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Abstract

Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes,
that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing
stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by
massive increases in both extracellular K+ and glutamate, as well as rises in intracellular Na+ and Ca2+. These ionic
shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is
associated with changes in cortical parenchymal blood flow.
CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet,
no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their
lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD.
Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing
migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to
inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not
only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this
contribution, would add further insights into the mechanisms of actions for “gepants”, which may be pivotal for the
effectiveness of these drugs as anti-migraine agents.
CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms
of action relevant for migraine.
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Introduction
Spreading depression (SD) is an intense self-propagating
wave of depolarization involving neuronal and glial cells
in the cerebral cortex, subcortical gray matter or retina,
irrespective of functional divisions or arterial territories.
This depolarization is followed by a longer lasting wave
of inhibition characterised by massive changes in ionic
concentrations and slow chemical waves, propagating at
a rate of approximately 3–6 mm/min [1]. In both
lissencephalic and gyrencephalic cortices, SD can be
evoked pharmacologically by the application of K+,
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glutamate, and Na+/K+-pump inhibitors or by either
electrical or mechanical stimulation. SD can develop
over the course of epileptic crises or can be induced by
brain tissue injury, as in the case of trauma, hemorrhage
or ischemia [2-6].
Several clinical and neuroimaging findings support the

concept that cortical SD (CSD) is the pathophysiological
correlate of the neurological symptoms in migraine aura
[7-9]. Moreover, different experimental models of CSD
have been developed which help to better understand
the underlying neuronal mechanisms and related vascu-
lar changes [10,11]. They also, albeit not consistently,
suggest that CSD is able to activate central and periph-
eral trigemino-vascular nociceptive pathways with a la-
tency matching, generally occurring between aura and
headache in migraineurs [12].
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Familial Hemiplegic Migraine 1 (FHM1) and 2 (FHM2)
mutations share the ability to facilitate the induction and
propagation of CSD in mouse models, further supporting
the role of CSD as a key migraine trigger [13]. CSD is fur-
ther modulated by endogenous and environmental factors,
such as hormones and drugs, and also might be influenced
by weather, stress and food [14-16]. Current prophylactic
treatments have been investigated for their effects on
CSD. Novel drugs can also target CSD and this can ac-
count, at least in part, for their mechanisms of action on
migraine [17].

Review
In this review, we illustrate the main findings concerning
basic mechanisms underlying CSD as neurophysiologic
substrate of aura and report results on the effects on
CSD from available drugs and new therapeutic options.

Clinical, neurophysiological and neuroimaging evidence
of a link between migraine aura and CSD
About a third of migraine patients complain of transient
focal aura symptoms beginning from minutes to hours
before headache, or occurring during either the head-
ache phase or even in its absence [18]. Usually, migraine
aura consists of fully reversible visual, sensory and/or
dysphasic symptoms [19]. These aura symptoms are ac-
companied by fully reversible motor weakness in hemi-
plegic migraine. This is referred to as familial (i.e., FHM)
subtype when the condition is present in at least one
first- or second-degree relative, and a sporadic subtype
in the absence of family history [20].
Specific genetic subtypes of FHM have been identified.

Mutations of three genes all encoding ion-channels or
membrane ionic pumps were discovered from 1996 to
2005. They involve a neuronal Ca2+ channel (CACNA1A,
FHM1), a glial Na+/K+ pump (ATP1A2, FHM2) and a
neuronal Na+ channel (SCN1A, FHM3), respectively [13].
However, these mutations have not been identified in the
more common types of migraine with typical aura. These
forms are considered polygenic, with an overall heritability
nearing 50%, and should be regarded as the result of the
interaction of genetic and environmental factors [21].
Descriptions of migraine with aura (MwA) from the

year 1870 onwards have reported a slow, gradual pro-
gression of aura symptoms. Specifically, in 1941, Lashley,
from the meticulous chartering of his own auras, sug-
gested that aura symptoms reflect a cortical process
progressing with a speed of 3 mm/min across the pri-
mary visual cortex [22].
CSD was first described by Aristides Leão in 1944

[23,24]. Studying experimental epilepsy for his PhD the-
sis, Leão came across a depression of electroencephalo-
graphic (EEG) activity moving through the rabbit cortex
at a rate of 3–6 mm/min after electrical or mechanical
stimulations. The negative wave was sometimes pre-
ceded by a small, brief positivity, and always followed by
a positive overshoot of 3–5 min [25]. He observed that
the threshold of CSD varied among cortical areas also in
pigeons and cats, and once triggered, it spread in all
directions. During CSD, neither sensory stimulation nor
direct cortical stimulation evoked potential waves. Ongoing
experimental seizure discharge was also suppressed by
CSD, even if sometimes tonic-clonic activity preceded or
followed SD [23]. Based on similar propagation of the two
processes, Leão hypothesized an association between CSD
and seizures [1].
Using microscopy and photography of pial vessels to

assess cortical circulation, the researcher was also able
to see both arteries dilated “as scarlet as the arteries”
and veins, as a consequence of CSD. This latter obser-
vation, for the first time, indicated that the cerebral
blood flow increase exceeded the increase in oxygen
demand. This topic has become a matter of interest for
all investigators studying changes in cerebral circulation
over the course of CSD [24].
In the early 20th century, aura was considered a vascu-

lar process involving an initial vasoconstriction followed
by a reactive vasodilation responsible for head pain
[8,26]. Later observations by Olesen et al. modified this
idea by demonstrating a spreading reduction in cerebral
blood flow, called “spreading oligemia”, occurring in
patients with MwA [27]. This finding completely
redefined the underlying pathogenesis of aura by at-
tributing blood flow changes during aura to changes in
neuronal activity [28].
Single photon emission computerized tomography

(SPECT) [29] and perfusion-weighted magnetic reson-
ance imaging (MRI) [30] studies have further supported
the hypothesis that “spreading oligemia” observed during
aura is primarily due to changes in neuronal activity.
Additionally, perfusion abnormalities have been sug-
gested to be a response of the autoregulatory mecha-
nisms to underlying neuronal depression. However, in
most SPECT and hyper-emia and subsequent spreading
hypo-perfusion, patients never experienced symptoms of
typical visual auras [7,31].
The first-ever study investigating occipital cortex acti-

vation during visual stimulation with functional mag-
netic resonance (fMRI) by blood oxygenation level
(BOLD)-dependent contrast imaging in MwA patients
demonstrated that the onset of headache or visual
change (only in 2 patients), or both, were preceded by a
suppression of the initial activation. This suppression
slowly propagated into contiguous occipital cortex at a
rate ranging from 3 to 6 mm/min. and was accompanied
by baseline contrast intensity increases, indicating that
vasodilatation and tissue hyper-oxygenation are associ-
ated with the induction of headache [32]. Later, in 2001,
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Hadjikhani at al. [33], strongly suggested that electro-
physiological events consistent with CSD are involved in
triggering aura in the human visual cortex. Using high-
field fMRI with near-continuous recording during visual
aura, the authors identified specific BOLD events in the
visual cortex that were strictly linked to the aura per-
cept, in both space (retinotopy) and time. Throughout
the progression of each aura, unique BOLD perturba-
tions were found in the corresponding regions of the ret-
inotopic visual cortex. Like the progression of the aura
in the visual field, the BOLD perturbations progressed
from the paracentral to more peripheral eccentricities, in
only the hemisphere corresponding to the aura. The
source of the aura-related BOLD changes were localized
in the extrastriate visual cortex (area V3A) rather than in
the striate cortex (V1). Strikingly, the spread rate of the
BOLD perturbations across the flattened cortical gray
matter was consistent with previous measures of CSD.
As for diffusion changes on MRI, these have been es-

