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The mononuclear phagocyte system regulates tissue homeostasis as well as all phases of tissue injury and repair. To do so changing
tissue environments alter the phenotype of tissuemacrophages to assure their support for sustaining and amplifying their respective
surrounding environment. Interferon-regulatory factors are intracellular signaling elements that determine the maturation and
gene transcription of leukocytes. Here we discuss how several among the 9 interferon-regulatory factors contribute to macrophage
polarization.

1. Introduction

During development mononuclear phagocyte progenitors
populate most tissues where they differentiate into tran-
scriptionally and functionally diverse phenotypes [1–3]; for
example, bone marrow, liver, and lung harbor macrophages
with an enormous capacity to clear airborne particles, gut-
derived pathogens, or cell nuclei expelled from erythroblasts,
respectively [4]. In contrast, skin, kidney, and brain host a
dense network of dendritic cells [4, 5]. Upon tissue injury M-
CSF drives resident mononuclear phagocyte to proliferate [6]
or circulating monocytes recruit to the site of injury. It is the
local microenvironment that then determines mononuclear
phagocyte polarization to distinct phenotypes, which can
vary between disorders or between the different stages of
a disease process [7]. Several factors mediate mononuclear
phagocyte polarization, as being mostly described by in
vitro experiments [7, 8]. However, attempts to translate this
simplistic model to disease states in vivo often failed to
cover all aspects of heterogeneous and changing tissue envi-
ronments. For example, ischemia-reperfusion injury induces
transient sterile inflammation because dying tissue cells
release damage-associated molecular patterns (DAMPs) that

polarize macrophages toward a classically activated M1-like
phenotype [9, 10]. This process is associated with NF-𝜅B
and STAT1 pathway activation [2]. Macrophages apoptosis
or their phenotype switches towards alternatively activated,
M2-like macrophages that produce IL-10 and TGF-𝛽, induce
resolution of inflammation, and enforce tissue regeneration
[11–15]. Failure of this phenotype switch leads to persistent
tissue inflammation, atrophy, and fibrosis [16]. The uptake of
neutrophils, epithelium-derived alarmins, andTh2 cytokines
IL-4 and IL-13 supports this phenotype switch [11]. As disease
processes do not always occur in a serial manner, concomi-
tant proinflammatory and anti-inflammatory macrophages
infiltrates often populate organs affected by persistent injury,
for example, in slowly progressive lesions of organ transplants
[17, 18].

Current data suggest that the family of the interferon-
regulatory factors (IRFs) plays an important role in regulating
macrophage polarization. IRFs are intracellular proteins that
regulate immune cell maturation [19]. Here we provide
a summary on IRF biology that is focused on the IRF’s
role in macrophage phenotype control and the associated
contributions to tissue inflammation and remodeling.
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Figure 1: Structural domain organization and important posttranslational modifications of IRFs. Proteins are illustrated by N-terminus on
the left and C-terminus on the right. Each of the nine IRFs consists of a conserved pentad repeat DNA-binding domain. Regulatory and
repression domains are mostly located in the C-terminal domain. IRF-association domains 1/2(IADs) mediate the interaction with other
IRF-family members. Yellow arrows indicate the phosphorylation site within the domain. Posttranslational modifications are illustrated in
the right column. Numbers of amino acids for each IRF are given next to structural scheme.

