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Single-cell pair-wise relationships
untangled by composite embedding model

Sishir Subedi1,2 and Yongjin P. Park2,3,4,5,*

SUMMARY

In multicellular organisms, cell identity and functions are primed and refined
through interactions with other surrounding cells. Here, we propose a scalable
machine learning method, termed SPRUCE, which is designed to systematically
ascertain common cell-cell communication patterns embedded in single-cell
RNA-seq data.We applied our approach to investigate tumormicroenvironments
consolidating multiple breast cancer datasets and found seven frequently
observed interaction signatures and underlying gene-gene interaction networks.
Our results implicate that a part of tumor heterogeneity, especially within the
same subtype, is better understood by differential interaction patterns rather
than the static expression of known marker genes.

INTRODUCTION

The advancement in single-cell RNA-sequencing (scRNA-seq) has emerged as a new frontier in genomics.

Quantification of multimodal omics at a single-cell resolution has made it possible to gain insights into

different aspects of cancer biology.1 One of the fundamental questions in cancer research is how cancer

cells interact with each other in a confined heterogeneous environment such as a tumor microenvironment

(TME). Studies have shown that cell-cell communication (CCC) among cell populations in the TME is crucial

in cancer growth andmetastatic processes.2 Understanding the intricacies of communication among tumor

and their interacting partner cells could aid in identifying a potential therapeutic avenue in cancer.

A significant technical challenge that stands in understanding the dynamics of cell-cell interactions in TME

is devising a systematic approach to isolate and capture interaction signals from each interacting cell pair.

A conventional approach to studying CCC involves clustering features in low-dimensional space and infer-

ring interactions between clusters of know cell types.3–5 Although these methods have uncovered

numerous signaling mechanisms that govern cellular differentiation and pathogenesis, they assume

each cluster, annotated using a limited number of marker genes, represents a cell type; hence all the

cells within a cluster interact in the same manner. These methods do not account for intracluster cellular

heterogeneity. Cells within a cell type may exist in multiple subtypes/states and manifest heterogeneous

interaction patterns based on the type and state of the interacting partner cell, which is critical in under-

standing cancer progression.2,6 In addition, interaction among cells in different contexts, such as disease

states, are studied separately which loses context-specific variability information and are repetitive and

computationally expensive.

Recent studies have addressed these challenges and developed methods to capture the diversity of cell

interactions within the same cluster. Tensor-cell2cell7 uses tensor-based dimensionality reduction tech-

niques to infer context-driven CCC pattern. scTensor8 also uses a tensor decomposition algorithm to infer

many-to-many cell pair relationships as a hypergraph. These methods rely on a priori knowledge of cell

type and aggregating cells to calculate communication scores based on the mean expression of ligand-re-

ceptor (LR) genes. SoptSC9 calculates signaling probability between two cells based on pathway-specific

LR and target genes and addresses heterogeneity of cells within the same cluster. However, the method

requires a user-defined comprehensive list of pathway genes and does not scale to cohort-level studies.

Here, we present a novel computational approach termed SPRUCE, Single-cell Pair-wise Relationship Un-

tangled by Composite Embedding, to analyze tens of millions of cell pairs in a scalable way. Adopting

known ligand and receptor protein-protein interactions, we asked how and why cell pairs are localized

in the proximity of latent topic space and highlighted common patterns repeatedly observed in tumor
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microenvironments data. SPRUCE is based on an embedded topic model (ETM), a generative deep

learning method built on variational autoencoder architecture, and represents single-cell vector data in

low-dimension topic space with an interpretable topic-specific gene expression dictionary matrix. It has

been successfully implemented in natural language processing to extract meaningful topics representing

large-scale documents.10 A recent study, scETM, showed that ETM-based techniques efficiently capture

essential biological signals from sparse and heterogeneous single-cell data.11 The key contribution of

our approach is the unbiased identification of interpretable cell subtype/state across multiple datasets

by characterizing LR genes-driven patterns of cell-cell interactions. Existing graph-based single-cell anal-

ysis methods often define cell-cell interaction modules as densely-connected components in a graph (an

adjacency matrix). Our SPRUCE model considers cell-cell interaction patterns as a stream of edges, or a

giant incidence matrix (edge by vertex or other vertex property).

RESULTS

Overview of SPRUCE model training in breast cancer study

We combined existing breast cancer datasets12,13 and cancer-specific immune cell data14 and constructed

a comprehensive single-cell catalog for an unbiased breast cancer study, yielding a data matrix consisting

of 20,288 genes and 155,913 cells. We first mapped cells frommultiple datasets onto a common latent topic

space (K = 50) and harmonized them based on variational autoencoder-based topic modeling, not posing

additional assumptions, such as a selection bias imposed by top marker genes. Based on cosine similarity

in the latent topic space between cells, we then constructed cell-cell interaction networks and performed

stratified sampling so that topic-topic relationships are similarly represented in the subsequent steps in

SPRUCE training. For each of these 25M+ cell pairs, we extracted gene expressions of the known 648 ligand

and 672 receptor proteins15 and used them as feature vectors for SPRUCE model training.

Multinomial probabilistic topic modeling identified 50 cell topics across 11 known cell types

We implemented a Bayesian deep learning approach to estimate embedded topic models across 155,913

cells with 50 latent dimensions (Figure 1A). We found each cell topic corresponds to a group of an average

of 3118 cells (with a SD ofG 5,987) (Figure 1B). Among 50 topics, 32 of them contained more than 100 cells.

