the
fetal RBC FeNO effluxed from placenta at high altitude probably was HbNO (Figure 4D).

This study has several limitations. First, non-pregnant ewes were not studied. The
comparisons between pregnant and non-pregnant animals at high and low altitudes would
provide more information about the impact of high-altitude hypoxia on gestation. Second,
NOx measurements of blood samples from uterine artery and vein are missing. These
measurements, together with those of blood from the umbilical artery and vein in the
absence and presence of NOS inhibition may help identify the source of HbNO released by
the placenta. Third, further study is needed to verify the null results of DNICs in the aorta,
with special attention paid to the effects of sample processing, including the effects of freeze-
thaw and tissue homogenization, on the stability of DNICs. Finally, further validation and
development of the chemiluminescence NOx assays is warranted in the future.

5. Conclusions

Overall, this study suggests exposure of the fetus to chronic high-altitude hypoxia
during gestation results in the utilization of non-hematopoietic tissue iron for erythropoiesis
and increased NO bioavailability, which may offset the hypoxic stress of high altitude.
Findings of this research may help development of treatments to mitigate the adverse
health effects of high altitude, particularly in pregnant women and fetuses, and pregnancies
complicated by conditions such as pre-eclampsia and intrauterine growth restriction.
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