2. The Family of Interferon-Regulatory Factors

The IRFs were discovered in search of transcription factors
that bind to the conserved virus response elements within the
promoters of type I IFN genes [19]. It was found that bothNF-
𝜅B and IRF-3 activate IFN-𝛽 gene transcription while IFN-𝛼
gene expression is entirely based on IRFs [19].The generation
of Irf -deficient mice led to the discovery of additional
regulatory roles of the IRFs for cell growth, for immune cell
maturation and activation, and for apoptosis. In mammals
the IRF gene family consists of nine members: IRF-1, IRF-
2, IRF-3, IRF-4, IRF-5, IRF-6, IRF-7, IRF-8/ICSBP, and IRF-9.
Their respective IRF proteins share significant homologies at
the N-terminal 115 amino acids where they share a conserved
tryptophan pentad repeat DNA-binding domain [20]. These
include a DNA-binding domain of five tryptophan repeats
of which three recognize the GAAA and AANNNGAA
sequence motifs, that is, the IFN-stimulated response ele-
ments [20]. However, the variable domains at the C-terminus
determine the functional specificity of the nine IRFs, their
potential to interact with each other via IRF-association
domains, and their cell type-specific actions [21] (Figure 1).
Accordingly, the IRFs have been subdivided into the “inter-
feronic” IRFs (IRF-2, -3, -7, and -9), the “stress-responsive”
IRFs (IRF-1 and -5), the “hematopoietic” IRFs (IRF-4 and -8),
and the “morphogenic” IRF-6 [22].The genetic and biological

characteristics of the IRF family members are listed in
Table 1.

3. IRFs in Macrophage Polarization

3.1. IRF-1. IRF-1 was first described in 1980s as a 325-amino
acid-long nonredundant transcription factor for type I IFNs
upon TLR3 ligation [23–25]. IRF-1 is only weakly expressed
in resting DCs and macrophages but is induced by IFN-𝛾 up
to 8-fold in M1 polarized macrophages [26]. IRF-1 interacts
with MyD88 to migrate into the nucleus where it triggers
TLR-mediated expression of proinflammatory genes [27, 28].
Casein kinase II activates IRF-1 by phosphorylation [29].
The protein complex formed by IRF-1, NF-𝜅B, and Jun that
bind to the IFN-𝛽 promotor was named “enhanceosome” [28,
30–32]. Sumoylation represses the transcriptional activity of
IRF-1 [33]. LPS challenge requires IRF-1 to induce TLR3,
TLR6, and TLR9 in macrophages [34]. In fact, Irf1-deficient
macrophages almost entirely lack inducible nitric oxide
synthase (iNOS) production upon LPS and IFN-𝛾 stimulation
[35]. This way, IRF-1 contributes to the priming of classically
activated, M1-like macrophage polarization in inflammatory
tissue environments that involve IFN-𝛾-producing NKT cells
or Th1 T cells [36]. At the same time, IRF-1 suppresses
the binding of other transcription factors to the IL-4 pro-
moter, which inhibits alternative macrophage activation [37].
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Table 1: Interferon-regulator factors and macrophage polarization.

Chromosome Expression Effect on macrophages Favoured macrophage phenotype

IRF-1 5q31 Ubiquitous
Induced by IFN-𝛾, mediates TLR/MyD88 signaling,
interacts with NF-𝜅B (“enhanceosome”), and
suppresses IL-4 promotor

M1

IRF-2 4q34 Ubiquitous
Suppression of IRF-1-mediated IFN and Cox-2
induction, complex role in LPS-induced cytokine
release, and suppression of STAT1/3 signalling

Context-dependent

IRF-3 19q13 Ubiquitous Promotes TRIF-signalling, drives IFN-𝛾/IL-1-mediated
IL-10 secretion M2

IRF-4 6p25 Hematopoietic cells
Induced by IL-4 via Jmjd3, inhibits MyD88 signalling
by blocking IRF-5/MyD88 interaction, promotes IL-4
and IL-10 secretion

M2

IRF-5 7q32 Ubiquitous Interacts with MyD88 needed for MyD88 signalling,
drives IL-12p35 and IL-23p19 secretion M1

IRF-6 1q32 Keratinocytes — —
IRF-7 11p15 Ubiquitous Type I interferon induction —

IRF-8 16q24 Hematopoietic cells
Induced by IFN-𝛾, mediates TLR-mediated induction
of IFN-𝛽, IL-12p40, IL-12p35, and iNOS, and mediates
Notch and TLR signalling for M1 polarization

M1

IRF-9 14q11 Ubiquitous Regulates type I interferon signalling —
TLR: Toll-like receptor, IL: interleukin, IFN: interferon, Cox: cyclooxygenase, LPS: lipopolysaccharide, iNOS: inducible NO synthase.