The highest number of cells (24% of the dataset) was assigned to topic 37, in which 96% of cells were pre-

viously identified as immune cells (T and B cells). 98% of cancer cells from the dataset were assigned to 13

cell topics. The cancer cell proportion in 9 of 13 topics was greater than 95%. The latent cell topics with cell

type annotated were visualized with UMAP, showing distinct clusters for each topic where the majority of

cells belong to one of themajor types of cells in the dataset (Figure 1C). These clusters show a unique set of

top genes associated with each topic identified using the optimized gene loading matrix from the model

(Figure 1D). We further confirmed concordance with the previous analysis conducted in original papers us-

ing cell type lineage canonical markers (Figure 1F). The estimated cell topic proportions show that the resi-

dent cell types have similar topic proportions. However, cancer cells have a different mixture of topic pro-

portions which shows that the model identified many distinct topics of cancer cells (Figure 1E). We also

tried a different number of cell topics from 10, 25, and 50 and decided to use the 50-topic model because

major cell types, especially cancer cells, showed well-separated distinct clusters (Figures S1A and S1B).

Seven robust TME-specific interaction signatures were found in 25 million cell-cell pairs

We constructed LR gene expression data from 155,913 cells to construct a set of 24,790,167 cell pairs and

estimated embedded interaction topic models with 25 latent dimensions (Figures 2A and 2B). The interac-

tion topic model recapitulates two types of cell-cell communication mechanisms. First, the model captures

interactions between differentially expressed ligand and receptor genes in different cell types. Second, the

model considers ligand and receptor genes correlated within each cell type but may not be differentially

expressed. Among 25 interaction topics representing 25 million cell pairs, seven topics (2, 4, 7, 10, 18, 22,

and 24) represented 55% of the total cell pair interactions, with each topic containing 3% + cell pairs (Fig-

ure 2C). The other 18 interaction topics, each with 2% of the total cell pair interactions embedded baseline

interaction signal. The most represented interaction topic was topic 22, consisting of 12% of the total cell

pair interactions.

The model estimated the LR gene loadings in each interaction topic that described the relative contribu-

tion of each gene. These loadings can be ranked to identify biologically interpretable topic-specific top

genes in each interaction topic (Figure 2D). Topics 22 and 24 captured immune-related interactions. Topic
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22 was labeled a lymphoid topic because top receptor genes included the known subunit of T-Cell Recep-

tor Complex CD3D and killer cell lectin-like receptors KLRC1, KLRC2, and KLRD1. The top ligands in this

topic areHLA-E,CLEC2B, andCLEC2DC, which are essential knownmodulators in cytotoxic T cells.16 Simi-

larly, topic 24 was labeled a myeloid topic as top genes in this topic showed enrichment of LR genes ex-

pressed by myeloid progenitors, for example - receptors such as CD68, TREM2, and CR1, and ligands

such as CCL23, CCL18, CCL13, and C1QA.17

Topics 10 and 7 representedmany oncogenesmutated in cancer. For instance, Topic 10 was cancer-growth

associated, and genes that play a role in cancer cell survival and growth are enriched in this topic. The top

receptors in this topic are growth factor receptors such as ERBB2, cell proliferation and growth signaling

receptor FZD10, and immune inhibiting signaling receptor ADORA2A.18,19 Similarly, Topic 7 was a can-

cer-metastasis topic and genes such as NTRK3, known to increase the metastatic potential of cancer cells,

GRPR, which promotes EMT, and UNC5A, a known regulator of cancer plasticity, are enriched in this

topic.20–22

Moreover, Topic 18 was stroma-specific and represented genes that play an integral role in regulating the

extracellular matrix (ECM) of the tumor immune microenvironment. These genes are highly expressed in

cancer-associated fibroblast (CAF) and perivascular-like (PVL) cells. The top ligands in these topics are

COL1A1, COL1A2, COL3A1, and MMP13, and the top receptors are ITGA11 and SCARA5.23,24 Similarly,

Topic 2 is enriched with genes highly expressed in endothelial cells, thus labeled an endothelial topic.

Here, ligand proteins highly expressed in endothelial cells, such as CD34, ANGPT2, and NID2 and recep-

tors such as APLNR and ESAM are enriched.25 Likewise, Topic 4 enriches genes involved in TME regulation

processes and is thought to facilitate cancer progression and growth. The top genes in this topic include

KISS1R/KISS1, which play a complex role in both restricting and promoting cancer cell survival, IL20RB,

which promotes immunosuppressive microenvironment, and MMP24, which negatively regulates the

aggressiveness of cancer cells.26

The top LR genes in the major interaction topics show enrichment of different cell type-specific functional

interactions. To confirm that each interaction topic captured cell type-specific CCC, we took a closer look at

the distribution of cell types of target cells in each interaction topic for all the cells in the dataset. We found

that the functional role of enriched top LR genes in each interaction topic matched with the dominant cell

type of target cells in that topic (Figure 2E). For example, in the cancer-growth associated, on average, 68%

of target cells for all cell types were cancer cells. Similarly, 49% of target cells in the stroma topic were CAF/

PVL cells, and myeloid and T cells comprised 49% and 38% of target cells in the myeloid and lymphoid

topics, respectively. For the endothelial topic, the dominant target cell type stemmed from endothelial

cells, comprising 18%. In contrast, for the TME-regulation topic, both epithelial and plasms cells were

dominant cells consisting of 20% and 22%, respectively.

