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Abstract

Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition

for the analysis of patient-specific breathing dynamics and subsequent image-supported

treatment planning. However, the lung motion estimation often suffers from the sliding

motion. In this paper, a novel lung motion method based on the non-rigid registration of

point clouds is proposed, and the tangent-plane distance is used to represent the distance

term, which describes the difference between two point clouds. Local affine transformation

model is used to express the non-rigid deformation of the lung motion. The final objective

function is expressed in the Frobenius norm formation, and matrix optimization scheme is

carried out to find out the optimal transformation parameters that minimize the objective

function. A key advantage of our proposed method is that it alleviates the requirement that

the source point cloud and the reference point cloud should be in one-to-one corresponding

relationship, and the requirement is difficult to be satisfied in practical application. Further-

more, the proposed method takes the sliding motion of the lung into consideration and

improves the registration accuracy by reducing the constraint of the motion along the tan-

gent direction. Non-rigid registration experiments are carried out to validate the performance

of the proposed method using popi-model data. The results demonstrate that the proposed

method outperforms the traditional method with about 20% accuracy increase.

Introduction

Respiratory motion estimation is a vital problem in medical image processing [1,2]. The goal

of the respiratory motion estimation is to acquire the time-sequenced motion fields along the

lung surface. Usually, it is a precondition for many applications in medical image analysis,

such as image-guided interventions, quantitative evaluation of the motion and generating

dynamic numerical phantom data for assessment [1,3,4]. 4-D computed tomography (4DCT)

technique has become highly popular for imaging respiratory motion [5–9]. It can generate a

number of high-resolution volume images representing different phases in the respiratory

cycle [10]. However, 4DCT images could not describe how tissues move and deform from one
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breathing phase to another breathing phase. They only provide static information of the

patient’s anatomy at different breathing phases. Algorithms to estimate the actual motion

paths between these phases usually provide vector fields, which can be interpreted as motion

fields. Then the motion fields form the basis of subsequent analysis steps and medical deci-

sions. The estimated fields should therefore resemble breathing dynamics as accurately as pos-

sible. Accurate respiratory motion estimation is difficult due to the breathing mechanism. The

breathing motion is arisen from the contraction of the diaphragmatic muscle area, and there

exists severe sliding motion in the lateral areas of the lung. Many researchers indicate that the

lung motion estimation suffers from the sliding motion [1,2,11], and a possible reason is that

the sliding motion would plague the registration by the existence of local minima. Accurate

respiratory motion estimation is important in radiation therapy of lung cancer. Usually lung

motion fields are acquired before the radiation treatment, and the motion fields will be used to

track the tumor in the operation. Thus accurate respiration motion evaluation would greatly

reduce the radiation dose to the normal tissue and harm to the patient.

There are a number of methods have been proposed to deal with the organ motion estima-

tion by registering point clouds or surfaces. According to the acquiring method of the point

data, these methods can be summarized into two categories. One way is to use point data from

feature extraction [12,13]. Castillo et al. [12] presented a framework for objective evaluation,

and optical-flow method was used to register large sets of expert-determined landmark point

pairs. Li et al. [13] presented a simulation method to exam the patient lung deformation

induced by respiratory motion, and the lung deformation problem was solved by finite ele-

ment analysis. Liu et al. [14] propose a shape-correlated statistical model on dense image

deformations for patient-specific respiratory motion estimation, and a point-based particle

optimization algorithm was used to obtain the shape models of lungs with group-wise surface

correspondences. The other way is to use point data from surface segmentation [5,15–17].

Usually the lung surface is easy to be acquired using segmentation techniques because the hol-

low structure would lead to strong contrast intensity. Chui et al. [5] proposed the TPS–RPM

(thin plate spline-robust point matching) algorithm, which formulated the non-rigid deforma-

tion by thin plate spline model, and EM-like (expectation maximization-like) method was

used to obtain the final transformation parameters. Amberg [17] proposed the non-rigid ICP

(iterative closest point) algorithm using a locally affine regularization, and the new regulariza-

tion term assigned an affine transformation to each vertex and minimized the difference in the

transformation of neighbouring vertices. Myronenko et al. [15] proposed the CPD (coherent

point drift) method. The method imposed the coherence constraint by regularizing the dis-

placement field, and the variational calculus was utilized to derive the optimal transformation

using GMM (Gaussian mixture model) and EM.

