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Modified cyclic dipeptides represent a diverse family of microbial secondary metabolites.
They display a broad variety of biological and pharmacological activities and have
long been recognized as privileged structures with the ability to bind to a wide range
of receptors. This is due to their conformationally constrained 2, 5-diketopiperazine
(DKP) scaffold and the diverse set of DKP tailoring enzymes present in nature. After
initial DKP assembly through different biosynthetic systems modifying enzymes are
responsible for installing functional groups crucial for the biological activities of the
resulting modified DKPs. They represent a vast and largely untapped enzyme repository
very useful for synthetic biology approaches aiming at introducing structural variations
into DKP scaffolds. In this review we focus on these DKP modification enzymes found
in various microbial secondary metabolite gene clusters. We will give a brief overview of
their distribution and highlight a select number of characterized DKP tailoring enzymes
before turning to their application potential in combinatorial biosynthesis with the aim of
producing molecules with improved or entirely new biological and medicinally relevant
properties.

Keywords: diketopiperazines, cyclic dipeptides, combinatorial biosynthesis, biocatalysis, tailoring enzymes,
synthetic biology

Introduction

Peptide natural products are one of the most fruitful sources of medicinally relevant compounds
(Borthwick, 2012). Cyclic peptides in particular show superior bioactivities compared with
their linear analogs due to their enhanced stability, protease resistance and conformational
rigidity, all factors that improve their ability to specifically interact with biological targets
(Liskamp et al., 2011; Menegatti et al., 2013). The smallest possible cyclic peptides are the
cyclic dipeptides (CDPs) containing a 2,5-diketopiperazine (DKP) heterocycle resulting from the
double condensation of two α-amino acids. DKP-containing natural products represent a large
class of bioactive compounds produced by bacteria, fungi, plants, and animals. Those privileged
structures, selected over evolutionary time for bioactivity and stability, possess characteristics
that make them attractive scaffolds for drug discovery. Besides the properties shared with
other cyclic peptides, their rigid backbone gives CDPs the ability to mimic preferential peptide
conformations and allows them to contain highly constrained amino acids while at the same
time being flexible enough to exist either in an essentially planar or lightly puckered boat form
(Ciarkowski, 1984). Their three-dimensionality, two hydrogen-bond donor and acceptor sites
and the possibility to introduce various substituents to the DKP-ring and the respective side
chains of the constituent amino acids gives them a marked advantage over many typically planar
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small molecules discovered through conventional combinatorial
chemistry approaches. A number of DKP-based compounds
identified by targeted screens of synthetic DKP libraries
have been developed into drugs acting as PDE5 inhibitors
(Tadalafil, treatment of pulmonary arterial hypertension, and
erectile dysfunction, Daugan et al., 2003), oxytocin antagonists
(Retosiban and Epelsiban, treatment of preterm labor; Liddle
et al., 2008; Borthwick et al., 2012) and CCR5 entry inhibitors
(Aplaviroc, treatment of HIV infection; Maeda et al., 2004). In
addition, various compounds based on naturally occurring CDPs
are currently being investigated as potential anticancer drugs
[e.g., phenylahistin (Aspergillus ustus), dehydrophenylahistin,
and NPI-2358 (Plinabulin) acting as tubulin depolymerizing
agents (Kanoh et al., 1999; Kanzaki et al., 2002)], antibiotics
[e.g., avrainvillamide (Aspergillus sp.), active against multidrug-
resistant bacteria (Sugie et al., 2001), and bicyclomycin
(Streptomyces sapporonesis), broad-spectrum antibiotic active
against Gram-negative bacteria (Miyoshi et al., 1972)] and
anti-inflammatory agents [e.g., FR106969 (Penicillium citrinum)
and FR900452 (Streptomyces phaeofaciens), inhibitors of PAF-
induced platelet aggregation (Shimazaki et al., 1991)].