In addition, the cell type-specific enrichment of interaction topics was further corroborated by the distribu-

tion of interaction topics in each cell type. Cancer cells with epithelial, plasma, and B cells showed hetero-

geneous interaction patterns compared to myeloid, T, endothelial, CAF, and PVL cell types (Figure 2F).

For cancer cells, the majority of interactions belonged to the cancer-growth and cancer-metastasis topics,

where many of the top genes were oncogenes. Here, 55% of the total interactions were incident with a

cancer-growth process, and 17% belonged to the cancer-metastasis topic, whereas the other

Figure 1. Probabilistic topic model identifies cell topics for resident cell types and cancer subtypes

(A) Given an integrated single-cell data from breast cancer tumor microenvironment, SPRUCE cell topic model learns the latent topic representation of the

cells and generates biologically interpretable topic embeddings separately over the genes.

(B) Distribution of cell types highlighting the total number of cells in each cell topic. Relative proportion of cell types in each cell topic. Cell topic is assigned

to each cell based on the highest score.

(C) UMAP visualization of 50 cell topics representing an integrated dataset consisting of 155,913 cells. Each dot is a single cell, and colors represent the

corresponding cell type clustered according to k-means (n = 50) algorithm on cell topic proportions and annotated using the majority voting rule with

annotation from previous studies and SingleR.

(D) Heatmap of top 25 gene loadings associated with each cell topic with the total number of cells >100. Cell topics (y axis) and genes (x axis) are ordered

according to hierarchical clustering (optimal leaf ordering). The cell type and topic are shown on the right y axis, while the top 3 genes for each cell topic are

depicted on the left y axis.

(E) Relative proportion of cell topics from a sample(n = 50 cells per topic) of cells assigned to cell type - cell topic pairs.

(F) Log normalized (total count to 10,000 reads per cell) expression of markers genes for cell types- EPCAM for epithelial, CD3D for T-cells, CD68 for myeloid

cells, MS4A1 for B-cells, PECAM1 for endothelial cells, and PDGFRB for CAF/PVL cells.
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five remaining topics consisted of 3–8% of interactions. Among the non-malignant cell types, the

dominant interaction topic for myeloid cells was the myeloid interaction topic, and for T-cells, it was the

lymphoid interaction topic. Here, 88% of myeloid cell and 65% of T cell interactions were found to be in

respective interaction topics. Similarly, 83% of cell interactions with endothelial cells belonged to the endo-

thelial topic, and 77% and 53% of interactions with CAF and PVL cells, respectively, were the stroma topic.

In contrast, plasma, B, and epithelial cells showed a higher mixture of non-immune associated interaction

topics.

Interaction topics provide a way to understand breast cancer heterogeneity

Next, we investigated the heterogeneity of breast cancer cells based on the unbiased transcriptomic signa-

ture captured by the cell topic model while relating the cell topics to the interaction topics characterized by

the SPRUCE analysis. The interaction patterns of 25,835 cancer cells manifested all the patterns of interac-

tions (Figure 3B). The cell topic model identified 13 cell topics for cancer cells that demonstrate a distinct

pattern of interactions with their target cells (Figure 3C). As expected, the cancer growth topic was themost

dominant (>57%) among 7 of 13 cell topics. For instance, 75%, 70%, and 68% of interactions for cancer cells

in cell topics 24, 48, and 2 were driven by cancer-growth-related interactions. However, two cell topics were

found more frequently interacting with non-cancer cells. The 66% of interactions involving (cell) Topic 9

were of stroma edges, and 60% of edges emanating from Topic 34 were assigned to endothelial interac-

tions. Such a striking interaction heterogeneity was rarely observed in other cell types, such as T-cells,

myeloid, endothelial, CAF, and PVL cell types, as they mostly interact within the same cell types. B-cells

and epithelial cells, however, showed substantial variability of interaction patterns across cell topics.

Breast cancer cells are classified into subtypes based on the genomics and pathology of the disease, and

different subtypes often result in markedly different clinical outcomes.27 All three different subtypes of can-

cer cells indeed exhibit diverse interaction patterns where TNBC (triple-negative breast cancer) cells were

more heterogeneous compared to HER2+ and ER + subtypes (Figure 3D). Here, more than 85% of interac-

tions of the HER2+ subtype consisted of cancer-related topics, such as 82% for the cancer-growth and 5%

for cancer metastasis topics. Similarly, for the ER + subtype, more than 80% of interactions were cancer-

related: 61% for the cancer-growth and 20% for the cancer-metastasis topics. In contrast, TNBC subtype

cells were more diverse in interactions, with 42% for cancer growth, 15% for the cancer-metastasis, 15%

for stroma, and 10% for myeloid topics.