In CPD and TPS-RPM, it is required that the source point cloud and the reference point

cloud are in one-to-one corresponding relationship, and this condition is difficult to be satis-

fied in the practical application. Usually, the surface information is acquired through image

segmentation techniques, and the corresponding information is lost during the procedure.

Feature extraction techniques can obtain the point clouds that are in one-to-one correspond-

ing relationship, but it cannot guarantee dense points on the lung surface. In addition, CPD

and TPS-RPM utilize point-point distance to estimate the motion fields, and the registration

may be trapped in local minima caused by sliding motion [1,2]. In this paper, we present a

novel estimation method for lung motion based on the non-rigid registration of point clouds.

The point clouds are segmented from 4DCT images and they represent the status of lung at

different breathing phases. The proposed method formulates the distance term by tangent-

plane distance, and it alleviates the requirement that the source point cloud and the target

point should be in one-to-one corresponding relationship. Besides, the proposed method

Lung motion estimation based on non-rigid point cloud registration
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reduces the constraint of the motion along the tangent plane, and it improves the problem that

the registration would be trapped in local minima caused by the sliding motion. Local affine

transformation model is used to express the non-rigid deformation, and it solves the problem

that the registration may deteriorate at the beginning of the optimization procedure using the

EM method. The final objective function is expressed in the Frobenius norm formation, and a

stochastic gradient descent strategy is used to find out the optimal transformation parameters.

In Section 2, a novel similarity metric for non-rigid point cloud registration using tangent-

plane distance is presented and its implementation is elaborated. In Section 3, non-rigid regis-

tration experiments are carried out to validate the proposed method. The discussion and con-

clusion are presented in Section 4 and Section 5.

Method

The proposed similarity measure

Various algorithms exist for respiratory motion estimation based on non-rigid registration of

point clouds, and they aim to recover the coordinate transformation required to align the

source point cloud to the target point cloud. The estimation of respiratory motion fields

between two point clouds Vi; Vj : X � R3 ! R3 can be formulated as searching for a trans-

formation X between points of Vi and Vj by minimizing a distance/dissimilarity measure

between the point clouds. Considering the ill-posed character inherent to non-rigid registra-

tion, an additional regularization term is introduced to provide particular smoothness proper-

ties of the transformation [2]. Usually the final objective function consists of two terms: the

distance term and the regularization term, and the objective function can be formulated as fol-

lows

EðXÞ ¼ EdðXÞ þ aEsðXÞ ð1Þ

where Ed(X) and Es(X) represent the distance term and the regularization term respectively.

The symbol X denotes the transformation parameters to be determined.

Former methods [15,17] usually formulate the distance term by point-point distance. The

point-point distance is based on the assumption that one point in the source point cloud can

map to a corresponding point in the target point cloud. The assumption requires some pre-

operations, such as feature extraction or statistical shape model. However, it is difficult to

implement these pre-operations to the non-rigid lung surface registration because they cannot

provide dense points on the lung surface. The lung surface is usually segmented from 4DCT

images, and during the segmentation procedure, the corresponding information is lost.

Besides, many researchers indicate that the lung motion estimation suffers from the sliding

motion [1,2,11]. A possible solution is to reduce the constraint of the motion along the tangent

direction. In this paper, the tangent-plane distance is used to express the similarity between

the two point clouds. The tangent-plane distance can be expressed as follows

EdðXÞ ¼ ðw
 I3Þ
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where Xi is a 3×4 matrix, and the matrix denotes the local affine transformation. The local

affine parameters are determined by minimizing the objective function. w = diag(w1,� � �wn) is

the weight value, and the operator
means the Kronecker product. Symbol vi represents the

coordinates of a point in the source point cloud, and symbol ui represents the coordinates

Lung motion estimation based on non-rigid point cloud registration
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corresponding point of vi in the target point cloud. N is the normal vector of the target point,

which can be calculated from the target point cloud. The operator � represents the Hadamard

product, and O = [1,1,1,1]T.

As shown in Fig 1, vi is one point in the source point cloud, and ui is its closest point in the

target point cloud. The symbol ni is the normal vector of ui. The distance term Ed(X) represents

the sum of squared tangent-plane distance, and the tangent-plane distance j via
�!j denotes the

distance from point vi to the tangent plane of point ui. In practical application of lung motion

filed estimation, the interval of the point cloud is much smaller than the curvature radius of

the target surface, and the tangent-plane distance is much smaller than the point-point dis-

tance. The proposed criterion reduces the constraint of the motion along the tangent direction.

Since severe sliding motion exists in the lung region, the new criterion makes the residual reg-

istration error distribution more evenly and thus improves the lung motion estimation

accuracy.