pecially observed in cases of prolonged complex mi-
graine aura, suggesting cytotoxic edema in the absence
of ischemic lesions [34-37]. To this regard, it is note-
worthy the finding of a spreading of cortical edema with
reversibly restricted water diffusion from the left occipi-
tal to the temporo-parietal cortex in a case of persistent
visual migraine aura [38]. In another case of migraine
with prolonged aura, hyper-perfusion with vasogenic
leakage was detected by diffusion-weighted MRI [39]. A
further patient experienced a series of MwA attacks
accompanied by slight pleocytosis and gadolinium (Gd-
DTPA) enhancement in proximity of the left middle
cerebral artery. In this patient, the migraine attacks and
Gd-DTPA enhancement were reversed by prophylactic
treatment [40].
Magneto-electroencephalography (MEG) allows the

study of direct current (DC) neuromagnetic fields in
spontaneous and visually induced migraine patients. Few
MEG studies have been conducted with this approach in
MwA patients due to technical difficulties. The most
relevant study to date has shown multiple cortical areas
activated in spontaneous and visually induced MwA pa-
tients, unlike activation limited to the primary visual
cortex in control subjects. This finding supports the hy-
pothesis that a CSD-like neuro-electric event arises
spontaneously during migraine aura or can be visually
triggered in widespread regions of the hyper-excitable
occipital cortex [41].
MEG has also been used to directly register changes in

cortical oscillatory power during aura. Specifically, alpha
band desynchronization has been demonstrated with this
technique in both the left extra-striate and temporal cor-
tex over the period of reported visual disturbances.
These terminated abruptly on the disappearance of scin-
tillations, whereas gamma frequency desynchronization
in the left temporal lobe continued for 8 to 10 minutes
following the reported end of aura [42].

Neuronal mechanisms of CSD in experimental models
When evoked by local extracellular K+ concentrations
exceeding a critical threshold, CSD is associated with the
disruption of membrane ionic gradients. Both massive
K+ (with extracellular concentration increases up to 60
mM) and glutamate effluxes are believed to depolarize
adjacent neurons to facilitate spread [43]. Results from
studies on ion-selective microelectrodes have shown that
an extracellular K+ rise is accompanied by falls in extra-
cellular Na+ and Cl- during CSD, whereas water leaves
the extracellular space with significant changes in extra-
cellular pH [44,45].
Specifically, in chick retina, SD induced an initial in-

crease in intracellular pH, which was associated with ele-
vated levels of ADP, P-Creatine, lactate and pyruvate.
This was followed by an intermediary acid shift, in-
creases in ATP values and decreases in ADP, a late alka-
line rebound, a decrease in P-Creatine levels, and
elevations in both ADP and lactate levels. These transi-
ent changes in intracellular pH occurring parallel to
changes of energy metabolite levels during SD, may be
expressions of rapidly modifying metabolic activities of
neurons and glial cells. The first alkaline shift was attrib-
uted to glial cells, whereas the intermediary acid shift
was attributed to neurons. No specific cells were thought
to be responsible for the late alkaline shift, which could
explain the refractoriness of the neurons in this phase
[46]. Accordingly, in rat cerebellum, an initial decrease
in [H+] (pH increase) followed by a increase in [H+] (pH
decrease) was observed during SD [45]. Further results
obtained from a model of CSD showed acidification and
a marked depression in the cortical energy status at the
wavefront of SD. Afterwards, a residual activation of gly-
colysis and an accumulation of cGMP persisted for mi-
nutes after relatively rapid restorations of high-energy
phosphates and pHi [47]. Recovery from this process
occurs usually within a few minutes without any tissue
damage [43,45].
A causative link between enhanced glutamate release

and facilitation of CSD, induced by brief pulses of high
K+, has been reported in mouse models of CSD [48-51].
In some of these models, CSD could not be recorded
after perfusing cortical slices by Ca2+ free medium or
after blocking Ca2+ channels [50,52-55]. Glutamate in-
volvement in CSD is further supported by the finding
of CSD blockage by N-methyl- D-aspartate receptor
(NMDA-R) antagonists, but not by non-NMDA-R an-
tagonists, in vivo [56-59] or in hippocampal and neocor-
tical slices of rats [5,55]. CSD has also been reported to
be blocked by the NMDA-R antagonist 2-amino-5-
phosphonovaleric acid, in slices of human neocortical
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tissue [60]. Furthermore, data have demonstrated that
NR2B-containing NMDA-R are key mediators of CSD,
providing the theoretical basis for the usefulness of
memantine and some NR2B-selective antagonists for the
treatment of MwA and other CSD-related disorders,
such as stroke or brain injury [50,61].
According to the above findings, CSD cannot be in-

duced in brain slices of FHM1 KI mice if either P/Q-
type Ca2+ channels or NMDA receptors are blocked.
Conversely, blocking N- or R-type Ca2+ channels seems
to have only small inhibitory effects on the CSD thresh-
old and velocity of propagation. This suggests that Ca2+

influx through presynaptic P/Q-type Ca2+ channels with
consequent release of glutamate from cortical cell synap-
ses and activation of NMDA-R is required for initiation
and propagation of the CSD [62]. This is in contrast
with results of in vitro and in vivo pharmacological stud-
ies where CSD was induced by perfusing cortical slices
with a high K+ solution (rather than with brief K+ pulses
or electrical stimulation). In these models, NMDA-R
antagonists only slightly increased CSD threshold with-
out affecting its velocity. Accordingly, blocking P/Q-type
(or the N-type) Ca2+ did not significantly affect the
CSD threshold obtained from perfusing cortical slices
with progressively increasing K+ concentrations [51,63].
Interestingly, removal of extra-cellular Ca2+ did not
block CSD but reduced it to about half the rate of prop-
agation [64].
Different results have been obtained for multiple CSD

models induced in vivo by continuous K+ microdialysis
or topical application of KCl, where P/Q-type (Cav2.1),
or N-type, Ca2+ channel blockers and NMDA-R antago-
nists led to a strongly reduced frequency, amplitude and
duration, but not a complete suppression, of CSD events
[50,65,66]. Furthermore, Ca2+ channel blockers have not
been reported to affect CSD induced by pinprick in vivo
[66]. Therefore, results seem to be strongly influenced
by the model used. Currently, electrical stimulation and/
or brief applications of high K+ are considered to be the
most appropriate CSD-inducing stimuli, rather than
prolonged applications of high K+, for the better under-
standing of “spontaneous” CSD mechanisms occurring
in migraine aura [62]. Specifically, these models best re-
veal that the excitatory synaptic transmission, involved
in CSD initiation and propagation at the pyramidal cor-
tical cells, predominantly depends on presynaptic P/Q-
type Ca2+ channels.
Earlier studies reported that the Na+ channel blocker