This process supports host defense against intracellular
pathogens but also accounts for M1 macrophage-related
immunopathology [35, 36, 38]. The latter is particularly
evident in sterile inflammation, for example, in ischemia-
reperfusion injury [39, 40].

3.2. IRF-2. IRF-2 is 349-amino acid-long and displays con-
siderable sequence homology with IRF-1 [23]. IRF-2 com-
peteswith IRF-1 for the same cis-acting recognition sequences
in gene promoters [41]. Hence, IRF-2 is a negative regulator of
IRF-1-mediated type I IFN andCox-2 induction [23, 31]. IRF-2
has a more complex role in cytokine regulation as it sup-
presses LPS-induced TNF expression while augmenting LPS-
induced IL-1, IL-6, IL-12, and IFN-𝛾 secretion [42]. Sumoyla-
tion increases IRF-2’s ability to inhibit IRF-1 transcriptional
activity [43]. LPS challenge regulates TLR3, TLR4, and TLR5
via IRF-2 in macrophages [34]. IRF-2 suppresses caspase-
1-mediated programmed cell death by interfering with the
transcriptional regulation of caspase-1 and by suppressing
STAT1/3 signaling [44]. Irf-2-deficient mice are highly sus-
ceptible to Listeria monocytogenes infection, which seems to
be related to IRF-2’s role in mediating the IFN-𝛾-induced
oxidative burst that kills the pathogen inside intracellular
compartments of macrophages [45]. However, this was iNOS
transcription independent. IRF-2 rather regulates iNOS in
a posttranscriptional manner [46]. The net effect of IRF-
2 on sterile inflammation seems to be immunosuppressive
as Irf-2-deficient mice are more susceptible to lymphocytic
choriomeningitis virus infection as well as to ischemia-
reperfusion injury-related tissue inflammation while that
latter was suppressed in mice that overexpress IRF-2 [47].
IRF-2’s negative regulatory effect on type I IFN expres-
sion also suppresses inflammatory skin disease involving

CD8 T cells [48]. In addition, IRF-2 is needed for the
development of splenic and epidermal CD4+ dendritic cells
[49].

3.3. IRF-3. IRF-3 was discovered by searching genes with
homology sequences with IRF-1 and IRF-2 [50]. This 427-
amino acid protein shares a number of characteristics with
IRF-7 [51]. Unlike IRF-7, that confers MyD88 signaling, IRF-
3 is involved in TRIF-dependent signaling pathways. After
binding pathogens, pattern-recognition receptors like TLR-3,
TLR-4, or RIG-I recruit TRIF to trigger an IRF-3-mediated
induction of type I IFNs [52–55]. Additional cytoplasmic
DNA recognition receptors use the STING pathway to acti-
vate IRF-3 [56]. The transcriptional activation of the IFN-𝛽
gene requires an enhanceosome of 7 additional proteins that
create a continuous surface that recognizes the DNA-binding
element [57]. Phosphorylation of TLR3’s specific tyrosine
residues can initiate two distinct signaling pathways. One
activates TBK-1 and the other activates PI3 kinase and Akt
for full phosphorylation and activation of IRF-3 [58, 59].
Cytoplasmic IRF-3 is inactive unless phosphoactivation of
IRF-3 triggers unfolding of the autoinhibitory elements and
exposes the hydrophobic surface to interaction withCREBBP
to translocate to the nucleus [60]. By contrast, ubiquitination
inactivates IRF-3 [61].GM-CSF-primedM1-likemacrophages
display a diminished IRF-3 axis and enhanced activation of
MyD88. In contrast, M-CSF stimulated macrophages that
develop an M2-like phenotype show defective NF-𝜅B activa-
tion and enhancedTRIF-mediated IRF-3 induction upon LPS
stimulation [62, 63]. Hence, the IRF-3 axis is rather enabled in
M2-like macrophages than inM1-like macrophages. But does
IRF-3 also contribute to the development of an alternatively
activated macrophage phenotype? One study transduced
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IRF-3 into primary human microglia. Stimulation with IFN-
𝛾/IL-1 suppressed proinflammatorymediators like IL-6, TNF-
𝛼, or IL-1𝛽, whereas anti-inflammatory mediators includ-
ing IL-10 were enhanced [64]. Altogether the data suggest
that IRF-3 is associated with anti-inflammatory microen-
vironments and contributes to the polarization toward a
M2 macrophage phenotype. However, IRF-3 also induces a
number of inflammatory cytokines such as CCL5 and IFN-𝛽
[65].

