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Goblet cells are specialized epithelial cells that are essential to the forma-

tion of the mucus barriers in the airways and intestines. Armed with an

arsenal of defenses, goblet cells can rapidly respond to infection but must

balance this response with maintaining homeostasis. Whereas goblet cell

defenses against bacterial and parasitic infections have been characterized,

we are just beginning to understand their responses to viral infections.

Here, we outline what is known about the enteric and respiratory viruses

that target goblet cells, the direct and bystander effects caused by viral

infection and how viral interactions with the mucus barrier can alter the

course of infection. Together, these factors can play a significant role in

driving viral pathogenesis and disease outcomes.

Introduction

Mucosal barrier sites throughout the body are tasked

with coordinating the cellular response that distin-

guishes friend from foe while balancing homeostasis

with a rapid response to infection [1]. Central to this

balance are the epithelial cells that line these barriers,

providing a plethora of heterogeneous, specialized cells

that act as first responders to incoming pathogens. A

common feature across mucosal sites is another layer

of defense provided by mucus, a carbohydrate-rich,

gel-like substance that, at its most basic level, prevents

invading pathogens from reaching the underlying

epithelium [2]. Goblet cells are specialized secretory

cells that are the primary producers of the mucus bar-

rier in the airways and intestines [3]. Their secretory

milieu and overall function at these sites are dependent

on contextual cues, including multimicrobe interac-

tions. In fact, microbiota are key to these mucosal

functions [4,5], as mucus barrier defects are well docu-

mented in germ-free [6] and antibiotic-treated mice

[7,8]. Microbial sensing by goblet cells [6,9,10] and

neighboring cells plays a role in shaping the mucus

barrier. For example, in the presence of microbes,

enterocytes in the small intestine secrete the metallo-

protease, meprin b, which cleaves mucin (MUC) and

enables its unfolding and full expansion [11]. However,

both host responses to pathogens and the pathogens,

including viruses, themselves can trigger a breakdown

of this host–microbe crosstalk, with some pathogens

adopting ways to modulate goblet cell numbers and

functions. Whereas substantial work has been focused

on the protective and disease-mediating features of

goblet cells during bacterial and parasitic infections,

we are just beginning to understand their functions in

the context of viral infections. The purpose of this
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review is to highlight what is known about the direct

and indirect consequences of viral infection for goblet

cells, as well as the effect of mucus interactions with

viruses in the intestinal and respiratory tracts.