Despite the fact that numerous CDP natural products have
been isolated and characterized for use in pharmacology,
relatively little is known about their functions in the producing
organisms. Their suggested roles range from agents used
for microbial warfare to their involvement in biochemical
communication phenomena like quorum-sensing as well as
interspecies and interkingdom signaling (Holden et al., 1999;
Degrassi et al., 2002; Ortiz-Castro et al., 2011; Olson et al., 2014).

In addition to applications in medicine and pharmacology,
DKP-containing compounds have also been used as catalysts
and chiral auxiliaries in synthetic organic chemistry (Borthwick,
2012).

The DKP-scaffold can be accessed either by purely chemical
means using different solid-phase or in-solution methodologies
(Borthwick, 2012; Gonzalez et al., 2012) or by employing
biosynthetic enzymes called non-ribosomal peptide synthetases
(NRPSs) and cyclodipeptide synthases (CDPSs; Belin et al., 2012;
Giessen and Marahiel, 2014). NRPSs and CDPSs are usually
part of a dedicated biosynthetic gene cluster responsible for the
assembly of modified CDPs. They very often encode one or
more enzymes that introduce specific modifications to the DKP-
scaffold crucial for the bioactivity or stability of the resulting
natural product (Giessen et al., 2013a). Both chemical synthesis
and enzyme-catalyzed assembly are valid ways of providing
suitable substrates for DKP tailoring enzymes. When using
chemically synthesized substrates, DKP modification enzymes
can be employed in chemoenzymatic and cell-free in vitro
settings as well as in feeding experiments while whole-cell in
vivo biosynthesis based on in situ substrate generation by NRPS
or CDPS enzymes represents an alternative approach to obtain
modified CDPs.

With the advent and rapid development of whole genome
sequencing and metagenomics in the last decade it became
evident that there is a vast and largely untapped source of
orphan and cryptic biosynthetic gene clusters putatively encoding
DKP tailoring enzymes that may be of great value for medicinal

chemists and synthetic biologists alike (Kwon et al., 2012;
Schofield and Sherman, 2013).

In this review, we will first survey the distribution of
characterized DKP modifying enzymes in different microbial
biosynthetic gene clusters comparing their genetic contexts and
their roles in various biosynthetic routes. We will highlight
the characteristics of chemical transformations catalyzed by a
selection of characterized enzymes. Finally, we will turn to the
application potential of DKP modification enzymes for in vivo
and in vitro combinatorial biosynthesis.

DKP Modification Enzymes

Distribution and Diversity
The majority of identified DKP-containing natural products have
been isolated from marine and terrestrial fungi with Aspergillus
and Penicillium species being particularly fruitful sources of new
CDPs (Borthwick, 2012). A substantial number of modifiedDKPs
has also been isolated from the bacterial phyla Actinobacteria,
Proteobacteria, and Firmicutes while so far, only one archaeon
(Haloterrigena hispanica) has been shown to produce DKPs
(Belin et al., 2012; Tommonaro et al., 2012; Giessen andMarahiel,
2014). However, the fact that the availability of sequenced
genomes is heavily skewed toward plant, animal, and human
pathogens and that isolation of natural products focusses on
a select number of microbial genera and ecological niches,
means that the ability to produce DKP-containing compounds
could be more widespread than previously suspected. Besides
microbes, plants have also been shown to produce a range of
DKP-containing alkaloids (Prasad, 1995) and one functional
CDPS gene has been characterized in the animal (sea anemone)
Nematostella vectensis (Seguin et al., 2011). In addition, non-
enzymatic processes can lead to the formation of functional CDPs
in various organisms including mammals where for example
cyclo(L-His-L-Pro) is found throughout the central nervous
system and plays a role in various regulatory processes (Minelli
et al., 2008).