3.4. IRF-4. IRF-4, first described in 1995, is a 450-amino acid-
long “hematopoietic” protein with considerable homology
with IRF-1 and IRF-2 [66]. IRF-4 contributes to the matura-
tion of multiple myeloid and lymphoid cell types from their
lineage-specific progenitors [19, 67]. IRF-4 competes with
IRF-5 for binding to the adaptor MyD88 that transmits TLR
outside-in signaling to NF-𝜅B and other proinflammatory
transcription factors [27]. As IRF-5 is needed for signal
transduction the competitive action of IRF-4 for MyD88
binding renders IRF-4 an endogenous TLR signaling antago-
nist that can suppress M1 macrophage polarization [68]. IL-
10 induction needs IRF-4 and IRF-4 overexpression enhances
IL-4 and IL-10 secretion [69]. On the contrary, IRF-4−/−
mice are more sensitive to LPS-induced sepsis and exhibit
higher production of proinflammatory cytokines like TNF
and IL-6 [70]. IL-4 induces macrophages to upregulate IRF-
4 and contributes to their M2 polarization [71]. Accordingly,
IRF-4 deficiency leads to decreased expression of M2 marker
genes like Arg1, Ym1, and Fizz1 [72]. In fact, Jumonji domain-
containing-3 (Jmjd3), a histone 3 Lys27 (3K27) demethylase,
regulates the trimethylation at H3K27 of a selected number
of genes including IRF-4. This mechanism controls IRF-4
induction and is needed for M2 macrophage polarization,
for example, in the host defense during helminth infection
[72]. Interestingly, IL-4-induced STAT6 signaling regulates
Jmjd3 [73]. Hence, polarization of alternatively activated
macrophages through IL-4 seems to be mediated via STAT6-
Jmjd3-IRF-4 signaling and reveals an essential role of IRF-4
in macrophage polarization for helminth control.

3.5. IRF-5. IRF-5 is a 504-amino acid-long stress-responsive
IRF [22]. IRF-5 is required for TLR-mediated induction of
IL-6, TNF, IL-12, and other proinflammatory cytokines [74].
IRF-5 competes with IRF-4 for binding to the signaling
adapter MyD88 and the downstream subsequent activation
of proinflammatory transcription factors [27]. Its capacity
to induce inflammatory cytokines and B cell transcription
factors implies its role in host defense and autoimmune
disorders [75, 76]. This competitive interaction involves IRF-
5 in the polarization into M1 macrophages [68]. In fact,
the balance between IRF-4 and IRF-5 seems to be a major
determinant of M1 versus M2 macrophage polarization. For
example, M-CSF induces IRF-4 in human monocyte-derived
macrophages while GM-CSF induces IRF-5, which results in
two phenotypically different macrophage phenotypes [77].
M1macrophages express high levels of IRF-5where it not only
mediates the expression of proinflammatory cytokines but
also suppresses the immunoregulatory cytokine IL-10 [68].

IRF-5 itself is regulated by the transcriptional corepres-
sor KAP1/TRIM28 to avoid overshooting secretion of TNF
and other mediators that induce immunopathology [78].
KAP1/TRIM28 regulates IRF-5 by recruiting histone deacety-
lases and methyltransferases that can silence IRF-5-related
gene expression [78]. IRF-5-mediated polarization of mono-
cytic phagocytes involves the secretion of various IL-12 family
members including IL-12p35 and IL-23p19, which support
Th17 T cell immunity, an element of adaptive immunity
that contributes to autoimmune disorders [79]. In fact,
gain of function mutations in the IRF-5 gene exists that
increases TLR- or NOD-mediated secretion of proinflam-
matory cytokines [80]. Such variants also predispose to
autoimmune diseases like systemic lupus erythematous [81–
83], which may be related to these phenomena.