Goblet cell development

Goblet cells were first discovered in the early to mid-

nineteenth century and were characterized by their

distinct morphology, which resembles a drinking gob-

let [12]. This cellular architecture is largely the result

of the apical cytoplasm being full of secretory gran-

ules containing MUCs and other secretory factors,

which causes the nucleus and other organelles to be

pushed to the basal ‘goblet stem’. In the intestinal

crypts, promotion of Atonal BHLH transcription fac-

tor 1 (ATOH1, Math1 in mice) expression and Notch

inhibition drives the development of secretory progen-

itor cells, which then receive additional signals that

turn on SAM pointed domain-containing ETS tran-

scription factor (SPDEF) to drive transcriptional pro-

gramming, resulting in mature goblet cells that are

fully differentiated [13,14]. In the airways, goblet cells

arise from a slightly different pathway, with increas-

ing Notch signals and expression of SPDEF, which

drives full differentiation and promotes mucus secre-

tion [15–17]. The act of secretion is thought to be

similar across goblet cells at these two mucosal sites,

and it is characterized by either a constitutive or regu-

lated process to maintain homeostasis [2,3]. Regulated

secretion involves vesicle secretion and also a stimu-

lus-driven form that is mediated by compound exocy-

tosis characterized by rapid release of secretory

granules [3,18,19]. Whereas regulated secretion has

been characterized for airway goblet cells [20], less is

understood about the signaling cascade that drives

compound exocytosis. Neither secretory pathway has

been precisely defined in the gut, but reactive oxygen

species generation, autophagy, and inflammasome sig-

naling appear to play a role in goblet cell secretion in

mice [9,21–23]. The details of these mechanisms have

yet to be worked out in humans, but there is evidence

of species-specific differences, such as regional expres-

sion of the NLPR6 inflammasome [24,25]. Secretory

processes are also largely mediated by known secreta-

gogues, or stimuli that drive secretion, including

acetylcholine, carbachol, and histamine [26–28]. In

addition, goblet cell differentiation and secretion are

sensitive to cytokine stimulation [29], including Th2

signaling via Interleukin (IL)-4 and IL-13 [30–32]. For
these reasons, goblet cells and mucus secretion can

quickly mobilize as part of the innate immune

response in the intestines and airways.

Intestinal goblet cells

A progressive examination along the length of the

intestinal tract reveals a correlative gradient between

goblet cells and the microbiota, with the highest den-

sity of both being found in the distal colon (Fig. 1).

The small intestine has a single, discontinuous layer of

mucus, which has not been extensively measured in

humans but in mice, ranges from 500 µm in the duo-

denum to 200 µm in the ileum [27,33,34]. In contrast

to the small intestine, the large intestine has dual lay-

ers—an adherent inner layer below a looser outer layer

[2]. In the mouse colon, the attached inner layer

is ~ 50 µm thick whereas the top layer is thicker in the

proximal region (50 µm) than in the distal region

(10 µm) [27,33,34]. In human colons, the inner mucus

thickness is 200–300 µm in humans [26,35–38],
whereas the outer layer is ~ 400 µm in the colon

[36,39]. These mucus layers are critical for keeping

microbes and other luminal contents at a safe distance

from the underlying epithelium, with some commensal

microbes inhabiting the outer region, creating a symbi-

otic environment that prevents self-digestion [2]. Gob-

let cells tasked with maintaining this host barrier do so

primarily through regulated secretion, but a subset of

cells are thought to be primed for rapid secretion to

flush out bacterial, parasitic, and even fungal infec-

tions [1,40]. MUC2 is the main component of the

secreted gel-forming mucus in the intestines, whereas

MUC1, MUC3, MUC4, MUC12, MUC13, and

MUC17 are expressed as transmembrane glycoproteins

[2]. MUC undergo extensive O-linked glycosylation

and other posttranslational modifications [2,4] (Fig. 2).

Although the precise molecular mechanisms and trig-

gers that alter these modifications remain poorly

defined in the context of infection, it is intriguing to

consider that goblet cells can tailor MUC structure in

response to a given pathogen. Further studies in this

area are greatly needed.

Besides MUC, goblet cells also secrete a multitude

of other proteins that enhance the mucus barrier and

have direct antimicrobial activities (Fig. 2). These pro-

teins include calcium-activated chloride channel regula-

tor 1 (CLCA1) [41,42], Fc gamma binding protein

(FCGBP) [43], anterior gradient 2 (AGR2) [44], zymo-

gen granule 16 (ZG16) [45], and trefoil factor 3 [46],

although the antiviral functionality of these secreted

proteins has yet to be elucidated. Mucus also serves as

a conduit for defensins and other antimicrobial pro-

teins and peptides secreted by Paneth cells located at

the base of the crypts [47], as well as IgA, which play

dual roles in modulating interactions with commensal

microbes [48] and protection from pathogens [49].
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Overall, with this arsenal of defenses, goblet cells can

play an active role in the response to infection and

have the potential to modify their response to combat-

specific pathogens.