The regularization term can avoid both physically implausible displacement fields and local

minima during optimization. In this paper, the regularization term is defined as the differences

between the transformation matrices assigned to neighboring vertices [17]. The regularization

term is expressed as follows

EsðXÞ ¼ ðM 
 GÞ
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where M is the connectivity matrix. It is determined by the adjacent relation of the points in

the source point cloud. The triangulation information of the source point cloud is used to

compute the matrix. Point cloud Crust algorithm is used to generate the triangulation. G =

diag(1,1,1,γ) is the stiffness matrix, and γ can be used to weight differences in the rotational

and skew part of the deformation against the translational part.

Fig 1. The illustration of the proposed method.

https://doi.org/10.1371/journal.pone.0204492.g001
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In non-rigid ICP and CPD, the distance term is nonzero at the ideal transformation when the

source point cloud and the target point cloud are in non-corresponding relationship, and this

characteristics would make that the registration is more prone to get trapped in local minima. In

our method, the distance term of the proposed method is close to zero at the ideal transformation

whether the source point cloud and the target point cloud are in one-to-one corresponding rela-

tionship or non-corresponding relationship. Since the normal information is used in the proposed

method, the constraint of the motion along the tangent direction is reduced, and it would benefit

the registration of lung, where there exists large sliding motion. Furthermore, our method utilizes

local affine transformation model to express the non-rigid deformation, and it could make the

registration under small deformation circumstance and avoid the problem that the optimization

may deteriorate at the beginning of the optimization procedure.

Fig 2 illustrates the covariance analysis [18] of the left lung. The surface variation value

means the structure sensitivity to the transformation. Small surface variation means that the

local structure makes the distance term (typically ICP) irrelevant to one direction motion (usu-

ally the motion along the tangent plane), and big surface variation means that the distance

term is sensitive to the transformation and suffers less from sliding motion. If the surface varia-

tion value is zero, it means the vicinity points lie in the plane at the point. In fact, the region of

small surface variation is more prone to suffer from sliding motion. Because the distance term

using non-rigid ICP is not zero, the point in this area is more prone to be trapped to the near-

est point. However, the distance term using the proposed method is zero and the proposed cri-

terion reduces the constraint of the motion along the tangent direction, then the regularization

term can contribute to the registration.

Implementation

Accurate respiratory motion estimation is important in radiation therapy of lung cancer. To

acquire the lung motion fields, dense points are segmented from 4DCT images at different

Fig 2. The illustration of surface variation of the lung.

https://doi.org/10.1371/journal.pone.0204492.g002
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phases, then the dense point clouds are simplified to a relative small scale to reduce computa-

tion complexity. Finally, non-rigid point cloud registration using tangent-plane distance is car-

ried out to establish the respiratory motion fields. A step-by-step protocol for the

implementation is available on protocols.io (dx.doi.org/10.17504/protocols.io.qrhdv36). In

this paper, local affine transformation model is used to express the non-rigid deformation. The

non-rigid deformation of the point cloud is a combination of many local affine transforma-

tion, and each affine transformation matrix is assigned to each point in the point cloud. The

local affine transformation Xi is a 3×4 matrix, and the total number of parameters to be deter-

mined is 12n, where n is the number of points in the source point cloud. To acquire the lung

motion field, the two point clouds should be well registered and the transformation parameter

X that minimizes the objective function should be found. In this paper, a stochastic gradient

descent strategy is used to solve the optimization problem, and the derivative of the objective

function to the transformation parameters is required during each iteration. According to the

above paragraphs, the objective function can be expressed as follows

EðXÞ ¼ EdðXÞ þ aEsðXÞ

¼ ðw
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To simplify the optimization procedure, it is required to convert the transformation param-

eters into the same formation, and after a matrix cracking the objective function can be

expressed as follows

EðXÞ ¼ EdðXÞ þ aEsðXÞ

¼ ðw
 I3Þ
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Then the derivative of the objective function to the transformation parameters can be

obtained using matrix derivative strategy.

dEðXÞ
dX

¼ 2aAT
1
A1X þ 2AT

2
ðN � ðA2X � B2Þ � NÞOOT ð6Þ

Lung motion estimation based on non-rigid point cloud registration
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In our method, the stochastic gradient descent strategy is used to obtain the new transfor-

mation parameters in each iteration, and the computation of the new variables is given as fol-

lows

Xnew ¼ Xold � DL
dEðXoldÞ

dXold
ð7Þ

where ΔL denotes the step length. Our method can be summarized in the following pseudo-

codes.