TTX was not able to consistently inhibit CSD [67-69].
More recently, Na+ channels have been shown to be in-
volved in the initiation of CSD in hippocampal slices [5].
Their contribution to CSD was confirmed by Tozzi et al.
[70] in rat neocortical slices by reducing CSD propaga-
tion after applying the voltage sensitive Na+ channel
blocker TTX. In another study, Na+ ion channel block-
age was also seen to inhibit relative cerebral blood flow
(rCBF) changes occurring during CSD induced on both
cats and rats. In the same model, voltage-dependent
Ca2+ channel blockers had little effect on either the initi-
ation or propagation of CSD spread, as was the case for
ATP-activated K+ channel blockers also [71].
It has been demonstrated that the activation of alpha-

amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)
receptors (AMPA-R) can suppress the actions of NMDA-R
in the neocortex [72]. Earlier findings, however, suggested
that NMDA-R blockers, but not AMPA-R antagonists,
were able to inhibit CSD in rats [70,72,73]. Conversely, a re-
cent study has demonstrated that both 50 μM AMPA, as
well as 10 μM of the NMDA-R antagonist 2-amino-5-
phosphono-pentanoic acid (2AP5), significantly reduce
the number of CSD cycles. Additionally, the gamma-
aminobutyric acid (GABA)-mimetic drug clomethiazole
(100 mg/kg i.p.) did not significantly affect the number of
CSD cycles [74]. Being so, the suppression of NMDA-R ac-
tions in the neocortex by AMPA-R activation, may repre-
sent an intrinsic protective mechanism against CSD and
could, thus, be a potential therapeutic strategy against
CSD-related neurological conditions including migraine
aura.
In line with the above finding, AMPA-R, as well as

GABA(A) and GABA(B)-R agonists, have been shown
to inhibit cerebral blood flow changes associated to
mechanically-induced CSD in all rats and in a propor-
tion of cats. Furthermore, non-responders showed al-
tered speeds of propagation and times to induction [75].
In contrast, in a recent investigation, reproducible CSD epi-
sodes, induced by high extracellular K+ concentrations in
rat neocortical slices, were inhibited by antagonists of
NMDA-R, but not by AMPA-R [70]. Methodological
differences (CSD models, dosages of agonists, outcome
measures) could explain discrepancy in the results of
the different studies carried out on this topic.
Recent autoradiographic findings suggest that selective

changes in several receptor-binding sites, in both cortical
and subcortical regions, are related to the delayed excita-
tory phase after CSD. In fact, in neocortical tissues, local
increases of ionotropic glutamate receptors NMDA,
AMPA, and kainate receptor binding sites have been ob-
served. In addition, receptor binding sites of GABA(A),
muscarinic M1 and M2, adrenergic alpha(1) and alpha
(2), and serotonergic 5-HT(2) receptors were seen in-
creased in the hippocampus. CSD also up-regulated
NMDA, AMPA, kainate, GABA(A), serotonergic 5-HT
(2), adrenergic alpha(2) and dopaminergic D1 recep-
tor binding sites in the striatum [76]. Therefore, not
only glutamatergic mechanisms, but also changes in
monaminergic and cholinergic pathways seem to be in-
volved in CSD.
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Vascular changes associated to CSD in
experimental models
CSD has been reported to be associated with changes in
the caliber of surface cortical blood vessels.
Leão was the first to report arteriole dilatation accom-

panying electrophysiological changes in CSD of rabbits
[24], which was later confirmed in rats and cats [77,78].
A further study using laser Doppler flowmetry, focusing
on tissue perfusion rather than arterial diameter, has
suggested that CSD is associated with an initial increase
in cortical blood flow, which is thought to correspond
to arteriolar dilatation [79]. Triggering CSD results in a
sustained wave of reduced cortical blood flow after
initial vasodilation, as shown by single modality blood
flow measurements, including autoradiographic methods
[80,81] and laser Doppler flowmetry [82]. Moreover,
sustained hypo-perfusion was accompanied by a concur-
rent reduction in reactivity to vasoactive stimuli [83].
Dual modality methods, such as laser Doppler flowmetry
and extracellular electrophysiology, allowed for the con-
current assessment of changes in neuronal firing and
cerebral blood flow in CSD but lacked parallel spatial
and temporal resolutions [84]. Optical intrinsic signal
(OIS) imaging also enables visualization of CSD on the
cortical surface with high temporal and spatial resolution
[85-87]. The optical correlates of CSD have been evalu-
ated on both a mouse and a rat model by Ayata et al.
[88]. Vascular response to CSD propagates with tem-
poral and spatial characteristics, which are distinct from
those of the underlying parenchyma, suggesting a dis-
tinct mechanism for vascular conduction.
Using OIS imaging and electrophysiology to simultan-

eously examine the vascular and parenchymal changes
occurring with CSD in anesthetized mice and rats, Brennan
et al. [89] observed vasomotor changes in the cortex
which travelled at significantly greater velocities com-
pared to neuronal changes. This observation further re-
inforces the idea that dissociation between vasomotor
and neuronal changes during CSD exists. Specifically,
dilatation travelled in a circuitous pattern along indi-
vidual arterioles, indicating specific vascular conduction
as opposed to concentric propagation of the paren-
chymal signal. This should lead to a complete rethinking
of flow-metabolism coupling in the course of CSD. Vas-
cular/metabolic uncoupling with CSD has also been
reported by Chang et al. using a combination of OIS
imaging, electrophysiology, K+-sensitive electrodes and
spectroscopy in mice [90]. The authors identified two
distinct phases of altered neurovascular function. In the
first phase of the propagating CSD wave, the DC shift
was accompanied by marked arterial constriction and
desaturation of cortical hemoglobin. After recovery
from the initial CSD depression wave, a second phase
was identified where a novel DC shift appeared to be
accompanied by arterial constriction and a decrease in
tissue oxygen supply, lasting at least an hour. Persistent
disruption of neurovascular coupling was supported by
a loss of consistency between electrophysiological activ-
ity and perfusion.
Nitric oxide (NO) may play a relevant role in determining

changes in cerebro-vascular regulation following CSD. In
fact, the NO precursor L-arginine prevented the develop-
ment of prolonged oligemia after CSD but had no influence
on a marked rise of CBF during CSD. Moreover, rats
treated with L-arginine recovered their vascular reactivity
to hyper-capnia after CSD much faster than controls [91].
The NO donor, 2-(N,N-diethylamino)-diazenolate-2-oxide
(DEA/NO) had little effect on CSD but reversed the effects
of NO synthase (NOS) inhibition by 1 mM L-NAME, in a
concentration-dependent manner, suggesting that the in-
creased formation of endogenous NO associated with CSD
is critical for subsequent, rapid recovery of cellular ionic
homeostasis. Molecular targets for NO may be either brain
cells, through the suppression of mechanisms directly in-
volved in CSD or local blood vessels by means of coupling
flow with the increased energy demand associated with
CSD.
The potent vasoconstrictor endothelin-1 (ET-1) applied

on rat neocortices has been demonstrated to induce CSDs
through the ET(A) receptor and phospholipase C (PLC)
activation. Primary targets of ET-1 mediating CSD seem
to be either neurons or vascular smooth muscle cells [92].
This finding provides a bridge between the vascular and
the neuronal theories of migraine aura. However, the mi-
cro area of selective neuronal necrosis, induced by ET-1
application suggests a role by vasoconstriction/ischemia
mechanisms. This observation contrasts with the lack of
neuronal damage in several CSD models [93].