Enzymes that specifically modify DKP-containing natural
products are usually associated with biosynthetic enzymes able
to assemble the DKP-scaffold. In microbes the genes responsible
for the production of a specific secondary metabolite are most
often found in close proximity to one another in dedicated
biosynthetic gene clusters reflecting their evolutionary history
through horizontal transmission (Fischbach et al., 2008). To date,
two unrelated biosynthetic routes are known able to assemble
CDPs. NRPSs, large multidomain enzyme complexes (Koglin and
Walsh, 2009; Strieker et al., 2010), have long been known as
a source of many structurally complex DKP-containing natural
products while only relatively recently, a second enzyme class
able to generate DKPs has been identified, namely the tRNA-
dependent CDPSs (Belin et al., 2012; Giessen and Marahiel,
2014). In the case of NRPSs, many dedicated pathways that
assemble modified DKP-scaffolds are known to be responsible
for the synthesis of fungal and bacterial siderophores as well as
bacterial and fungal antibiotics and toxins (Belin et al., 2012).
In addition, the premature release of dipeptidyl intermediates
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during chain elongation can result in CDP side products during
NRPS biosynthesis (Stachelhaus et al., 1998; Schultz et al., 2008).
In contrast, CDPS-dependent pathways for CDP formation are
almost exclusively confined to bacteria with only a handful of
putative CDPS pathways identified by computational homology
searches in eukaryotic organisms (Seguin et al., 2011; Giessen
and Marahiel, 2014). Modified cyclic peptides dependent on
CDPSs include the antibiotic albonoursin (Streptomyces noursei;
Lautru et al., 2002; Gondry et al., 2009), the siderochrome
pulcherrimininic acid (Bacillus spp.; Cryle et al., 2010; Bonnefond
et al., 2011) and the nocazine family (Nocardipsis spp.) of
antibiotics (Giessen et al., 2013a; Zhang et al., 2013).

Putative tailoring enzymes that modify the initially assembled
CDP scaffold can be found in almost all NRPS and CDPS gene
clusters coding for a DKP-containing compound. Regarding
CDPS-dependent pathways, a large variety of different putative
enzyme classes can be found in close association with
the respective CDPS gene (Belin et al., 2012; Giessen and
Marahiel, 2014). They include different types of oxidoreductases,
hydrolases, transferases, and ligases. The most prevalent putative
tailoring enzymes in CDPS clusters are various kinds of
oxidases including at least seven distinct types of P450s, five
different types of α-ketoglutarate/FeII-dependent oxygenases and
three distinct flavin-containing monooxygenases. In addition
to oxidoreductases, a large number of different C-, N-, and
O-methyltransferases, α/β-hydrolases, peptide ligases, and acyl-
CoA transferases have been found in CDPS gene clusters.
Turning to NRPS-dependent pathways, a similar variety of
modification enzymes has been reported. Again, enzymes that
modulate the oxidation level of the DKP scaffold and side
chains are the most numerous enzyme variety (Belin et al.,
2012). One distinguishing feature of fungal NRPS gene clusters
is the prevalence of different prenyltransferases that carry out
prenylations and reverse prenylations at various positions of the
assembled CDP scaffold (Yu et al., 2012). Judging by the diverse
set of putative modification enzymes found within NRPS and
CDPS gene clusters it is safe to assume that highly modified
CDPs rather represent the norm and not the exception among
DKP-containing natural products, possibly reflecting their varied
functions in the producing organisms.

Transformations Catalyzed by DKP Modifying
Enzymes
Generally, CDPs can be modified at the DKP heterocycle or
the side chains of the constituent amino acids. Modifications
that connect the side chains with the DKP core through various
cyclization strategies have also been frequently observed. In the
following paragraphs, we will highlight a number of characterized
DKP tailoring enzymes from both NRPS and CDPS biosynthetic
pathways (Figure 1).

The cytochrome P450 TxtC is involved in the synthesis of the
phytotoxin thaxtomin A (Healy et al., 2002; Barry et al., 2012)
produced by different plant-pathogenic bacteria of the genus
Streptomyces, including most notably S. scabies, the causative
agent of the potato disease common scab (King and Calhoun,
2009). Its phytotoxicity is caused by inhibition of cellulose
biosynthesis leading to plant cell necrosis (Scheible et al., 2003).