In addition, our approach identified a specific group of cells (cell topics) within these cancer subtypes that

demonstrate topic-specific interaction patterns. For instance, TNBC cell topics show higher heterogeneity

in interaction patterns at the cell topic level compared to the ER+ and HER2+ subtypes. The distribution of

interaction patterns among cell topics is correlated with the expression pattern of LR genes enriched in

each interaction topic. For example, TNBC cancer cells in cell topic 9 show higher expression of LR genes

enriched in the myeloid interaction topic. In contrast, the cancer-growth LR genes are dominant among

TNBC cancer cells in cell topic 24 (Figure 3E).

Interaction topics uncover underlying cancer-subtype-specific gene-gene interaction

networks

Our approach also reveals topic-specific interaction patterns in the model parameter matrix (Figure 4), with

which gene-gene correlation networks can be estimated (ligand versus receptor). For instance, gene net-

works in the cancer metastasis topic (Figure 4A, burgundy strips; Figure 4B, the first panel) consisted of a

group of structural genes CLDN4, LSR, and DSG2 involved in cell transformation and migration and

Figure 2. SPRUCE model overview and the common interaction patterns identified by the model

(A) UMAP-based representation of cell pairing method where source cell is paired with four different target cells from each cell topic.

(B) Given a cell pair LR gene expression data as input, SPRUCE model transforms and aggregates interaction-driven LR data space and feeds into the neural

network. The encoder learns the latent topic representation of the interaction between cells using the mixture of experts approach from ligand and receptor

encoders. The decoder generates biologically interpretable topic embeddings separately over the ligand and receptor genes.

(C) The distribution of �25 million cell pair interactions over 25 interaction topics shows seven major interaction patterns.

(D) Heatmap of top 10 gene loadings associated with seven interaction topics. Interaction topics (x axis) and LR genes (y axis) are ordered according to

hierarchical clustering (optimal leaf ordering).

(E) Relative proportion of target cell type in all the source cell types associated with the major interaction patterns. Each row is source cell type (y axis) and

target cell type proportions (x axis).

(F) Enrichment of interaction patterns among cell types.
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Figure 3. Heterogeneity of cancer cells revealed by the cell-topic specific interaction patterns

(A) Representation of interaction topics of cancer cells with surrounding cell types in the TME.

(B) Structure plot showing the variability of interaction topic proportion estimates among 25,835 cancer cells in the dataset. Proportion of seven interaction

topics (y axis) and cancer cell pair (x axis) with one representative target cell among 159 source-target cell pairs are clustered using k-means(n = 7) clustering

algorithm using interaction topic proportions.
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signaling pathways GPR37, CD151, and CD63 that are active in proliferation and migration, including

epithelial-mesenchymal transition.28,29 In the cancer growth topic (Figure 4A, green strips; Figure 4B,

the second panel), the resulting gene network primarily consisted of known oncogenes, such as PTPRF,

FGFR1, ERBB2, and TNFRSF1A30 and developmental genes, such as LAMP1, ITGB1, RPSA, CANX, AT-

P6AP2, and MCFD2.31 It is worth noting that the interaction networks adjacent to cancer cells generally

include known cancer-related genes and other genes involved in cellular developmental process. Our anal-

ysis put them together in the same network modules, implicating a potential role of these interactions for

cancer cells to hijack a normal cellular process. Similarly, immune-modulatory receptors primarily ex-

pressed in myeloid lineage cells (Figure 4A, dark green; Figure 4B, the third panel) TREM2, CSF1R,

CSF2R, LILR, and IL3R and signaling pathways LTBR and TYROBP required for the activation of myeloid

cells are associated withmyeloid-associated interaction topic. This topic captures the interactions between

cancer cells and myeloid cell progenitors such as tumor-associated macrophages (TAM) in the tumor

microenvironment, suppressing T cells and facilitating tumor growth.32

In the lymphoid topic (Figure 4B, the fourth panel), T cell receptor (TCR) complex (CD3D, CD3G, CD2,

and CD247) and TCR signaling pathway genes (PTPRC, CD45, and CD53) are highly expressed both in

cancer and surrounding immune cells.33 Other chemokine receptor genes, such as CXCR3 and

CXCR4, were also found highly co-activated in this interaction topic, corroborating the pivotal role of

crosstalk between T cells and cancer cells in promoting cancer growth, immune evasion, and metas-

tasis.34 Of interest, other killer-cell lectin-like receptors, which also co-occurred in this module, namely

KLRC1, KLRD1, and KLRF1, are known to restrict T-cell’s antitumor immunity.35 The stroma topic (Fig-

ure 4A, brown strips; Figure 4B, the first panel of the second row) represented gene networks that cap-

ture the interaction of cancer cells with surrounding cells that promote its vascularization. It consisted of

NOTCH3, AVPR1A, MYLK and integrin-mediated ITGA1, ITGA5, ITGA7, and ITGB1 signaling pathways

that play vital roles in tumor cell adhesion and progression.36 The genes MCAM, ENPEP, EDNRA, and

DCBLD2 that promote blood vessel formation and enhance tumorigenesis are enriched in this topic.37

Similarly, genes enriched in the endothelial topic recapitulate interactions of cancer cells in developing

tumor vascular networks, especially in conjunction with endothelial cells. Previously known that PECAM1,

CALCR, ADGRL4, and CD93 genes are predominantly expressed in endothelial cells and regulate angio-

genesis in tumor cells.38 In addition, TME-regulation associated primarily consisted of genes mixture of

endothelial-associated and stroma-associated topics with enrichment of distinct genes known to control

tumor growth and promote stemness of cancer cells in microenvironment such as KCNN4, IL6ST, and

CD1B.39 Furthermore, we observed a significant overlap between the gene-gene interactions derived

from the interaction topic model and the gene network in the STRING database.40 Here, 51%, 40%,

18%, 25%, 13%, 12%, and 13% of ligand-receptor pairs (Z score>4.0 and Pearson correlation coefficient

>3.0) matched with gene pairs in the STRING database (combined score >0.3) from lymphoid, myeloid,

stroma, endothelial, TME regulation, cancer metastasis, and cancer growth topics, respectively

(Figure S3).