• Initialize X and M.

• Initialize γ and α.

• Carry out the gradient descent optimization, and repeat until convergence (using Eq 7).

• Calculate the transformed source point cloud Y = DX.

Experiments and results

The proposed method for respiratory motion estimation is validated by both artificial data

experiments and real data experiments in this section. The experiments are conducted in the

Matlab R2015b platform, which runs on Windows 7 operation system with Intel i5-2300

(2.80GHz) and 10G of RAM. Part of the code in the non-rigid ICP [17] is used in our experi-

ments. The 4DCT images tested in the clinical data experiments are from popi-model data-

base, in which the motion fields are provided by the contributors. The property would benefit

the comparison of the different methods. In this paper, the registration error (in millimeters)

is defined as mean registration error (MRE), and it can be defined as

ε ¼
1

n

X
jT
!

true � T
!

estimatedj ð8Þ

where T
!

true and T
!

estimated denote the motion vectors of the points in the true motion field and

the estimated motion field, respectively, and n is the number of points in the source point

cloud. The operator |•| means the magnitude of the vector.

Artificial experiment

In this section, artificial data is used to implement the registration experiment. A synthetic

motion field, which represents the deformation between the end-inspiration (IE) phase and

the end-expiration (EE) phase, is used to generate the target point cloud. First, dense point

cloud F is acquired by medical image segmentation and lung surface reconstruction, and

dense point cloud R is generated by introducing the synthetic motion field into F. The point

clouds F and R represent the status of lung surface at IE-phase and EE-phase, respectively. The

surface normal vector N can be computed by R. Then F and R are simplified to F’ and R’ sepa-

rately, and the surface normal vector N is also simplified to N’ according to its correspondence

with R. During the simplifying procedure, the corresponding information is lost. The point

clouds F’ and R’ are not in one-to-one corresponding relationship, and a point in F’ may not

map to a corresponding point in R’ exactly. Besides, usually the motion estimation of the left

lung and the right lung can be conducted separately to reduce the computation complexity.

The source point cloud is shown in Fig 3A, and the artificial motion field is shown in Fig 3B.

In Fig 4, it can be observed that the final residual error using non-rigid ICP is 4.2687, and

the final residual error using the proposed method is 3.3155. The proposed method achieves

Lung motion estimation based on non-rigid point cloud registration
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higher registration accuracy than non-rigid ICP. The reason is that non-rigid ICP sets up on

the assumption that a point in the point cloud can map to a corresponding point in another

point cloud. The distance term of non-rigid ICP is a non-zero value at the ideal transformation

given that the interval of the point cloud is much smaller than the curvature radius of the target

surface. The registration is prone to get trapped into local minima using non-rigid ICP. In

practical application the one-to-one corresponding relationship is difficult to be satisfied. Usu-

ally the point clouds are segmented from 4DCT images and simplified into a relatively small

scale. The corresponding relationship between the source point cloud and the target point

cloud is unknown and the point in the source point cloud may not map to a corresponding

point in the target point cloud. In addition, the residual error using non-rigid ICP reduces

much faster than that the proposed method. The registration result using non-rigid method

becomes stable after 6 iterations, and the registration result using the proposed method

become stable after 40 iterations. The reason is that non-rigid ICP provides an analytical solu-

tion during each iteration, while the proposed method utilizes a stochastic gradient descent

strategy and the gradient of the objective function with respect to the transformation parame-

ters is used to obtain the new transformation parameters in each iteration. In Fig 5, it can be

observed that the new method outperforms non-rigid ICP. As shown in Fig 3B, the motion is

caused by the bottom diaphragmatic muscle, and there exists severe sling motion in the lateral

areas of the lung. In Fig 5, the residual errors are mainly along the tangent plane. However, the

magnitude of the residual error using the proposed method is much smaller than that using

non-rigid ICP. The reason is that the distance term of the proposed method is zero when the

source point cloud gets close to the target point cloud. The proposed method reduces the con-

straint of the motion along the tangent plane and the regularization term would contribute to

the registration. There remain large registration errors towards the bottom of the lung. using

both the proposed method and non-rigid ICP. The reason may be that the breathing motion is

arisen from the contraction of the diaphragmatic muscle area. The magnitude of the motion

on the lower lobe of the lung is relatively large and large magnitude of the motion on the lower

lobe of the lung will result large registration error.