Goblet cells and enteric viral infection

Some of the earliest reports of enteric viruses targeting

goblet cells and neighboring epithelial cells in the gut

relied on electron microscopy to identify virus parti-

cles. Examples include reports of ‘reovirus-like’ virus

in an infant with nonbacterial diarrhea [50], mouse

adenovirus 2 in experimentally infected mice [51], and

bovine coronavirus infection in calves [52]. Most

recently, a number of ‘mini-gut’ models have been

developed using induced or embryonic pluripotent

stem cells to generate organoids that contain both

epithelial and mesenchymal cell populations, as well as

Fig 1. The epithelia that line the intestinal tract include specialized secretory cells known as goblet cells, highlighted in green, which

increase in density from the proximal to the distal end of the tract. The small intestine (the duodenum, jejunum, and ileum) is coated with a

single, discontinuous mucus layer (light green), whereas the large intestine (the proximal and distal colon) is coated with an inner mucus

layer (dark green) and an outer layer (light green). Microbiota, shown in confetti colors, reside within the lumen and mucus layer away from

the epithelium and exhibit a density gradient that mirrors that of goblet cells.

Fig 2. Goblet cells have an arsenal of defenses at their disposal. A) Mucus consists of MUC, antimicrobial proteins with unknown antiviral

potential, and also secretory IgA, which modulates gut microbiota and can combat viral infection. B) Mucus can flush out viruses or bind

them to block receptor interactions. C) The composition of mucus can be changed via posttranslational modification. However, viruses have

found ways to co-opt goblet cells and mucus to their benefit, resulting in proviral effects. D) Increasing mucus secretion could lead to

goblet cell exhaustion represented by the gray-colored goblet cell), leading to barrier defects that can result in inflammation and/or

secondary bacterial infection. E) Viruses may directly infect actively secreting goblet cells, potentially facilitating viral egress and

dissemination in mucus. F) Viruses may bind to mucus to enhance their stability, infection, transmission, and possibly immune evasion. G)

Beyond these functions of goblet cells, viruses could serve as a trigger for goblet cell-associated pathways, which in turn could serve as

mechanisms of tolerance or translocation outside the gut.
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colonoids and enteroids, which are derived from

intestinal crypt cells in the colon and small intestine,

respectively, but lack a mesenchymal cell layer [53].

Together, these models can form both spherical and 2-

D cell layers that reflect the tissue architecture and

physiology of the intestinal villi and have increased

our understanding of enteric viral infection in secre-

tory cell types because immortalized intestinal cell lines

frequently do not reflect the diverse epithelial hetero-

geneity found in vivo [53]. For example, the study of

porcine epidemic diarrhea virus, a coronavirus that

causes high mortality in neonatal pigs, has been lim-

ited by the lack of a robust cell culture model, but it

was recently shown that multiple intestinal cell types,

including goblet cells, in enteroids and colonoids are

infected by this virus, which mirrors the infection

in vivo [54].

Enteroid models have also been used extensively in

the study of human enteric viruses, giving a sense of

their goblet cell propensities in vivo. Human aden-

ovirus species C (prototype strain 5p) was the first

virus identified as preferentially infecting a subset of

goblet cells in enteroids; however, this cell tropism was

strain specific, and a preference for goblet cells was

not observed with human adenovirus species F (proto-

type strain 41p) [55]. Enterovirus 71 was also shown to

have a strong preference for goblet cells in 2-D epithe-

lial monolayers derived from human fetal small intesti-

nal crypts [56]. The infection drove a reduction in

MUC1 and MUC2 expression, highlighting the ability

of this virus to alter goblet cell function and, perhaps,

combat mucus flushing from the gut [56]. The human

astrovirus VA1 species has also been shown to infect

goblet cells and other epithelial cell types in human

enteroids [57]. Interestingly, murine astrovirus

(MuAstV) appears to have an even higher propensity

for goblet cells. This was first detected by in situ

hybridization and electron microscopy and then con-

firmed by single-cell transcriptional profiling of small

intestinal epithelial cells [58]. Based on the transcrip-

tional activity in goblet cells, MuAstV was determined

to target actively secreting cells specifically and to

drive a further increase in the expression of Muc2,

Clca1, Fcgbp, and Zg16, as well as an increase in

mucus thickness between and at the tops of the villi.