DISCUSSION

No single cell can exist alone in human tissues. We propose a novel machine learning framework that sys-

tematically dissects tens of millions of cell-cell pairs and uncovers common patterns of how cells talk to

each other concerning cell surface ligand-receptor protein interactions. In particular, our analysis focused

on finding commonly used communication channels in breast cancer progression and metastasis by rean-

alyzing state-of-the-art single-cell genomics datasets. Our approach, built on probabilistic topic modeling

and variational autoencoder model, specifically demonstrated that a part of cancer heterogeneity could be

understood in diverse and context-specific interaction partners of cancer cells. We found that many ligand-

receptor interactions can occur in a subtype-specific manner, although cells are largely clustered as cancer

cells in conventional single-cell analysis. Along the line, our results suggest that cell types and states are

Figure 3. Continued

(C) The proportion of interaction topics of cancer and non-malignant cells associated with cell topics. Boxplots show the distribution of interaction topic

proportions for each interaction topic across all cell topics.

(D) The proportion of interaction topics of cancer subtypes associated with cell topics. Boxplots depict the estimated interaction topic proportions across all

cell topics.

(E) Log normalized (total count to 10,000 reads per cell) expression of LR genes from all the cells associated with respective cancer subtype and cell topic. The

genes (y axis) are top 25 LR genes from seven interaction topics with expression values >0.05.
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better understood, and the definitions of cell types can be refined while considering cell-cell communica-

tion patterns.

Our proposed approach generalizes existing bioinformatics methods and does not rely on prescribed cell-

type annotations/clustering results, which may introduce unwanted biases in downstream analysis. More-

over, if cells within a cluster are not homogeneous as anticipated, a clustering-based cell-cell commutation

method can easily result in confounded correlation statistics, clearly violating necessary assumptions, such

as independent and identification distributed expression values. Here, we differently formulate cell-cell

communications analysis from an edge’s perspective, whereby a single edge (interaction) is a data point,

and the feature vector can be engineered by exploiting the information of both endpoints of the edge

(ligand and rector expression values). Such a novel formulation is better suited for the analysis of large-

scale single-cell data and also easily extends to principled data integration strategies. For instance, if

cell-cell interaction pairs were already constructed by spatial transcriptomics data, we can easily construct

feature vectors by combining two gene expression vectors (one from the source and the other from target

cells). For themultiomics data integration tasks, we can concatenatemultiple datamodalities to investigate

the co-occurrence of multimodal expressions, such as DNA accessibility, histone modifications, and

metabolomics.

Limitations of the study

We acknowledge that our SPRUCE approach relies on several specialized modeling assumptions. One of

which is that we assume that known ligand-receptor protein-protein interaction networks serve as a super-

set/backbone of topic-specific interaction networks. Considering that most protein-protein interactions

were experimentally discovered in vitro by error-prone high-throughput methods, there is room for im-

provements in terms of the precision and specificity of the interaction analysis method. Here, we only

focused on immediate surface protein interactions. However, establishing causal effects on the down-

stream genes emanating from surface protein singling pathways can further enrich our understanding of

disease etiology.
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Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Material availability

B Data and code availability
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B Data preprocessing

B Topic modelling

B Notations

B Cell-level probabilistic topic modelling

B Bayesian autoencoder model for topic modelling
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B Celltype labelling by propagating within topic clusters

B Cell-cell interaction topic modelling

B Interaction topic model

B Topic-specific gene co-expression network

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

Figure 4. Gene network derived from the interaction topics

(A) Circular chord diagram of the interaction topic-gene network representing significantly (Z score >4.0) enriched LR gene loadings in each interaction topic.

The edge between LR genes and interaction topics shows the occurrence of a gene in LR pairing and if a gene is unique to or common among different

interaction topics. The genes with (*) symbol are among the top 10 LR genes based on loadings estimated by the interaction topic model.

(B) Ligand-receptor bipartite network for each interaction topics depicting significantly (Z score >4.0) enriched LR genes. The edge in the graphs represents

the magnitude of Pearson correlation coefficients. The top 100 LR edges in each interaction topic with a correlation coefficient >3.0 are selected.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Yongjin Park (ypp@stat.ubc.ca or yongjin.park@ubc.ca).

Material availability

The study did not generate new unique reagents.

Data and code availability

We share the full working directory of model estimation and statistical analysis via the public repository:

https://doi.org/10.5281/zenodo.7508044. We also made our source code and datasets available in the

public repository: https://github.com/causalpathlab/spruceTopic.