TxtC introduces two hydroxyl groups regio- and stereoselectively
at two distinct positions in a modified cyclo(L-Phe-L-Trp)
scaffold [Figure 1, reaction (1)]. One hydroxylation takes place at
the Cα of the Phe residue, while the second one modifies themeta
position of its aromatic ring. Cα hydroxylation in particular has
been shown to be essential for phytotoxicity with glycosylation
or alkylation of the Cα hydroxyl leading to a loss of activity
(Molesworth et al., 2010).

Dimeric DKP-containing natural products have been isolated
from different Aspergillus species, including ditryptophenaline
from A. flavus (Barrow and Sedlock, 1994). This compound
inhibits substance P receptor and shows promising analgesic
and anti-inflammatory activity (Popp et al., 1994; Berube, 2006).
The cytochrome P450 DtpC involved in ditryptophenaline
biosynthesis has been shown to be responsible for both
pyrroloindole ring formation, linking the tryptophan side chain
with the DKP core, and concurrent dimerization leading to
a homodimeric product (Saruwatari et al., 2014). In addition,
DtpC shows relaxed substrate specificity and has been used
for the dimerization of the non-native monomeric precursor
brevianamide F [Figure 1, reaction (2)]. A radical-mediated
dimerization mechanism, initiated by hydrogen atom abstraction
through the P450 heme moiety, has been proposed as the most
likely reaction pathway (Saruwatari et al., 2014).

The epidithiodioxopiperazine (ETP) family of highly modified
CDPs is produced by several fungal genera, including Aspergillus,
Eurotium, and Gliocladium (Scharf et al., 2012). Their defining
feature is a disulfide bridge spanning the DKP heterocycle
that is responsible for their high cytotoxicity by facilitating
the reaction with and thus inactivation of thiol containing
proteins (Mullbacher et al., 1986). In addition, reactive oxygen
species are generated by redox cycling contributing to the
toxicity of members of the ETP family. Its most prominent
member is the lipid-soluble gliotoxin which was shown to induce
apoptosis, inhibit angiogenesis and prevent NF-κB activation by
inhibiting the proteasome among other bioactivities (Kroll et al.,
1999; Pardo et al., 2006; Ben-Ami et al., 2009). High levels of
gliotoxin are produced by Aspergillus fumigatus and it has been
suggested that gliotoxin might be a virulence factor associated
with invasive aspergillosis (Hof and Kupfahl, 2009). A number
of highly unusual transformations take place during gliotoxin
biosynthesis including a stereospecific glutathione (GSH)- and
pyridoxal phosphate (PLP)-dependent sulfurization of both Cα

atoms in the DKP-scaffold catalyzed by the sequential action of
the glutathione S-transferase GliG, the peptidase GliJ and the
thioesterase GliI [Figure 1, reaction (3)] (Davis et al., 2011).
After initial double Cα hydroxylation by the P450 GliC, two
molecules of water are eliminated generating imine intermediates
that are then attacked by the nucleophilic cysteine thiols of
two GSH molecules catalyzed by GliG. Subsequent removal
of the two GSH glutamate residues by the dipeptidase GliJ
makes the alpha-amino groups of the two cysteine residues
accessible. This allows their condensation with GliI-bound PLP
followed by PLP-mediated α,β-elimination reactions resulting
in the double Cα sulfurization of the DKP-scaffold. A second
unusual transformation during gliotoxin biosynthesis is the
concomitant meta-hydroxylation of the phenylalanine side chain
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FIGURE 1 | Selection of characterized 5-diketopiperazine (DKP) tailoring enzymes originating from non-ribosomal peptide synthetase (NRPS) and
cyclic dipeptide (CDPS) pathways. Structural changes that are introduced by a given modification enzyme are highlighted in red.

and ring closure between the Phe side chain and its amino
group [Figure 1, reaction (4)]. This reaction is catalyzed by
either GliC or GliF, both P450s, and proceeds via epoxidation
of the aromatic ring in the Phe side chain followed by epoxide
opening through a nucleophilic attack by the Phe amino group
(Scharf et al., 2012). Finally, the disulfide bridge, essential
for gliotoxin’s bioactivity, is generated by the unusual FAD-
dependent oxidoreductase GliT [Figure 1, reaction (5)] (Scharf
et al., 2012).