Fig 3. The experiment data in the artificial experiment. (A) The source point cloud. (B) The artificial motion field.

https://doi.org/10.1371/journal.pone.0204492.g003

Lung motion estimation based on non-rigid point cloud registration
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4DCT data experiment

In this section, clinical 4DCT images from popi-model [4] are used to conduct the registration

experiment. The reference motion fields are provided by the providers of the dataset. The pro-

viders of the popi-model implement the Demons algorithm to deformably register the refer-

ence phase to all other volumes. The method utilizes the whole intensity information of the

4DCT images and it takes hours to obtain the motion field, and it makes the provided motion

fields quite accurate. The characteristics would benefit the comparison of the different meth-

ods. The proposed method is compared with non-rigid ICP and CPD. First, dense point clouds

F and R at different phases are segmented separately using threshold segmentation method,

and 3DMed software is used to conduct the procedure. Then F and R are simplified to F’ and

R’ by curvature sampling method and stochastic sampling method, and Geomagic software is

used in the procedure. The final point clouds to be registered are in non-corresponding rela-

tionship, which means that one point in the source point cloud cannot map to one point in the

target point cloud. Non-rigid registration experiments with five different 4DCT image pairs

Fig 4. Registration error with respect to the number of iteration in the artificial experiment.

https://doi.org/10.1371/journal.pone.0204492.g004

Fig 5. Registration error distribution using non-rigid ICP and the proposed method in the artificial experiment. (A) Registration error

distribution using non-rigid ICP. (B) Registration error distribution using the proposed method.

https://doi.org/10.1371/journal.pone.0204492.g005
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are carried out in this section. For each image pair, experiments with different numbers of

points in F’ are conducted to reduce the influence of contingency. The number of points in F’

is set as 3600, 3800, 4000, 4200 and 4500, and the number of points in R’ is 8000. Non-rigid

registrations experiments using CPD are conducted with the number of points in F’ set as

4000. The numbers of points in F’ and R’ are different in this section. The complexity of the

optimization procedure is directly related to the scale of F’ because the scale of F’ determines

the number of the deformation parameters. Large scale of R’ can reduce the sampling error

and interpolation error during the optimization procedure. So the scale of F’ is relatively small

and the scale of R’ is relatively large.

The registration results are shown in Table 1. It can be observed that, the proposed method

performs best among the three methods tested and it achieves a better registration accuracy in

every experiment. When the number of points in F’ is 4000, our method outperforms non-

rigid ICP with about 10%~30% accuracy increase. CPD performs much worse than both the

proposed method and non-rigid ICP. The reason is that CPD formulates the registration prob-

lem using GMM and the transformation parameters are solved the by EM method. This strat-

egy leads to that the target point would shrink at the beginning of the optimization procedure

and then expand to the target point cloud. For the initial iterations, the distance between the

source point cloud and the target point cloud increases, and the transformation deviates from

the ideal status. In our method, the local affine transformation model is used to represent the

transformation, and the deformation of the source point cloud is controlled under a small

range, thus the proposed method solves the problem that the registration may deteriorate at

the beginning of the optimization procedure. The registration error distribution maps of non-

rigid ICP and the proposed method when the number of points in F’ is set as 4000 are shown

in Fig 6, where the proposed method achieves much better accuracy than non-rigid ICP. Com-

paring the error distribution of the two methods, it can be observed that the proposed method

can improve the sliding problem. The reason is that the distance term using the proposed

method is zero value at the ideal transformation. It can reduce the constraint of the motion

along the tangent direction, thus it can improve the problem that the registration is prone to

be trapped into local minima caused by sliding motion.

Artificial experiment with corresponding relationship

In this section, artificial experiments with corresponding relationship are conducted to acquire

the motion field of the left lung. The point clouds are in one-to-one corresponding relation-

ship. In each experiment, a synthetic motion field between different phases is utilized to gener-

ate the point clouds. Fig 7 illustrates the flowchart in the experiment. First, a dense point cloud

F is acquired by medical image segmentation and lung surface reconstruction. Then the point

cloud R is obtained by introducing the artificial motion field to the point cloud F, and R repre-

sents the target surface. Usually, the point cloud F and R have a relatively large scale (over

Table 1. The registration errors (in millimeters) using CPD, non-rigid ICP and the proposed method in the 4DCT data experiment.