METHOD DETAILS

Data preprocessing

We constructed a dataset to represent an immune-enriched breast cancer microenvironment by combining

cancer cells with immune cells and healthy cells from three recent breast cancer-related studies. The breast

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Single-cell breast cancer Data #1 Wu et al. (2021)12 GSE176078

Single-cell breast cancer Data Bhat-Nakshatri et al. (2021)13 GSE164898

Pan-cancer tumor-infiltrating T cells Zheng et al. (2021)14 GSE156728

Software and algorithms

Scanpy Scanpy Development Team https://scanpy.readthedocs.io/en/stable/

PyTorch PyTorch Development Team https://pytorch.org/

Numpy Python package repository (PIP) https://numpy.org/

Scipy Python package repository (PIP) https://scipy.org/

Pandas Python package repository (PIP) https://pandas.pydata.org/

Igraph Python package repository (PIP) https://igraph.org/

Seaborn Python package repository (PIP) https://seaborn.pydata.org/

ANNOY (Approximate Nearest

Neighbors Oh Yeah)

Github repository (Spotify) https://github.com/spotify/annoy

Celldex Aran et al. (2019)41 http://bioconductor.org/packages/

release/data/experiment/html/celldex.html

SingleR Aran et al. (2019)41 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

SingleCellExperiment Amezquita et al. (2020)42 https://bioconductor.org/packages/

release/bioc/html/SingleCellExperiment.html

Ggplot2 Hadley Wickham43 https://ggplot2.tidyverse.org/

Pheatmap Raivo Kolde https://cran.r-project.org/web/

packages/pheatmap/index.html

Circlize Zuguang Gu https://cran.r-project.org/web/

packages/circlize/

bipartite Carsten F. Dormann https://cran.r-project.org/web/

packages/bipartite/index.html

SPRUCE topic This work https://doi.org/10.5281/zenodo.7508044
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cancer dataset consists of 100k cells from a single-cell atlas of human breast cancers.12 The source of the

normal dataset consisting 48k cells is a single-cell atlas of the healthy breast tissues.13 The third dataset

composed of immune cells is 6k subset of breast cancer CD4 and CD8 T-cells from a pan-cancer atlas of

tumour-infiltrating T cells profiled across 21 cancer types and 316 donors.14 The total number of cells in

the combined dataset is 155,913. We filtered out genes detected in less than three cells along with mito-

chondrial and spike genes, leading to 20,265 genes in the final dataset.

Topic modelling

SPRUCE takes a topic modelling approach to identify cell subtypes/states and define their interaction

pattern based on cell-cell communication in the tumour microenvironment (TME). The model consists of

two types of autoencoder-based topic models, each with a pair of encoder-decoder networks. The first

model takes gene expression single-cell data as input and models cell topic and topic-specific gene load-

ings. Next, we assigned a cell topic to each cell based on the highest topic proportion from the cell topic

model. The topic assignment was used to construct a set of target cells for each cell such that one cell is

paired with the five nearest target cells from each topic. The LR gene expression data from each cell

pair were transformed into each other’s space by a binary cell-interaction database–CellTalkDB. The trans-

formed ligand and receptor data were treated as two independent modules with separate encoder and

decoder modules in the model. The latent variables with encoded information from two modules were

combined by taking their average to obtain a final interaction topic variables as a mixture of experts44

from the ligand and receptor latent space. The second ETM, the interaction topic model, uses transformed

LR data from source-target cell pairs as input and models interaction topic for each cell pair with topic-spe-

cific LR gene loadings.

Notations

The following notation will be used to describe the data and model. Notations for gene expression and

interaction data:

� i˛ ½N�: an integer index for a cell i of total N cells

� g˛ ½G�: an integer index for a gene g of total G genes

� Xig: gene expression (non-negative) count data measured on a gene g in a cell i

Notations for the cell topic model:

� k; t˛ ½K �: an index for a topic t of total K topics

� qit : cell topic proportion of i th cell for t th topic (qit > 0 and
PK

t = 1qit = 1 for all i)

� btg(cell topic model): gene proportion of t th cell topic for g th gene

Notations for the interaction topic model:

� e: an index for a cell pair, e.g., e = ði; jÞ for a cell i and j.

� Xli: expression count of a ligand protein l in a celli

� Xri: expression count of a receptor protein r in a celli

� Yel: transformed and aggregated count data of a ligand protein l in a cell paire

� Yer : transformed and aggregated count data of a receptor protein r in a cell paire

� qet : interaction topic proportion of e th cell pair for t th topic

� btg (interaction topic model): gene proportion of t th interaction topic for a gene g, which can be

either a ligand protein/gene l or a receptor protein/gene r.

Cell-level probabilistic topic modelling

Firstly, we designed a topic model for cell type annotations, treating cells as documents and genes as vo-

cabulary, built on the Embedded Topic Model framework.10 ETM generally outperforms traditional topic
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modeling approaches, such as Latent Dirichlet Allocation,45 relying on tailored variational inference45 and

collapsed Gibbs sampling inference,46 and fits naturally in a variation autoencoder (VAE) framework47 while

providing a scalable GPU-based inference algorithm.