3.6. IRF-6. IRF-6 is a so-called “morphogenic” IRF of 467
amino acid length. IRF-6 has a large structural homology
with IRF-5 but does not seem to share its functional prop-
erties or contribute to macrophage biology, which is related
to the tissue-specific expression of IRF-6. IRF-6 mutations
rather predispose to cleft lip or palate and other abnormalities
of limb, skin, and craniofacial morphogenesis [84, 85].

3.7. IRF-7. IRF-7, together with IRF-3, is a 503-amino acid
central and nonredundant mediator of viral nucleic acid-
induced induction of IFN-𝛼 [19, 86, 87]. IRF-7 drives the
differentiation of monocytes to macrophages but a direct role
in macrophage polarization has not been reported.

3.8. IRF-8. IRF-8, also known as interferon consensus
sequence-binding protein (ICSBP), is a 393-amino acid-
long “hematopoietic” IRF [22]. IRF-8 (like IRF-4) has a
dominant role in thematuration and differentiation ofmono-
cytes and macrophages from their immature progenitors,
while it represses neutrophil production [88–90]. IFN-𝛾
and LPS slow down the intrinsic mobility of IRF8 inside
the nucleus to enforce its chromatin interaction for the
initiation of transcription [91]. IFN-𝛾 induces IRF-8 and
IRF-8 drives to induction of IFN-𝛽, IL-12p40, IL-12p35,
and iNOS upon TLR stimulation, that is, M1 macrophage
gene profile [92]. In addition, IRF-8 integrates outside-in
signaling of Notch receptors and TLRs for the induction of
genes that define an M1 macrophage phenotype [93]. IRF-8
selectively modulates TLR4 signaling via IRAK2-dependent
activation of MNK1 and eIF4E-regulated translation. IRF-8
itself is regulated by small ubiquitin-like modifiers (SUMO)
2/3 at the lysine residue 310. SUMO3-conjugated IRF8 cannot
induce IRF-8 target genes [94]. Upon macrophage activa-
tion, SUMOylation of IRF-8 is reduced as the deSUMOy-
lating enzyme, sentrin-specific peptidase 1 (SENP1), inacti-
vates SUMOylation-related IRF-8 repression. As such IRF-
8 SUMO conjugation/deconjugation represents a previously
unrecognized mechanism of macrophage phenotype control.

3.9. IRF-9. IRF-9 is a 424-amino acid-long regulator of type
I IFN signaling. It forms a DNA-binding complex with
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Figure 2:Workingmodel of the role of interferon-regulatory factors
in macrophage polarization. Circulating monocytes reach tissues
by rolling and adhesion at luminal surfaces of activated endothelia,
which is followed by transmigration into the interstitial tissue
compartment. The local environment will prime M0 macrophage
polarization, a process to which interferon-regulatory factors (IRFs)
contribute in a phenotype-specific manner. See text for details.

the STAT1 homodimer, for example, for the induction of
CXCL10 [95]. A specific role in macrophage polarization has
not been reported.

4. Summary and Perspective

Macrophages contribute to tissue homeostasis and all phases
of tissue injury and repair. Tissue environments prime
macrophages to distinct phenotypes to assure that their
functional properties enforce the surrounding environment,
whether this may be inflammation, the resolution of inflam-
mation, tissue repair (fibrosis), or the resolution of extracel-
lular matrix. Members of the IRF family are an integral com-
ponent of the macrophage polarization process and, hence,
regulate the phenotypic plasticity and heterogeneity of tissue
macrophages. Research in this area is still in progress, but
our present working model refers to IRF-1, IRF-5, and IRF8
as factors driving the proinflammatory, classically activated
(M1)macrophage phenotype, while IRF-3 and IRF-4 promote
anti-inflammatory, alternatively activated (M2) macrophages
(Figure 2). Future work in this area will certainly refine
this concept and define additional functions of the IRF’s in
this context and elucidate additional mechanisms of how
changing tissue environments shape immune effector cells to
meet the tissue needs in homeostasis and disease.
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