Method Non-rigid ICP The proposed method CPD

Number of points in F’ 3600 3800 4000 4200 4500 3600 3800 4000 4200 4500 4000

Image pair 1 0.9664 1.1147 0.9806 1.0053 0.9523 0.7963 0.8022 0.7954 0.8080 0.7923 2.1970

Image pair 2 1.3879 1.4936 1.3845 1.3869 1.3090 1.2639 1.2160 1.2661 1.2468 1.2014 2.7650

Image pair 3 1.3278 1.3361 1.2096 1.2042 1.1091 1.0514 1.1362 0.9887 0.9972 0.9836 2.5994

Image pair 4 1.4972 1.3681 1.4095 1.3577 1.3082 1.1924 1.1451 1.1052 1.0452 1.0218 2.5362

Image pair 5 1.1874 1.3898 1.1591 1.1270 1.2134 1.0324 1.0975 0.9857 1.0785 0.9469 2.4251

https://doi.org/10.1371/journal.pone.0204492.t001
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Fig 6. Registration error distribution using non-rigid ICP and the proposed method when the number of points

in F’ is set as 4000 in the 4DCT data experiments.

https://doi.org/10.1371/journal.pone.0204492.g006
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20,000), and it would make the optimization problem too complicated. The point cloud F is

simplified to F’ by the curvature sampling method and stochastic sampling method. The sim-

plified point cloud R’ is acquired by introducing the artificial motion field to point cloud F’.

Thus the point clouds F’ and R’ are in one-to-one corresponding relationship, which means

that each point in F’ can find a corresponding point in R’. According to the definition of the

proposed method, the normal vector information N’ is needed in the implementation. The sur-

face normal vector information N can be computed by R, and N’ can be acquired according to

the corresponding relationship between F and R. N’ is not directly calculated from R’ because

dense point cloud in R can provides more accurate normal information. Then non-rigid regis-

tration between F’ and R’ is conducted to establish the respiratory motion field.

Three non-rigid registration experiments are conducted in this section. The point clouds

and the results using the proposed method and non-rigid ICP in the first experiment is shown

in Fig 8. Table 2 shows the residual registration errors using non-rigid ICP and the proposed

method for the three experiments. It can be observed that the proposed method achieves the

similar registration accuracy with non-rigid ICP for all the experiments conducted. Compar-

ing with the performance of the two methods in the first experiment, it can be observed the

main difference is that in this section the source point cloud and the target point cloud are in

one-to-one corresponding relationship, which means that a point in the source point cloud

can map to one corresponding point in the target point cloud. The corresponding relationship

would make the distance term of non-rigid ICP is zero value at the ideal transformation, and it

would improve the registration accuracy of the non-rigid ICP method. The different perfor-

mance between the first experiment and this section indicates that the proposed method does

not require the assumption that the source point cloud and the target point cloud are in one-

to-one corresponding relationship. The assumption is difficult to be satisfied in practical respi-

ratory motion estimation using non-rigid lung surface registration.

Fig 7. Illustration of the flowchart in the artificial experiment with corresponding relationship.

https://doi.org/10.1371/journal.pone.0204492.g007
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Discussions

Respiratory motion estimation is important in medical image processing. It is an essential pro-

cedure for many medical applications, such as image-guided interventions, quantitative evalu-

ation of the motion and generating dynamic numerical phantom data for assessment. Usually

thorax 4DCT images of the patient are acquired before radiation treatment of lung cancer.

Then lung motion fields are calculated using 4DCT images. The motion fields will be used to

track the tumor in the operation.

In this paper, a non-rigid point cloud registration based lung motion estimation method is

proposed. Dense point clouds are segmented from 4DCT images at different phase. Then the

dense point clouds are simplified to a relatively small scale to reduce computation complexity.

Non-rigid registration of the point clouds is conducted to establish the lung motion fields. The

proposed method employs the tangent-plane distance to represent the distance term. It can

improve the problem that the registration is prone to be trapped into local minima caused by

sliding motion when using non-rigid ICP. Local affine transformation model is used to express

the non-rigid deformation of the lung motion, and the deformation of the source point cloud

is controlled under a small range, thus the proposed method solves the problem that the regis-

tration may deteriorate in the initial iterations using CPD.

Before the non-rigid point cloud registration, a 4DCT image segmentation procedure and a

point cloud simplifying procedure are conducted. The performance of image segmentation

may be influenced by the existence of artifacts, tutors and data incompleteness. In this paper,

the curvature sampling method and random point cloud are used during the simplifying pro-

cedure, and the influence of distribution of the simplified point cloud on non-rigid registration

Table 2. The registration errors (in millimeters) using non-rigid ICP and the proposed method in the artificial

experiments with corresponding relationship.