One of the most useful and widely used DKP tailoring
enzymes is cyclic dipeptide oxidase (CDO). This unusual
flavin-dependent α,β-dehydrogenase has been identified in
different actinobacterial CDPS gene clusters, including the
clusters encoding the albonoursin (S. noursei) and nocazine
(N. dassonvillei) assembly pathways [Figure 1, reaction (6)]
(Lautru et al., 2002; Giessen et al., 2013a), and shows very
relaxed substrate specificity (Gondry et al., 2001). CDO is
composed of two distinct small subunits that assemble into
an apparent megadalton protein complex. Depending on the
substrate, CDO is able to sequentially carry out one or two
dehydrogenation reactions. The exact reaction mechanism has
not been elucidated, although three different scenarios have
been proposed, namely, direct dehydrogenation, α-hydroxylation
followed by loss of water, and imine formation with subsequent
rearrangement to the enamine (Gondry et al., 2001). The most

intriguing application of CDO’s relaxed substrate specificity
was the use of a CDO-containing cell-free extract from
the albonoursin producer S. albulus KO-23 as a specific
α,β-dehydrogenation catalyst transforming the fungal metabolite
phenylahistin into dehydrophenylahistin [Figure 1, reaction (7)]
(Kanzaki et al., 2002). This simple transformation resulted in a
2000 times higher activity of dehydrophenylahistin as a cell cycle
inhibitor compared with phenylahistin. Dehydrophenylahistin
was claimed to be highly cytotoxic, even more so than the
known anticancer drugs taxol, vincristine, and vinblastine.
Further screening resulted in the identification of the doubly
dehydrogenated phenylahistin derivative NPI-2358 that has
undergone successful phase I and phase II clinical trials for
non-small cell lung cancer (Nicholson et al., 2006).

Pulcherriminic acid, produced by different bacterial and
yeast species, is a precursor for the red extracellular pigment
pulcherrimin formed in the presence of high levels of FeIII
in the growth medium (Cryle et al., 2010; Bonnefond et al.,
2011). Pulcherriminic acid is able to chelate FeIII with its two
hydroxamic acid moieties and has been suggested to act either
as an antibiotic, similar to aspergillic acid, or as a siderophore
(Neilands, 1967). The highly unusual reaction that transforms
cyclo(L-Leu-L-Leu) into pulcherriminic acid in Bacillus species is
catalyzed by the P450 Cyp134A1 (CypX). The oxidation of the
DKP-scaffold of various CDP substrates by Cyp134A1 involves
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three oxidative steps leading to double N-oxide formation with
concomitant aromatization of the DKP-ring system [Figure 1,
reaction (8)]. The reaction mechanism has been proposed to
proceed either via hydroxylation and elimination of water or a
direct electron transfer reaction. In addition, Cyp134A1 has been
shown to be able to oxidize a number of steroidal substrates
(Furuya et al., 2008, 2009).

The secondary metabolite mycocyclosin produced by
Mycobacterium tuberculosis, the causative agent of tuberculosis,
possesses a highly unusual three dimensional structure
where the two meta positions of the tyrosine side chains of
cyclo(L-Tyr-L-Tyr) are connected via a carbon-carbon single
bond [Figure 1, reaction (9)] (Gondry et al., 2001, 2009). The
two meta carbons of the DKP substrate are linked through
the action of the P450 Cyp121, which has been shown to be
essential for M. tuberculosis viability. The absolute requirement
of Cyp121 might be due to a toxic effect of cyclic dityrosine
or an essential function of mycocyclosin itself (Belin et al.,
2009). Cyp121 has been shown to strongly bind to azoles, a class
of antimycobacterial compounds, and might represent their
main intracellular target (McLean et al., 2008). The structure
of mycocyclosin necessitates that the two tyrosine side chains
must be positioned on the same face of the DKP heterocycle
during enzyme catalysis presumably facilitated by rotation
around the Cα–Cβ bonds. In addition to positioning the two
aromatic meta carbons in close proximity to one another, they
must be activated to be able to form a C–C bond. This likely
happens via a two-step radical mechanism that successively
generates stabilized radicals in both aromatic rings that after
positioning of both side chains combine to establish a new C–C
bond.