Genetic evidence of CSD involvement in migraine
Genetic factors are known to enhance susceptibility
to CSD, as results from transgenic mice expressing
mutations associated with FHM or cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leuko-encephalopathy (CADASIL) have shown [94-99].
Specifically, P/Q-type Ca2+ channels, located in somato-
dendritic membranes and presynaptic terminals in the
brain, play a pivotal role in inducing potential-evoked
neurotransmitter release at CNS synapses [100]. Mis-
sense mutations in the gene encoding the pore-forming
α1 subunit of voltage-gated P/Q-type Ca2+ channel, re-
sponsible for the rare autosomal dominant subtype of
MwA FHM1, induce a gain-of-function of human re-
combinant P/Q-type Ca2+ channels, due to a shift to
channel activation at lower voltages [101]. Increased P/
Q-type Ca2+ current density in cortical pyramidal cells
has been demonstrated in Knock-in (KI) mice carrying
FHM1 mutations [101-103]. Furthermore, FHM1 KI
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mice have shown a reduced threshold for CSD induction
and an increased velocity of CSD propagation [63,104].
These mice represent a powerful tool for exploring pre-
synaptic regulation associated with expression of P/Q-
type Ca2+ channels. Mutated P/Q-type Ca2+ channels
activate at more hyper-polarizing potentials and lead to a
gain-of-function in synaptic transmission. This gain-of-
function might be responsible for alterations in the excita-
tory/inhibitory balance of synaptic transmission, favoring
a persistent state of hyper-excitability in cortical neurons
which may increase the susceptibility for CSD [101]. In
contrast, spontaneous CACNA1a mouse carrying muta-
tions producing partial loss-of-function of the P/Q-type
Ca2+ channel, need approximately a 10 fold higher elec-
trical stimulation intensity in order to evoke a CSD com-
pared to wild-type mice [105].
FHM2, the autosomal dominant form of MwA, is caused

by mutations of the α2-subunit of the Na+,K+-ATPase,
an isoform almost exclusively expressed in astrocytes
in the adult brain. In a FHM2 KI mouse model
carrying the human W887R mutation in the Atp1a2
orthologous gene, in vivo analysis of CSD in heterozy-
gous F Atp1a2 (+/R887) mutants revealed a decreased
induction threshold and an increased velocity of
propagation. While several lines of evidence suggest a
specific role on the part of glial α2 Na+/K+ pump in ac-
tive reuptake of glutamate from the synaptic cleft, it is
plausible that CSD facilitation in the FHM2 mouse
model is sustained by inefficient glutamate clearance
by astrocytes, leading to an increase in cortical excita-
tory neurotransmission [106].
MwA is often the first manifestation of cerebral auto-

somal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL), caused by NOTCH3
gene mutations expressed predominantly in vascular
smooth muscles. In a recent study, CSD was reported to
be enhanced in mice expressing either a vascular Notch
3 CADASIL mutation (R90C) or a Notch 3 knock-out
mutation. These findings further support the role of the
trigeminal neurovascular unit in the development of mi-
graine aura [107].

Influence of sexual steroids on CSD
A relation between migraine and changes in the level of
sexual steroids has been well documented and both es-
trogens and androgens may influence migraine attacks.
Accordingly, it has been found that in women with
MwA, plasma estrogen concentrations were higher dur-
ing normal menstrual cycle. Furthermore, it has also
been reported that the occurrence of migraine attacks is
associated with high circulating estrogen levels as during
ovulation, pregnancy and the use of certain oral contra-
ceptives [18-110]. Notably, sex difference in the presen-
tation of attacks has been shown to disappear after
oophorectomy and with senescence [111]. Testosterone
and its synthetic derivatives have also been demon-
strated to improve migraine in both men and women
[112-116]. Moreover, males treated with gonadotropins
for infertility experienced a marked improvement in
their MwA attacks [117]. Conversely, anti-androgen
therapy increased MwA frequency in a small cohort of
male-to-female transsexuals [118].
Some experimental findings support the excitatory

neuronal effect associated with estradiol and the inhibi-
tory effect associated with progesterone. Compared to
female hormones, mechanisms of androgenic modula-
tion of excitability are not as well known. Gonadic hor-
mones have been suggested to have a modulating role in
CSD susceptibility, which would, at least in part, explain
the gender differences in the prevalence of migraine. Ac-
cordingly, female FHM1 mutant mice have been shown
to be more susceptible to CSD when compared to their
male counterparts [119]. On the other hand, testoster-
one have been reported to suppress CSD via androgen
receptor-dependent mechanisms and, accordingly, its in-
hibitory effect on CSD was prevented by the androgen
receptor blocker flutamide. Furthermore, it has been
shown that chronic testosterone replacement reversed
the effects of orchiectomy on CSD [120].
Astrocytes and gap-junction involvement in CSD
Astrocytes, a subset of glial cells, reside next to neurons,
establishing together a highly interactive network [121].
Astrocytes play a pivotal role in limiting CSD by acting
as a buffer for the ionic and neurochemical changes
which initiate and propagate CSD [122]. On the other
hand, astrocyte interconnections are believed to contrib-
ute to propagating the CSD wave, by way of K+ liber-
ation, allowed for by an opening of remote K+ channels.
Moreover, energy failure in astrocytes increases the vul-
nerability of neurons to CSD [123]. There is increasing
evidence suggesting that, while synapses connect neur-
onal networks, gap-junctions most likely connect astro-
cyte networks [124]. Clusters of these tightly packed
intercellular channels allow for the direct biochemical
and electrical communications among astrocytes, con-
tributing to a syncytium-like organization of these cells
[125]. Membranes of adjacent astrocytes have connexin-
containing hemi-channels which can bridge an intercel-
lular gap to form a gap-junction [126]. This interaction
between the two hemi-channels opens them both,
allowing for the intercellular passage of ions and small
molecules [127]. Approximately 1.0–1.5 nm in diameter,
gap-junctions permit the transport of molecules up to
about 1 kDa in size. Astrocytes express at least three dif-
ferent connexins at gap-junctions with regional differ-
ences in their distributions.
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Experimental studies have suggested an involvement
of gap-junctions in CSD by regulating the milieu around
active neurons including extracellular K+, pH and neuro-
transmitter levels (especially glutamate and GABA), as
well as propagating intercellular Ca2+ waves [128]. Non-
junctional connexin hemi-channels may also contribute
to the release of adenosine triphosphate (ATP). This
extracellular messenger is able to mediate Ca2+ wave
propagation directly or via the transfer of a messenger
which triggers ATP release from one cell to another
[129]. Generation and propagation of CSD may depend
on neuronal activation and Ca2+ influx triggered by
NMDA-R. Interestingly, NMDA-R antagonists block
CSD but, unlike the gap-junction blockers, do not in-
hibit Ca2+ wave propagation.
Astrocytes are known to express several types of glu-

tamate receptors, including NMDA-R. Glutamate release
from astrocytes has also have been reported to be medi-
ated via the opening of connexin hemi-channels [127].
For this, gap-junction-mediated propagation of Ca2+

waves may represent the advancing front of CSD, con-
tributing to the triggering of the secondary depolar-
ization of the surrounding neurons, leading to further
releases of K+ and glutamate into the extracellular space.
Glutamate may then stimulate cytosolic Ca2+ oscillations
in astrocytes, providing a feedback loop involved in CSD
propagation. If so, gap-junction blockage would repre-
sent a viable pharmacological strategy for MwA preven-
tion. Evidence of a gap-junction coupling Ca2+ waves
between pia-arachnoid cells and astrocytes has also been
reported, suggesting a transfer of Ca2+ signals from cells
of the cortical parenchyma into the meningeal trigeminal
afferents, all of which might mediate the induction of
neurovascular changes responsible for migraine head-
ache [130].