Example Non-rigid ICP The proposed method

1 1.5021 1.4664

2 2.3051 2.2974

3 1.8602 1.8569

https://doi.org/10.1371/journal.pone.0204492.t002

Fig 8. The point clouds before and after registration in the artificial experiments with corresponding relationship. (A) Overlapped

left lung before registration. (B) Overlapped left lung after registration using the proposed method. (C) Overlapped left lung after

registration using non-rigid ICP.

https://doi.org/10.1371/journal.pone.0204492.g008
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should be studied in future work. Moreover, in clinical applications, the surface motion cannot

fully depict the motion of the chest. However, breathing motion is arisen from the contraction

of the diaphragmatic muscle area. Once the lung surface motion is determined, the motion of

the whole chest can be evaluated by techniques like finite element analysis and statistical shape

model.

Non-rigid registration experiments are carried out to validate the proposed method. In

4DCT data experiment, the proposed method outperforms non-rigid ICP with about 10%

~30% accuracy increase. The tangent-plane distance can reduce the constraint of the motion

along the tangent direction. While the distance term of non-rigid ICP is a non-zero value at

the ideal transformation given that the interval of the point cloud is much smaller than the cur-

vature radius of the target surface, and the registration is prone to get trapped into local min-

ima using non-rigid ICP. The influence of the one-to-one corresponding relationship is

discussed in the experiments. The performance of the proposed method and non-rigid ICP is

quite different in the registration experiment without one-to-one corresponding relationship

and the registration experiment with one-to-one corresponding relationship. The phenome-

non indicates that the proposed method does not require the assumption that the source point

cloud and the target point cloud are in one-to-one corresponding relationship. The assump-

tion is difficult to be satisfied in practical application.

Conclusion

A novel method based on the non-rigid registration of the point clouds is proposed for lung

motion estimation. The point clouds are segmented from 4DCT images and they represent the

statuses at different phases. The proposed method employs the tangent-plane distance to rep-

resent the distance term, and local affine transformation model is used to express the non-

rigid deformation of the lung motion. The final objective function is expressed in the Frobe-

nius norm formation, and a stochastic gradient descent strategy is utilized to obtain the opti-

mal local affine transformation parameters. The proposed method alleviates the requirement

that the source point cloud and the target point cloud should be in one-to-one corresponding

relationship. According to our definition, the proposed method reduces the constraint on the

motion along the tangent plane.
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3. Rühaak J, Heldmann S, Kipshagen T, Fischer B (2013) Highly accurate fast lung CT registration. In:

Proceedings of Medical Imaging 2013: Image Processing. https://doi.org/10.1117/12.2006035.

4. Vandemeulebroucke J, Rit S, Kybic J, Clarysse P, Sarrut D (2011) Spatiotemporal motion estimation

for respiratory-correlated imaging of the lungs. Med Phys 38(1): 166–178. https://doi.org/10.1118/1.

3523619 PMID: 21361185.

5. Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis

Image Underst 89(2–3): 114–141. https://doi.org/10.1016/S1077-3142(03)00009-2

6. Wu G, Wang Q, Lian J, Shen D (2011) Estimating the 4D respiratory lung motion by spatiotemporal reg-

istration and building super-resolution image. In: Proceedings of Medical Image Computing and Com-

puter-Assisted Intervention MICCA 2011. pp. 532–539. https://doi.org/10.1118/1.4790689 PMID:

22003659.

7. Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H (2011) Statistical modeling of 4-D respiratory

lung motion using diffeomorphic image registration. IEEE Trans Med Imag 30(2): 251–265. https://doi.

org/10.1109/TMI.2010.2076299 PMID: 20876013.

8. Zhang Q, Pevsner A, Hertanto A, Hu YC, Rosenzweig KE, Ling CC, et al. (2007) A patient-specific

respiratory model of anatomical motion for radiation treatment planning. Medical Physics 34(12):

4772–4781. https://doi.org/10.1118/1.2804576 PMID: 18196805

9. Liu F, Hu Y, Zhang Q, Kincaid R, Goodman KA, Mageras GS (2012) Evaluation of deformable image

registration and a motion model in CT images with limited features. Phys Med Biol 57(9): 2539–2554.

https://doi.org/10.1088/0031-9155/57/9/2539 PMID: 22491010

10. Schaerer J, Fassi A, Riboldi M, Cerveri P, Baroni G, Sarrut D (2012) Multidimensional respiratory

motion tracking from markerless optical surface imaging based on deformable mesh registration. Phys

Med Biol 57: 357–373. https://doi.org/10.1088/0031-9155/57/2/357 PMID: 22170786

11. Vishnevskiy V, Gass T, Szekely G, Tanner C, Goksel O (2017) Isotropic total variation regularization of

displacements in parametric image registration. IEEE Trans Med Imag 36(2): 385–395. https://doi.org/

10.1109/TMI.2016.2610583 PMID: 27654322.