The nocazine family of DKP-containing compounds is an
example of natural combinatorial biosynthesis where a number
of structurally related molecules is created through the action of
a small number of promiscuous modification enzymes (Giessen
et al., 2013a). Nocazines like the cytotoxic antibiotic neihumicin,
have been isolated from different actinobacterial genera,
including Nocardiopsis, Streptomyces, and Micromonospora.
(Wu et al., 1988; Yang et al., 1988; Yokoi et al., 1988).
By methylating the DKP carbonyl oxygen the S-adenosyl-L-
methionoine (SAM)-dependent O-methyltransferase Ndas_1145
stabilizes the enole/imide resonance structure of one of the
DKP amide bonds in a modified cyclo(L-Phe-L-Phe) substrate
[Figure 1, reaction (10)]. This creates an extended planar
conjugated system that might be crucial for its cytotoxicity. It
is likely that Ndas_1145 is also able to methylate the DKP-
ring nitrogens, as observed in the nocazines A/B/C, XR330, and
XR333 (Giessen et al., 2013a).

Tryptophan-containing CDPs are among the most numerous
DKP-containing natural products known (Borthwick, 2012).
Especially fungi produce a bewildering array of structurally
complex bioactive tryptophan-containing DKPs, including
brevianamide F, norgeamide A, fumitremorgin A, and gypsetin
among many others (Borthwick, 2012). What makes tryptophan
an interesting scaffold for modification by tailoring enzymes
is the rich nucleophilic chemistry of its indole ring where
all positions are susceptible to electrophilic modification.

Prenylation of the indole side chain using either isopentenyl
pyrophosphate (IPP) or dimethylallyl pyrophosphate (DMAPP)
as cofactors carried out by various types of prenyltransferases
(PTs) may represent the most common modification found
in tryptophan-containing CDPs. Over the last ten years,
PTs that are able to modify all positions of the indole
heterocycle in DKPs have been characterized and represent
a valuable repertoire of diversification catalysts (Figure 2A)
(Yu et al., 2012). Prenylations that expand the carbon
skeleton of a natural product and may hugely influence its
lipophilicity are very often crucial for their biological activity
and ability to diffuse through cell membranes (Li, 2009a,b).
The recent identification of a cyclo(L-Trp-L-Trp) producing
CDPS in Actinosynnema mirum, a very small high-yielding
biocatalyst, might further encourage the engineering of synthetic
pathways for the production of various prenylated and further
modified “unnatural” natural products which so far has
relied on using very large NRPSs (vide infra; Giessen et al.,
2013b).

Besides the various tailoring enzymes discussed above and
described in the literature, many highly complex modified
CDPs have been isolated where the responsible enzymes
haven’t been identified or characterized so far. To highlight
the hidden diversity of DKP-modifying enzymes a number of
structurally intriguing natural products are shown in Figure 2B.
Modifications found in those secondary metabolites include
unusual oxidative cyclization reactions (norgeamides A; Grubbs
et al., 2007), carbonyl (norgeamides A), oxoether (aspirochlorine;
Klausmeyer et al., 2005), and peroxide (fumitremorgin A;
Deveau et al., 2001) formations as well as hydroxylations
(gypsetin etc.; Nuber et al., 1994), all likely introduced by
oxidoreductase class enzymes. In addition, unusual transferase
reactions that install geranyl (gliocladride; Yao et al., 2007),
acetyl (fructigenine; Arai et al., 1989), and guanidinium
(verpacamide D; Vergne et al., 2006) functionalities can be
inferred from the structures shown. Finally, the structures of
different chlorinated compounds [dysamides A, cyclo(dichloro-
L-Pro-L-Tyr) and aspirochlorine] as well as a tetrasulfide-
containing molecule (aspirochlorine) are shown (Klausmeyer
et al., 2005). Halogenations have been reported in various natural
products most often catalyzed by flavin- or α-ketoglutarate/FeII-
dependent halogenases, while the tetrasulfide functionality
might arise through a similar GSH/PLP-dependent mechanism
as the disulfide bridge of gliotoxin (Chankhamjon et al.,
2014).