Altered blood–brain barrier (BBB) permeability in CSD
CSD alters blood–brain barrier (BBB) permeability by
activating matrix metalloproteases (MMPs) [131]. From
3 to 6 hours, MMP-9 levels increase within the cortex
ipsilateral to CSD, reaching a maximum at 24 hours
and persisting for at least 48 hours. At 3–24 hours, im-
munoreactive laminin, endothelial barrier antigen, and
zona occludens-1 diminish in the ipsilateral cortex,
suggesting that CSD altered proteins are critical to the
integrity of BBB.
Subclinical infarct-like white matter lesions (WMLs)

in the brain of some migraine patients, especially those
with aura, have been reported to be consistent with
CSD-related BBB disruption. Furthermore, increases in
plasma levels of matrix MMPs (especially MMP-9 and
MMP-2) in migraine patients, in the headache phase,
suggest a potential pathogenic role for MMP elevation
in both migraine attacks and WMLs [132-135]. Different
circulating MMP profiles in MwA and migraine without
aura (MwoA) may reflect pathophysiological differences
between these conditions. According to Gupta et al.
MMPs are responsible for the loosening of the intercel-
lular tight junctions and the expansion of the extracellu-
lar matrix of the BBB, consequent to the sudden
increase in cerebral blood flow during migraine attacks
[136]. In this condition, WML could result from a tran-
sient and discrete breakdown of the BBB following
sustained cerebral hyper-perfusion rather than hypo-
perfusion.

The relationship between CSD and headache
Recent electrophysiological data has provided direct evi-
dence that CSD is a powerful endogenous process which
can lead to persistent activation of nociceptors innervat-
ing the meninges. Regardless of the method of cortical
stimulation, CSD in rat visual cortices induces a two-
fold increase in meningeal nociceptor firing rates,
persisting for 30 min or more. Meningeal nociceptors
represent the first-order neurons of the trigemino-
vascular system, whose activation is involved in the initi-
ation of migraine headache [137]. CSD waves moving
slowly across the cortex can promote the releases of K+,
arachidonic acid, hydrogen ions, NO and ATP. Critical
levels of these substances are thought to cause sensi-
tization and activation of trigeminal neurons in the affer-
ent loop and, in turn, activate second-order neurons
in the trigemino-cervical complex. These second-order
neurons transmit sensory signals to the brainstem and
parasympathetic efferents, the latter projecting from the
sphenopalatine ganglion. CSD has been suggested to
promote persistent sensitization, thereby provoking the
activation of meningeal nociceptors through a mechan-
ism involving local neurogenic inflammation, with con-
tribution of mast cells, macrophages and the release of
inflammatory mediators. Local action of such nocicep-
tive mediators increases the responsiveness of meningeal
nociceptors. Recent research has provided key experi-
mental data suggesting the role of complex meningeal
immuno-vascular interactions leading to an enhance-
ment in meningeal nociceptor responses [137]. CSD also
induces increased neuronal activity of central trigemino-
vascular neurons in the spinal trigeminal nucleus (C1-2)
as measured by single-unit recording. It therefore
represents a "nociceptive stimulus" capable of activating
both peripheral and central trigemino-vascular neurons
underlying the headache phase of MwA [137].
Recent evidence suggests that central trigeminal neu-

rons are activated by CSD. Specifically, an increase
in the spontaneous discharge rate, following the induc-
tion of CSD by cortical injection of KCl was not reversed
through the injection of lignocaine into the trigem-
inal ganglion 20 min after CSD induction. Lignocaine
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injection prior to the initiation of CSD also failed to pre-
vent the subsequent development of CSD-induced in-
creases in discharge rates [138]. In these experiments,
lignocaine at a dosage of 10 μg (capable of interrupting
stimulus-induced responses to either electrical stimula-
tion of the dura mater or mechanical stimulation of
the craniofacial skin) reduced basal the discharge rate
of second-order trigeminovascular neurons. This in-
creased traffic in the second-order neurons induced
by CSD, however, was not influenced by the block-
age of conduction in first-order neurons which was
due to lignocaine injection into trigeminal ganglion
after CSD induction by cortical pinprick. A time point
of 20 min post-lignocaine injection was chosen be-
cause responses to evoked stimulation reached a mini-
mum at this time.
It has been suggested that CSD may produce a rapid

sensitization at first sensory neurons which could become
“locked-in” and, therefore, would not be influenced by a
later reduction in sensory traffic, like that induced by the
injection of lignocaine into the trigeminal ganglion [139].
An increase in discharge rate produced by CSD has also
been observed when lignocaine is injected into trigeminal
ganglion, prior to the induction of CSD. This is further
evidence that CSD does not act solely by increasing
continuous traffic in primary trigemino-vascular fibers
through a peripheral action alone, but rather exerts its ef-
fect through a mechanism intrinsic to the CNS. Accord-
ingly, pain in MwA may not always be the result of
peripheral sensory stimulation, but may arise via a central
mechanism [140].
The principal opposition to this hypothesis is based

upon the belief that mediators released as a consequence
of CSD induction cannot be sustained in the perivascu-
lar space to induce persistent trigeminal sensitization
and the subsequent hours-lasting headache because of
the glia limitans barrier (astrocyte foot processes associ-
ated with the parenchymal basal lamina surrounding the
brain and spinal cord, regulating the movement of small
molecules and cells into the brain parenchyma) and the
continuous cerebrospinal fluid (CSF) flow [141]. Add-
itionally, the delay of 20–30 min between aura and head-
ache suggests that a time lag is required for the
transduction of algesic signals beyond glia limitans via
inflammatory mediators. In support to this rebuttal,
Karatas et al. demonstrated that intense depolarization
and NMDA receptor overactivation due to CSD, opens
neuronal Pannexin1 (Panx1) mega-channels [142]. Panx1
activation induces a downstream inflammasome forma-
tion involving caspase-1 activation and the sustained re-
lease of pro-inflammatory mediators from glia limitans
such as high-mobility group box 1 (HMGB1) and IL-1β,
both of which take part in the initiation of the inflammatory
response [143-146]. A subsequent NF-kB translocation was
observed inside the cortex, involving astrocytes, forming or
abutting glia limitans, followed by the activations of both
cyclooxygenase (COX)2 and inducible NOS (iNOS). The
inhibition of Panx1 channels or HMGB1 resulted in a re-
versal of this effect.
A CSD-induced neuronal megachannel opening may

therefore promote sustained stimulus required for both
sensitization and activation of meningeal trigeminal
afferents through the maintenance of inflammatory
responses which may be involved in the subsequent
headache pain.

The effects of anti-migraine drugs on CSD
Symptomatic drugs
There is no evidence that acute anti-migraine drugs
affect CSD due to the fact that they are not able to block
or reduce aura symptoms. In one of the few studies car-
ried out on this, sumatriptan was reported to decrease
the amplitude of NO release but was seen to enhance
extracellular superoxide concentrations in both lissen-
cephalic and gyrencephalic cortices during CSD [147]. In
another study, the same drug failed to inhibit CSD and
CSD-related events [148].

Preventive treatment
Currently, numerous drugs are available for the prophy-
lactic treatment of migraine, including: tricyclic antide-
pressants, beta-blockers, calcium channel blockers and
antiepileptics. Many of these have been demonstrated to
be effective for both MwA and MwoA, suggesting that
multiple targets are involved not only in cortical areas
but also in sub-cortical structures [17,149]. Results from
studies investigating the effects of currently available or
novel drugs in animal models for CSD are reported in
Additional file 1: Table S1.