12. Castillo R, Castillo E, Guerra R, Johnson VE, McPhail T, Garg AK, et al. (2009) A framework for evalua-

tion of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol

54(7): 1849–1870. https://doi.org/10.1088/0031-9155/54/7/001 PMID: 19265208.

13. Li F, Porikli F (2014) Biomechanical simulation of lung deformation from one CT scan. Bio-Imaging and

Visualization for Patient-Customized Simulations. Springer. 13:15–28. https://doi.org/10.1007/978-3-

319-03590-1_2.

14. Liu X, Ipek O, Stephen P, Gig M (2010) Shape-correlated deformation statistics for respiratory motion

prediction in 4D lung. In: Proceedings of Medical Imaging 2010: Visualization, Image-Guided Proce-

dures, and Modeling. https://doi.org/10.1117/12.843974

15. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach

Intell 32(12): 2262–2275. https://doi.org/10.1109/TPAMI.2010.46 PMID: 20975122

16. Yang Y, Ong SH, Foong KWC (2015) A robust global and local mixture distance based non-rigid point

set registration. Pattern Recogn 48(1): 156–173. https://doi.org/10.1016/j.patcog.2014.06.017.

17. Amberg B, Romdhani S, Vetter T (2007) Optimal step nonrigid ICP algorithms for surface registration.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2007. https://doi.org/

10.1109/CVPR.2007.383165.

18. Gelfand N, Ikemoto L, Rusinkiewicz S, Levoy M (2003) Geometrically stable sampling for the ICP algo-

rithm. In: Proceedings Fourth International Conference on 3-D Digital Imaging and Modeling 3DIM

2003. pp. 260–267. https://doi.org/10.1109/IM.2003.1240258.

Lung motion estimation based on non-rigid point cloud registration

PLOS ONE | https://doi.org/10.1371/journal.pone.0204492 September 26, 2018 15 / 15

https://doi.org/10.1016/j.media.2012.09.005
http://www.ncbi.nlm.nih.gov/pubmed/23123330
https://doi.org/10.1088/0031-9155/59/15/4247
http://www.ncbi.nlm.nih.gov/pubmed/25017631
https://doi.org/10.1117/12.2006035
https://doi.org/10.1118/1.3523619
https://doi.org/10.1118/1.3523619
http://www.ncbi.nlm.nih.gov/pubmed/21361185
https://doi.org/10.1016/S1077-3142(03)00009-2
https://doi.org/10.1118/1.4790689
http://www.ncbi.nlm.nih.gov/pubmed/22003659
https://doi.org/10.1109/TMI.2010.2076299
https://doi.org/10.1109/TMI.2010.2076299
http://www.ncbi.nlm.nih.gov/pubmed/20876013
https://doi.org/10.1118/1.2804576
http://www.ncbi.nlm.nih.gov/pubmed/18196805
https://doi.org/10.1088/0031-9155/57/9/2539
http://www.ncbi.nlm.nih.gov/pubmed/22491010
https://doi.org/10.1088/0031-9155/57/2/357
http://www.ncbi.nlm.nih.gov/pubmed/22170786
https://doi.org/10.1109/TMI.2016.2610583
https://doi.org/10.1109/TMI.2016.2610583
http://www.ncbi.nlm.nih.gov/pubmed/27654322
https://doi.org/10.1088/0031-9155/54/7/001
http://www.ncbi.nlm.nih.gov/pubmed/19265208
https://doi.org/10.1007/978-3-319-03590-1_2
https://doi.org/10.1007/978-3-319-03590-1_2
https://doi.org/10.1117/12.843974
https://doi.org/10.1109/TPAMI.2010.46
http://www.ncbi.nlm.nih.gov/pubmed/20975122
https://doi.org/10.1016/j.patcog.2014.06.017
https://doi.org/10.1109/CVPR.2007.383165
https://doi.org/10.1109/CVPR.2007.383165
https://doi.org/10.1109/IM.2003.1240258
https://doi.org/10.1371/journal.pone.0204492