Given this possibly immense and so far unknown and
untapped pool of biocatalysts that exists in microbial secondary
metabolism, efforts directed toward the discovery and
characterization of new small molecule tailoring enzymes
have been intensifying over the past decade (Iqbal et al., 2012;
Nguyen et al., 2012; Bologa et al., 2013). The ever-increasing
advancements in DNA-sequencing andmetagenomics, combined
with ever-more sophisticated genome mining and computational
discovery approaches focusing on previously underexplored
environments and niches gives metabolic engineers and
synthetic biologists the chance to reveal and harness the diversity
of chemical transformations that has evolved over billions of
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FIGURE 2 | (A) Schematic representation of the (reverse) prenylation of all available positions in the indole ring of tryptophan catalyzed by different prenyltransferases
(PTs). (B) Selection of structurally complex and unusual DKP-containing natural products. Unusual functionalities are highlighted in red.
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years, thus shedding light on part of what has been referred
to as microbial dark matter (Marcy et al., 2007; Rinke et al.,
2013).

Application of DKP Tailoring Enzymes in
Combinatorial Biocatalysis

In this review, combinatorial biosynthesis is defined as the in
vivo or in vitro combination of natural or engineered enzymes
stemming from different pathways and/or organisms to generate
either a specific high value target compound or a whole range of
related structural variants for subsequent bioactivity screening.
We differentiate this combinatorial biosynthesis approach where
all of the chemical transformations are carried out by biocatalysts
with chemoenzymatic synthesis, which combines the use of
enzymes to carry out particularly challenging transformations
with traditional organic chemistry.

In nature, many microbes rely on biosynthetic strategies
that combine promiscuous enzymes from different biosynthetic
pathways to either synthesize one functional product or to
generate structural diversity. Examples include the assembly
of the siderophores erythrochelin (Lazos et al., 2010; Robbel
et al., 2010) and rhodochelin (Bosello et al., 2011) which relies
on enzymes located in more than one distinct gene cluster
and the generation of a family of pyrrolamide antibiotics that
has recently been shown to rely on two separate genetic loci
(Vingadassalon et al., 2015). Indeed, alternative modification
enzymes outside of core biosynthetic gene clusters often
form subclusters which are then able to join producing
entirely new clusters (Fischbach et al., 2008). The retention
of subclusters and newly joined hybrid clusters strongly
depends on their usefulness for the producing organism.
New non-functional gene clusters that don’t confer any

evolutionary advantage to the host would have a limited
evolutionary lifetime. These considerations underscore the
importance of natural selection as a driving force of chemical
innovation through diversification and subsequent selection over
evolutionary time. This problem can be circumvented by the
construction of artificial hybrid gene clusters and engineered
organisms whose survival depends on the retention of the genes
responsible for the production of a certain compound or set of
compounds.

In vivo combinatorial biosynthesis can be accomplished
through three distinct strategies. Firstly, using precursor-
directed biosynthesis, where the promiscuity of biosynthetic
enzymes is exploited to introduce non-native building blocks
into a natural product scaffold. Secondly, employing enzyme-
level modifications resulting in mutant enzymes with new
functionalities and thirdly, pathway-level engineering where
different enzymes are combined to generate completely artificial
biosynthetic pathways (Sun et al., 2015).