Current prophylactic drugs
Kaube and Goadsby were the first to investigate the
effectiveness of anti-migraine agents in the prevention of
CSD by measuring cortical blood flow with laser Dop-
pler flowmetry and cortical single unit activity in alpha-
chloralose-anaesthetised cats [150]. None of the tested
drugs, including dihydroergotamine (DHE), acetylsali-
cylic acid, lignocaine, metoprolol, clonazepam and val-
proate at a single dose prior to CSD induction, were able
to inhibit CSD, reduce the rate of propagation or change
the amplitude of the cortical blood flow increase. CSD,
on the other hand, was blocked by both the NMDA-R
blocker MK-801 and halothane. More recently, diverse
prophylactic drugs, which are efficacious for the prophy-
lactic treatment of MwA and MwoA, have been shown
to experimentally suppress SD susceptibility. In particu-
lar, chronic daily administration of topiramate (TPM),
valproate, propranolol, amitriptyline, and methysergide
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dose-dependently were seen to inhibit CSD frequency by
40 to 80% and increase the cathodal stimulation thresh-
old. Longer treatment durations produced stronger CSD
suppression. However, the acute administration of these
drugs was ineffective [151]. In a further study, peroral
administration of TPM, once-daily for 6 weeks, inhibited
KCl-induced CSD frequency and propagation. This ef-
fect emerged for high plasma levels of the drug, while
low levels were ineffective [152]. According to these re-
sults, prophylactic drugs should be administered daily
for at least 1 month to up 3–6 months, in order to be ef-
fective on CSD. This prolonged treatment is necessary
to reduce attack frequency and severity in migraineurs.
This is due to the fact that pharmacokinetic factors,
which determine the gradual achievement of therapeutic
tissue levels, as well as the mechanisms involved in gene
expression and ultrastructural changes, require such a
time period to be effective. In contrast, Akerman and
Goadsby demonstrated that mechanically-induced CSD
could be prevented by a single dose of topiramate 30
min after administration [153]. Similarly, Hoffmann ob-
served a suppression of CSD susceptibility within 1 hour
after a single intravenous dose of gabapentin [154]. No
data are available on the effect of high doses of chronic
oral gabapentin treatment.
Lamotrigine, a potent Na+ channel blocker and glu-

tamate receptor antagonist, has been demonstrated to
affect MwA in open-label studies but not MwoA in con-
trolled trials vs placebo or vs an active drug [155-159].
The drug has also been tested for its effect on CSD.
Chronic treatment with this drug appeared to exert a
marked suppressive effect on CSD, which is in line with
its selective action on the migraine aura [160]. Specific-
ally, lamotrigine was seen to suppress CSD by 37% and
60% at proximal and distal electrodes, respectively. Con-
versely, valproate had no effect on distal CSD, but re-
duced and slowed propagation velocity by 32% at the
proximal electrodes. In the same study, riboflavin had
no significant effect. Furthermore, frontal Fos expression
was decreased by lamotrigine and valproate, but not by
riboflavin. Single dose lamotrigine has never been tested
for its specific effects on CSD.
Conflicting results have been obtained regarding the

effects of the Ca2+ channel blocker flunarizine on CSD
events [161-166]. These discrepancies are likely due to
the different experimental designs utilized, as well as
technical limitations characteristic of earlier studies.
Moreover, this drug has never been tested on currently
used CSD models.
For many years it has been suggested that magnesium

(Mg2+) deficiency could be involved in migraine patho-
genic mechanisms by increasing neuronal excitability via
glutamate receptors. To this regard, several studies have
reported low values of Mg2+ in serum and blood cells
over the interictal periods, as well as reduced Mg2+ ion-
ized levels in more than 50% of migraine patients during
attacks [167-170]. Low brain Mg2+ levels have also been
detected in migraineurs by brain phosphorus spectros-
copy [171]. Furthermore, in MwA patients, magnesium
sulphate administration was seen to significantly relieve
pain and alleviate migraine-associated symptoms [172].
Accordingly, systemic administration of Mg2+ has been
shown to reduce CSD frequency induced by topical KCl
in rat neocortices [173].
The predictive values of CSD models, specifically for

the efficacy of drugs in migraine prophylaxis, can be fur-
ther reinforced by negative findings from the testing of
molecules demonstrated to be ineffective in migraine.
This was the case for oxcarbazepine which failed to sup-
press CSD susceptibility either acutely after a single dose
or after chronic treatment for 5 weeks [174] and carba-
mazepine tested in vitro on a CSD rat model [70]. D-
propranolol, which is anecdotally ineffective in migraine,
also did not suppress CSD, indicating an enantiomer
specificity for its efficacy [151].

Novel therapeutic options
The novel benzopyran compound tonabersat is a unique
molecule, which has been demonstrated to exert activity
as a gap-junction inhibitor in animal studies. It has been
suggested to be useful in both acute treatment and
prophylaxis of migraine [175]. However, conflicting re-
sults have been obtained in two-dose ranging, placebo-
controlled trials concerning its ability to relieve attacks
[176] and also in the two randomized clinical trials
aimed at investigating its effectiveness as a preventive
drug [177,178]. This lack of efficacy was attributed to
the slow absorption of tonabersat, suggesting that a daily
administration of higher dosages should be tested for
migraine prophylaxis. Interestingly, in another randomised,
double-blind, placebo-controlled crossover trial, 40 mg
tonabersat, administrated once daily, had a significant
preventive effect on MwA but not MwoA, compared to
placebo [179]. These findings concur with results of pre-
clinical studies where the drug was reported to markedly
reduce CSD and CSD-associated events, compared to su-
matriptan [148]. Additionally, a study using repetitive diffu-
sion weighted MR imaging (DWI) detected in vivo CSD
modulation for tonabersat and, in part, also for sumatrip-
tan [180]. Another mechanism of action of tonabersat in-
cludes its ability to inhibit gap-junction communication
between neurons and satellite glial cells in the trigeminal
ganglion [181]. This mechanism, together with its suppres-
sive effect on CSD and its good pharmacokinetic profile,
render the drug a potential candidate for preventive treat-
ment of MwA.
A recent open-labeled pilot study on the Na+/H+ ex-

changer amiloride showed that it was clinically effective
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by reducing aura and headache symptoms in 4 of 7 pa-
tients with intractable MwA. Preclinical findings from
the same study suggested that the drug blocks CSD and
inhibits trigeminal activation in in vivo migraine models,
via the acid-sensing ion channel (ASIC)1 mechanism
[182]. This mechanism could be a novel therapeutic tar-
get for MwA. ASIC3 are expressed in most trigeminal
neurons where they mediate proton stimulation of calci-
tonin gene-related peptide (CGRP) secretion [183]. The
stimulatory effects of protons (pH 5.5) on CGRP secre-
tion, due to ASIC3 activation, appear not to be limited
to peripheral trigeminal neurons, but may also involve
dural trigeminal afferents. Activation of dural trigeminal
afferents by acidic pH has been shown to be mediated
by ASICs channels (most likely ASIC3) but not TRPV1
[184]. Amiloride, due its nonselective inhibitory effect,
might influence the activation of these extracellular
proton key sensors in trigeminal neurons, therefore re-
ducing CGRP release at both peripheral and central
levels.
CGRP is the main mediator of trigeminal pain signals.