Letting xi = ðXi1;.;XiGÞ be a vector of gene expression counts onG genes for each cell i, a topic modeling

assumes that xi were generated by multinomial distribution parameterized by a normalized gene expres-

sion frequency vector, namely ri = ðri1;.;riGÞ, achieving a scale-invariant property across different cells,

batches, and datasets:

pðxijriÞf
Y
g

r
Xig

ig

In the original ETM formulation,10 r is directly modelled by transforming each cell’s topic proportion qit in a

topic space to a gene space as a linear combination of topic-specific probabilities, rig =
P
t
qitbtg, where btg

captures a topic t specific frequency of a gene g. The latent cell topic proportion qit is drawn from Logistic

Normal distribution with an auxiliary Gaussian vector zi = ðZi1;.;ZiK Þ:

Assuming zi � Nð0; IÞa priori, the encoder network will first generate

zi )miðxiÞ +
ffiffiffiffiffiffiffiffiffiffiffiffi
niðxiÞ

p
+ε

where the mean m and variance n functions were modelled by deep neural networks, taking expression da-

taxi , and the stochastic vector were simply generated by Nð0; 1Þ independently. We can then project the

Gaussian latent states into the desired topic space:

qit = expðZitÞ
,XK

k = 1

expðZikÞ:

Since a Gaussian random variable can be generated by a reparameterization trick, which then separates

model parameters from stochastic variables, the latent variables q and model parameters b are seamlessly

integrated in a neural network model; they can be optimized by back-propagation algorithm48 imple-

mented in PyTorch library (https://pytorch.org/).

Bayesian autoencoder model for topic modelling

Instead of directly modelling r, we introduce the Dirichlet prior on the gene frequency and parameterize

the Dirichlet as a generalized linear model(GLM) with linear combinations of topic-specific probabilities:

pðrijliÞ =

G

 P
g
lig

!
Q
g
G
�
lig
� Y

g˛ ½G�
r
lig � 1
ig

where Gð ,Þ is the Euler’s gamma function,

lig = exp

 XK
t = 1

qit
�
btg + bg

�!
;

and

btg � Nð0; IÞ:
Exploiting the conjugacy between the multinomial and Dirichlet distributions, we can integrate out the un-

known parameters r. Then, the marginal likelihood of a single cell dataxi then becomes:

pðxij , Þ =

G

 P
g
lig

!
P
g
G
�
lig
�

G

 P
g
lig +Xig

!
P
g
G
�
lig +Xig

� ;

where Gð ,Þ is the Euler’s gamma function.
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Variational inference algorithm

We resolved the posterior distribution of latent variables and model parameters, pðfqig; fbgtg
���fxigÞ, by

finding variational/approximating distributions qðqijmðxiÞ; nðxiÞÞ and qðbtgÞ. We defined qðqj ,Þ as before us-
ing deep neural networks for Logistic Normal distributions. For the topic-specific gene matrix, btg, we used

mean-field approximation: qðbtgÞ � N ðmb
tg;n

b
tgÞ. To minimize the Kullback-Leibler (KL) divergence between

the true posterior and the approximate posterior, we maximize the evidence lower bound (ELBO) of the

log-likelihood L:

L=
D
XN
i = 1

E
�
log pðxijqi ;bÞ

�
+
XN
i = 1

E

�
log

pðziÞ
qðzij,Þ

	
+
X
tg

E

"
log

p
�
btg

�
q
�
btg

��,�
#
;

where the expectations were taken with respect to the variational distribution. The expectation operators

can be well-approximated by summing over different zi and b values sampled by the reparameterization

tricks.47

The encoder for the cell topic model consisted of a 4-layered neural network with two hidden

layers of size 200 and two with sizes 100 and 50. We used an Adam optimizer49 with a learning

rate 0.01 and optimized the model for convergence for 1000 epochs with a minibatch size of 128

(Figure S1D). The cell topics are almost ubiquitously present across cells from different datasets

(Figures S1C and S1E).

Celltype labelling by propagating within topic clusters

We generated a reference cell-type label for each cell in the dataset by combining the annotations from

previous studies and cell type predictions from single-cell annotation tools. The cell annotations for breast

cancer cells and immune cells from pan-cancer dataset were obtained from the previous studies.12,14 For

the annotation of normal breast cells, we used the reference-based cell type identification method SingleR

with a tumour microenvironment reference dataset fromCHETAH.50,51 Next, we applied our proposed cell-

topic model to an integrated dataset consisting of 155,913 cells and 20,265 genes. After unsupervised

training of the model, all cells were mapped in the reduced latent cell topic space. We performed clus-

tering on the reduced latent dimension using k-means algorithm (with k matched to the number of topics

in cell topic model). Then each cluster was mapped to cell type using the majority rule on the reference cell

type labels of cells assigned to the respective cluster, followed by relabeling of cells if needed for the down-

stream analyses.

Cell-cell interaction topic modelling

Construction of feature vectors for cell-cell interaction analysis

We assigned a cell topic to each cell in the dataset based on the highest proportion value from a vector of

topic proportions inferred by the trained model i.e. topic assignment ti for cell i is argmaxðqi1; qi2;.; qiK Þ
where qit is cell topic proportion of i th cell for t th topic. Next, a set of target cells was constructed for

each cell using the topic assignment from the cell topic model. For each cell, the five closest target cells

from each topic were calculated using python package52 with angular distance on the cell topic space.

An annoy model was created for each topic with a total cell count greater than 100 (32 out of 50 cell topics).