In a recent example of in vivo pathway-level combinatorial
biosynthesis, a dimodular NRPS that generates cyclo(L-Trp-
L-Pro), was separately combined with three different PTs in
A. nidulans resulting in differently prenylated DKP products
(Figure 3A) (Wunsch et al., 2015). The authors used enzymes
from four different pathways and two different organisms to
predictably introduce prenylations and reverse prenylations to
a DKP substrate. Modified CDPs based on the cyclo(L-Trp-
L-Pro) scaffold represent the most abundant and structurally
diverse family of DKP-containing natural products. This might
be because proline adopts a cis-conformation about the Xaa-
Pro amide bond making it prone to DKP-formation (Borthwick,
2012). By focusing on this DKP-family the authors open the
door for the generation of a large number of structurally diverse
natural products and their analogs with potentially new and
improved biological activities.

FIGURE 3 | (A) In vivo combinatorial biosynthesis employing a dimodular NRPS and three PTs resulting in the generation of a set of differently (reverse) prenylated
DKPs. (B) In vitro combinatorial biosynthesis approach based on printing biosynthetic enzymes and substrates on microarray-chips coupled to high-throughput
screening.

Frontiers in Microbiology | www.frontiersin.org 7 July 2015 | Volume 6 | Article 785

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Giessen and Marahiel Enzymatic tailoring of cyclic dipeptides

Diversity-oriented combinatorial biosynthesis in vitro
represents an alternative approach where purified biosynthetic
enzymes and their substrates are successively printed onto
a microarray-chip (Figure 3B) (Kwon et al., 2012). Pathway
reconstruction or diversification in vitro can be used
to characterize individual enzymes and identify pathway
intermediates. Although enzymes need to be purified and
substrates provided separately, this approach has some
interesting advantages compared with in vivo strategies. In
vitro diversification is not restricted by intermediate or product
toxicity, limited availability of intracellular precursors or
unanticipated regulatory mechanisms. Maybe most importantly,
chip-based in vitro biosynthesis can be easily integrated with
high-throughput screening strategies (Kwon et al., 2007).
Generally, natural product classes that rely on the action of one
key enzyme followed by scaffold diversification by modification
enzymes are best suited for this approach, including polyketides,
non-ribosomal peptides, including DKP-containing compounds,
and terpenoids.

Although great advances have been made in combinatorial
biosynthesis over the last years with new whole genome
sequencing methods revealing an ever increasing number of
biocatalysts for the synthetic biologist to choose from, an
increase in understanding biosynthetic logic at the enzyme,
pathway, and organism level and advancements in enzyme
engineering, many challenges still remain (Sun et al., 2015).
Often, biosynthesis approaches suffer from low yields which
prevents their use in a commercial setting. This challenge could
be tackled through concerted enzyme and metabolic engineering
efforts and by finding the optimal expression host (Pickens
et al., 2011). Chassis optimization may be necessary in cases
where a gene product turns out to be toxic to the producing
organism or when endogenous regulatory mechanisms lower the

yield of the engineered pathway (Fisher et al., 2014). Although
DKPs are generally membrane-permeable and accumulate in
the growth medium, certain modifications may prevent them
from crossing the cell membrane which would make their
isolation more difficult. In approaches aimed at generating
large compound libraries for drug discovery efforts, a large
number of combinatorially generated biocatalyst combinations
must be generated in a high-throughput fashion. This was
traditionally limited by conventional cloning approaches, but
could be circumvented by using new and rapid DNA synthesis
and assembly techniques (Chao et al., 2014; Cobb et al.,
2014). Finally, integrating combinatorial biosynthesis and the
resulting large compound libraries with rapid high-throughput
screening methods is of paramount importance. Those efforts
could be guided by combining computational with structural
and bioactivity analyses (Winter et al., 2011; Damborsky and
Brezovsky, 2014).

As outlined above, combinatorial biosynthesis has come a
long way and is now at the verge of being widely and easily
applicable in drug discovery, medicinal chemistry, and synthetic
biology. This is especially true for DKP-containing compounds
that have proven their value as important molecular scaffolds
in various fields in the past and will become even more useful
with the increasing application of tailoring enzymes in metabolic
engineering and synthetic biology approaches in the future.
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