This neuropeptide acts at several steps in the cascade,
from the trigeminal nerve to the CNS. It is released from
trigeminal ganglion neurons, both peripherally at the
dura and centrally in the spinal trigeminal nucleus and
other sites within the CNS. Specifically, both CGRP and
CGRP receptors have been observed in structures impli-
cated in the pathogenesis of migraine including cortex
and meninges [185]. Activation of CGRP receptors on
terminals of primary afferent neurons facilitates trans-
mitter release on spinal neurons and increases glutamate
activation of AMPA receptors. Both effects are mediated
by cAMP-dependent CGRP mechanisms. CGRP also
regulates glia activity within the spinal cord and this ac-
tivity contributes to central sensitization [186]. Whal
et al. investigated for the effect of the CGRP competitive
inhibitor CGRP-(8–37) (10−7 M) and NO inhibitor
NOLAG (10−4 M) on dilation of pial arteries accom-
panying transient negative DC shift during KCl-induced
CSD in cats. The authors reported a 75% inhibition of
the CSD-induced dilatation during simultaneous applica-
tion of both compounds, indicating that the initial dila-
tation during CSD is mediated, at least in part, by
releases of CGRP and NO [187]. The latter two may act
as mediators of the coupling between neuronal activity
and cerebral blood flow during migraine aura. In a
further study, topical administration of 12.8 μM CGRP-
(8–37) reduced CSD-induced pial vasodilation in urethane-
anesthetized rabbits. In the same experiment, the re-
moval of the receptor antagonist from the brain surface
restored CSD-induced dilation, further supporting a
pivotal role for CGRP in determining transient arteri-
olar dilation in the first phases of CSD [188]. The above
results argue in favor of a local release of CGRP in the
meninges, where this neuropeptide may contribute to
sensitizing local sensory neurons. However, a recent in-
vestigation on cultured cortical astrocytes has shown
that CGRP possesses a modest proinflammatory action,
as does satellite glia [189].
CSD does not seem to significantly influence CGRP

outflow in jugular blood, but local increases of CGRP in
the cortex during CSD cannot be excluded [190].
Furthermore, peripheral injection of CGRP in MwA pa-
tients has triggered a typical aura in 28% of patients, and
migraine-like attacks without aura in the remaining. If
this induction of aura can be confirmed, it will indicate
that this neuropeptide has an upstream role in CSD
[191]. Recent OIS imaging findings support the release
of endogenous CGRP during CSD in rat neocortical
slices in a calcium-dependent manner [70]. Additionally,
three different CGRP receptor antagonists have shown
dose-dependent inhibitory effects on CSD events, sug-
gesting the critical role of CGRP in CSD. If so, antago-
nists targeting central CGRP receptors could be useful
as anti-migraine agents [70].
Presently, gepants, a CGRP antagonist class of mole-

cules, might offer a new non-vasoconstrictive approach
in the acute treatment of migraine. Four chemically unre-
lated CGRP receptor (CGRP-R) antagonists (olcegepant,
telcagepant, MK-3207 and BI 44370 TA) have displayed
efficacy in the treatment of migraine [192]. They have
fewer adverse effects, and act for a longer period than
triptans [193]. Their development has been slowed by a
liver toxicity when used as preventives. New CGRP-R an-
tagonists, such as BMS-927711 and BI 44370 TA, are
currently under study. The latter has shown a dose-
dependent effectiveness as an acute anti-migraine drug in
a recent trial [194]. It remains to be established if these
molecules are effective in antagonizing MwA.
Other molecules of interest
Kynurenic acid, a derivative of tryptophan metabolism,
is an endogenous NMDA-R antagonist whose cerebral
concentrations can be increased by the systemic admin-
istration of its precursor L-kynurenine. L-Kynurenine
administration suppresses CSD in adult Sprague–Dawley
rats, most likely by increasing kynurenic acid levels in
the cortex. Females are more sensitive to the suppressive
effects of L-kynurenine, further highlighting the role of
sex hormones in migraine [195]. Ketamine, is a drug pri-
marily used for the induction and maintenance of gen-
eral anesthesia (usually in combination with a sedative)
and also for sedation in intensive care, analgesia (par-
ticularly in emergency medicine), and the treatment of
bronchospasm. Like other drugs of the same class, such
as tiletamine and phencyclidine, it is also used as a rec-
reational drug.
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From a pharmacologic point of view, ketamine is an
NMDA-R antagonist which, at high fully anesthetic level
doses, binds to μ-opioid receptors type 2, without agon-
ist activity and to sigma receptors in rats [196,197]. The
drug also interacts with muscarinic receptors, monoam-
inergic receptors in descending pain pathways and
voltage-gated Ca2+ channels.
In earlier experiments, ketamine was shown to block

CSD in rats [56,198]. As for MK-801, tolerance to keta-
mine was observed after repeated injections. That is,
there was a gradual decline in their CSD blocking ef-
fects, which might have been due to some conform-
ational changes at binding site(s) in NMDA-R [199].
Ketamine has been proposed as a putative treatment
option for severe and prolonged aura. The first study on
ketamine was carried out on 11 patients with severe,
disabling auras resulting from FHM. In five of these, the
drug reproducibly reduced the severity and duration of
Figure 1 Mechanisms and structures involved in the pathogenesis of
propagation of CSD are determined by massive increases in extracellular p
changes may trigger the activations of meningeal trigeminal endings and
occur through matrix metalloproteases activation that increases vascular pe
mastcells, including proinflammatory cytokines. The pain phase is due to p
to the release of CGRP, both peripherally and centrally. CGRP is considered
molecule responsible for vasodilation consequential to neurogenic inflamm
calcium-dependent release can mediate the dilatation of cortical arterioles.
raphe magnum (NRM) are brainstem structures implicated in the processing
occurring in migraineurs, contribute to the hyper-excitability of trigeminal n
the LC are believed to be involved in cortical vasomotor instability. Thus, d
facets of the headache phases, even in MwA. CSD participates in this dysre
the responses of trigeminal neurons. In this scenario, amitriptyline may influ
the cortex and/or inhibiting high-voltage-activated (HVA) Ca2+ channels an
excitability and susceptibility to CSD via a beta-adrenergic blockage. Origin
and C. Carl Jeffe, MD, cardiologist.
the neurologic deficits, whereas in the remaining 6 patients
no benefits were observed [200]. A recent double-blind,
randomized, parallel-group, controlled study including pa-
tients with prolonged aura, reported that intranasal 25 mg
ketamine, but not intranasal 2 mg midazolam, reduced aura
severity but not duration [201]. However, ketamine has sev-
eral side effects, including hallucinations, elevated blood
pressure, dissociative anesthesia which strictly limit its use
in clinical practice.
Early anecdotal evidence indicated that propofol could