We generated 159 target cell pairs for each cell - 32 topics and 5 target cells from each topic, excluding a

self-target cell. Finally, a cell pair data matrix was constructed with 155,913 source cells times 159 target

cells, consisting of 24,790,167 unique cell pairs.

The raw LR gene expression data from each cell pair is transformed into each other’s space using a binary

ligand-receptor interaction matrix generated from a publicly available database–CellTalkDB.15 Here, let A

be a l x r binary matrix with its entries as Alr = 1 if and only if a ligand l binds with a receptor protein r in the

cell interaction database; otherwise, Alr = 0. For each cell pair ehði; jÞ, we aggregated expression counts

for ligand and receptor proteins included in the A matrix by the reciprocal cell-cell interactions between i

and j. For the activity for a receptor r ˛ ½R�, we combined expression values emanating from relevant ligand

proteins/genes:

Y ðRÞ
er =

X
l˛ ligands

�
XilAlrXjr + XjlAlrXir

�
:

ll
OPEN ACCESS

16 iScience 26, 106025, February 17, 2023

iScience
Article



Similarly, for a ligand l˛ L, we aggregated the values on the receptor side:

Y ðLÞ
el =

X
r ˛ receptors

�
XilAlrXjr + XjlAlrXir

�
:

Interaction topic model

The interaction topic model uses transformed ligand and receptor (LR) gene expression data from source-

target cell pairs to model the interaction topic for each cell pair and identify LR genes enriched in each

interaction topic. The model follows the same architecture of the cell topic model, where each cell pair

is considered a document and LR genes in the cell pair as words. We define the joint likelihood of the inter-

action topic model as product of two likelihood functions, each derived from the ligand and receptor topic

models:

p
�
yðLÞe

��rðLÞ
e

�
p
�
yðRÞe

��rðRÞ
e

�
=
Y
l˛ ½L�

r
Yel
el

Y
r ˛ ½R�

rYerer :

The decoder (data-generating) model for each side was defined as the same Multinomial-Dirichlet hierar-

chical model as the cell topic model. In order to map the ligand and receptor activities to a shared topic

space, we formed a mixture of experts44 by equally mixing the outputs of two encoder networks, hence-

forth generating two sides of data with the same topic proportions. For each cell pair e˛ ½m�, we generate

the ligand and receptor activities and optimize the model parameters by the back-propagation in the

following steps:

� Combine yðLÞe using xi and xj for ligand genes and yðRÞe for receptor genes

� Generate latent state parameters, the mean mðyðLÞe Þ and variance nðyðLÞe Þ based on the ligand feature

activities and the mean mðyðRÞe Þ and variance nðyðRÞe Þ based on the receptor features

� Sample zðLÞe )mðLÞ +
ffiffiffi
n

p ðLÞ+ε for the ligand and zðRÞe )mðRÞ +
ffiffiffi
n

p ðRÞ+ε receptor networks

� Transform them into a common topic proportion vector /2qe)softmaxðzðLÞe =2 + zðRÞe Þ
� Sample b

ðLÞ
tl � NðmbðLÞ

tl ; n
bðLÞ
tl Þ for ligand topics and b

ðRÞ
tr � NðmbðRÞ

tr ; n
bðRÞ
tr Þ for receptor topics

� Compute the following composite ELBO objective LLR , take stochastic gradients, and optimize by

the Adam optimizer.

LLR =
D
E
h
log p



yðLÞe

��qe;b
ðLÞ
�i

+ E
h
log p



yðRÞe

��qe;b
ðRÞ
�i

�DKL



q


bðLÞ
�
q
�
zðLÞ
� k p



bðLÞ
�
p
�
zðLÞ
��

�DKL



q


bðRÞ
�
q
�
zðRÞ
� k p



bðRÞ
�
p
�
zðRÞ
�� ;

where we denote Kullback-Leibler divergence between q and p, i.e., Eq½log q =p�, by DKLðq k pÞ.

The encoder for the cell topic model consisted of a 3-layered neural network with hidden layers of sizes 200,

100, and 25. We used an Adam optimizer with a learning rate of 0.01 and optimized the model for conver-

gence for 500 epochs with a minibatch size of 5088 cell pairs (32 individual cells in a batch) (Figure S2A). The

interaction topics represent cell pair interactions across different data sets (Figure S2B).

Topic-specific gene co-expression network

For each interaction topic t and LR gene g, we calculated a Z score stg as E½btg�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V½btg�

q
, where btg is topic-

specific gene frequency estimated by the interaction topic model. The highest proportion estimate was

used to assign an interaction topic to all cancer cell pairs. A gene co-expression network for each interac-

tion topic was constructed using significantly enriched LR genes (Z score > 4). The edge in the network

represents the magnitude of Pearson correlation coefficient between LR gene pairs based on expression

data in all the cancer cell pairs assigned to respective interaction topic.
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QUANTIFICATION AND STATISTICAL ANALYSIS

We performed deep learning using PyTorch library (https://pytorch.org/) as specified in the above section.

We assumed the data were generated frommultinomial distributions, of which uncertainty information was

automatically incorporated into our deep learning models. Standard deviations of the model parameters

are available for each topic-specific gene variable. We implemented custom-built visualization scripts in R

language.

ADDITIONAL RESOURCES

We shared the full working directory of model estimation and statistical analysis via the public repository:

https://doi.org/10.5281/zenodo.7508044.
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