have been effective in terminating refractory migraine.
This rapidly acting water-insoluble non-barbiturate an-
esthetic agent has been recently reported to be effective on
CSD. Specifically, intraperitoneal propofol hemisuccinate
(PHS), a water-soluble prodrug of propofol, adminis-
tered 15 min prior to KCl–induced CSD on the cortex
of mice, decreased the number of CSD deflections at
doses of 120 and 200 mg/kg without any effect on CSD
migraine with aura. CSD underlies aura symptoms. Initiation and
otassium ion concentration and excitatory glutamate. CSD biochemical
trigemino-vascular system, causing the headache phase. The latter can
rmeability and also through the release of nociceptive molecules from
eripheral and central sensitization of the trigeminal system, as well as
a key mediator in migraine and, together with NO, is the main
ation. CGRP is also released from cortical slices during CSD and this
Periacqueduttal gray matter (PAG), locus coeruleus (LC), nucleus of
of trigeminal pain. Functional and structural PAG abnormalities
ociceptive pathways. Functional alteration of noradrenergic nuclei of
ysfunction in brainstem pain-inhibiting circuitry may explain many
gulation by antagonizing the suppressive effect exerted by NRM on
ence CSD by preserving 5-HT and perhaps NA neurotransmission in
d Ca2+ currents. Propranolol, on the other hand, may reduce neuronal
al brain template was designed by Patrick J. Linch, medical illustrator
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amplitude [202]. In contrast, Kudo et al. failed to dem-
onstrate any inhibitory effect of propofol on the fre-
quency of KCl-induced CSD in rats [203]. This result
may have been due to the fact that a water-insoluble
formulation of propofol widely administered as a anes-
thetic in clinical setting was used. In above mentioned
study by Dhir et al. a water-soluble, non-commercially
available prodrug PHS, was tested [202]. Considering
these contrasting findings, it should be investigated
whether metabolites produced during PHS activation,
rather than propofol per se, can mediate an inhibitory
effect on CSD. Given the varying effects of anesthetics
on CSD, future studies will have to follow uniform pro-
tocols using only anaesthetics having a minimal impact
on CSD in order to guarantee reliability and compa-
rability of the results [204].
Figure 2 Main potential targets of currently utilized preventive drugs
mediating CSD inhibition by several migraine preventive drugs are not com
is exerted by influencing ion channels and neurotransmission. In particular,
effects on CSD by blocking Na+ channels, inhibiting glutamatergic transmis
valproate, can also block L-type Ca2+ channels. Lamotrigine has a marked s
Na+ channels. Furthermore, gabapentin is able to modulate the activities o
located presynaptically at the cortical level and controls the neurotransmitt
modulation of GABA-mediated transmission might explain CSD inhibition b
interfering with NMDA receptor function and reducing glutamatergic trans
modulating NO system in the cortex. The blockage of L-type Ca2+ channel
shown). The novel benzopyran compound tonabersat seems to inhibit CSD
prophylactic treatment of MwA. It is not known if tonabersat acts on gap-j
ganglion. CSD inhibition can also be achieved by CGRP-R blockage due to
its inhibitory effects at both cortical neuronal and cerebrovascular levels.
TRPV1 receptors play an important role in modulating
trigeminal sensory processing and for this have been
proposed as potential targets for migraine treatment.
The TRPV1 receptor antagonist, A-993610, has been
tested in a model of mechanically-induced CSD but it
failed to show any effects. This lack of effect should be
confirmed for other TRPV1 receptor antagonists in fu-
ture research [205].
Finally, cannabis has been empirically used for centur-

ies for both symptomatic and prophylactic treatment of
different types of headaches including migraine. Recent
findings have demonstrated a dose-dependent suppres-
sion of CSD amplitude, duration and propagation vel-
ocity after Delta9-tetrahydrocannabinol (THC) in rat
neocortical slices, which had been antagonized by canna-
binoid CB1 agonist, WIN 55,212-2 mesylate but not by
and those under-investigation for migraine. The mechanisms
pletely understood. However, it is believed that this inhibitory action
topiramate and valproate are believed to exert their antagonizing
sion and increasing GABaergic transmission. Topiramate, but not
uppressive effect on CSD, which may be due to its selective action on
f P/Q- and, to a lesser extent, N-type high voltage-activated channels
er release, in particular that of glutamate. This effect and the
y gabapentin. Magnesium exerts an inhibitory effect on CSD by
mission as well as regulating glutamate uptake by astrocytes and
s may also account for the inhibitory effects of flunarizine on CSD (not
in experimental models and has shown some efficacy in the

unctions in CNS, as it has already been demonstrated for trigeminal
CGRP antagonists, such as olcegepant. This class of drugs might exert
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cannabinoid CB2 agonist, JWH-133 [206]. These finding
suggests that cannabinoids might have inherent thera-
peutic effects for MwA but their known side effects and
risk of dependence must be properly weighed before
cannabinoid being considered for treatment.

Conclusions
A number of mechanisms have been shown to have a
role in fostering CSD wave initiation and propagation in-
cluding: ion diffusion, membrane ionic currents, osmotic
effects, spatial buffering, neurotransmitter substances,
gap junctions, metabolic pumps, and synaptic connec-
tions (Figure 1).
In spite of this knowledge, CSD remains an enigma

necessitating further theoretical investigations.
Experimental findings to date suggest that chronic

daily administration of certain migraine prophylactic
drugs (topiramate, valproate, propranolol, amitryptiline,
and methysergide) dose-dependently suppress CSD. At
a molecular level, targets of the inhibitory effects of
antiepileptic drugs tested exert their inhibitory effects
on CSD targeting Ca2+ and Na2+ channels, as well as
glutamatergic and/or GABAergic transmissions based
on their mechanisms of action. Additionally, the anti-
epileptic drug lamotrigine has a proven suppressive
effect on CSD, which could explain its selective action
on migraine aura. Preservation of 5-HT, and maybe
even NA neurotrasmission in the cortex, could in some
way be responsible for the effects of amitryptiline on
CSD, while beta-adrenergic blockage by propranolol
might facilitate a reduction in cortical neuronal excit-
ability and thus in turn reduce susceptibility to CSD
(Figure 2).
Mechanisms of action for some novel molecules are

currently under investigation. To date, it has been found
that CGRP-R antagonists exert a dose-dependent inhibi-
tory effect on CSD. For this reason, it can be hypothe-
sized that CGRP plays a determining role in CSD and its
modulation may be effective for the preventive treat-
ment of MwA (Figure 2). Additionally, tonabersat, a
novel benzopyran compound, has been reported to exert
an inhibitory action on CSD and on neurogenic inflam-
mation in animal models of migraine. These inhibitory
actions might be an effect of the blockage of neuronal-
glial cell gap-junctions, as it has only been demonstrated
to be for the trigeminal ganglion. The most significant
anti-migraine action on the part of tonabersat seems to
derive from its inhibitory action on CSD. In fact, clinical
trials on tonabersat have shown its preventive effect on
MwA attacks but not on MwoA attacks.
Based on recent clinical findings, intranasal ketamine,

has been shown to be effective in CSD models, and
therefore it has been administered for cases of migraine
with prolonged aura, but its use is limited due to its
relevant side effects. Noteworthy, the effectiveness of keta-
mine adds to the existing evidence that glutamatergic
transmission plays a role in human aura. The proven
capacities of other molecules (i.e. amiloride) in blocking
CSD suggests that they might also have a role in preventing
MwA.
Further investigations on molecules with evidence of

targeting CSD not only would lead to a better under-
standing of the underlying mechanisms for CSD, but
also supply meaningful insight into their potential roles
in MwA, as well as other diseases, such as epilepsy, is-
chemic stroke, intracranial hemorrhage, and trauma,
where CSD is thought to be a pathogenic mechanism.
Additional file

Additional file 1: Table S1. A summary of the most relevant studies on
CSD experimental models regarding the effects of currently used drugs
and drugs under investigation for migraine prophylaxis.
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