These data indicate that MuAstV might benefit from

causing this host pathway to produce more mucus in

response to infection, perhaps as a means of facilitat-

ing virus egress and/or dissemination [58]. MuAstV

infection also drove a change in microbiome composi-

tion and reduced colonization by enteropathogenic

Escherichia coli, an adherent bacterial pathogen [58].

To what extent the increase in mucus secretion is

sustained after MuAstV is cleared from the gut

remains to be determined, but goblet cell exhaustion

has been reported after parasitic infections that simi-

larly drive hypersecretion [59,60]. This is a critical find-

ing, given that such exhaustion can lead to a

weakened mucus barrier, which could result in inflam-

mation or even secondary bacterial infection [61]. In

fact, this increased susceptibility to bacterial infection

has been proposed as a disease mechanism for porcine

epidemic disease virus, which causes goblet cell deple-

tion in neonatal pigs [61]. Therefore, the combined

effects of virus-driven changes in goblet cells can alter

the microbiome and potentially exacerbate gastroin-

testinal illness, as well as alter host susceptibility to

other enteric pathogens (Fig. 2).

Even in the absence of direct infection, enteric viruses

can drive substantial changes in goblet cell abundance,

function, and differentiation. For example, whereas

enterocytes undergo apoptosis after rotavirus infection

in mice, goblet cell numbers are decreased in the duode-

num and jejunum as a result of delayed intestinal repair

[62]. Transmissible gastroenteritis virus, a coronavirus

that causes significant mortality in neonatal pigs, also

indirectly affects goblet cells by infecting Paneth cells in

the crypt and causing a loss of Notch signals required

for neighboring stem cells to regenerate enterocytes and

mitigate villus blunting [63]. Instead, the loss of Notch

signals drives an increase in goblet cell numbers and

mucus production after infection [63]. Similar to the

effect seen with porcine epidemic virus, these alterations

in goblet cells result in increased susceptibility to

enterotoxigenic E. coli [64]. Much like bacteria that co-

opt MUC interactions to enhance colonization [65,66],

the increase in mucus production caused by transmissi-

ble gastroenteritis virus is beneficial to the virus because

binding the sialic acid-rich MUC helps to facilitate

receptor interactions [67,68]. Indeed, a similar process

has been described for the picornavirus Theiler’s mur-

ine encephalomyelitis virus (TMEV), which binds to

terminal sialic acid moieties on MUC to enhance infec-

tion [69]. Although the precise biological mechanism of

how this binding propensity enhances infection is

incompletely understood for TMEV, there are several

possible explanations beyond receptor binding and

entry. For example, MUC-bound virus could be pro-

tected from inactivation in a low-pH environment, as

well as from host digestive enzymes. Alternatively,

binding to mucus may promote longer retention of the

virus in the gut, thereby enabling the virus to become

peristalsis-resistant [69]. A third possibility is that the

sialic acid-binding sites on TMEV correspond to neu-

tralizing antibody sites [69], which could help the virus

evade host immunity.
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It is intriguing to consider whether these proviral

mechanisms are more broadly applicable to other

enteric viruses. A recent study noted that recovery of

norovirus, rotavirus, astrovirus, sapovirus, and husa-

virus from sewage was enhanced by a pig-MUC cap-

ture method [70]. In separate studies, MUC has been

shown to promote poliovirus infectivity [71], to

enhance the thermostability of reovirus [72], and to

stabilize human astrovirus serotype 1 capsid and

thereby preserve the infectivity of the virus during heat

treatment [73]. Given that changes in mucus produc-

tion can also cause changes in microbiome composi-

tion, it is also possible that virus–bacteria interactions

play a role in these proviral mechanisms, as was noted

in previous comprehensive reviews [74,75].

In contrast to these benefits derived by the virus

from MUC binding, there is also evidence that MUC

can serve as a ‘trap’ for virus particles, in much the

same way that it traps bacteria and parasites [1]. In

multiple studies, sialic acid-dependent strains of rota-

virus exhibited reduced infectivity when co-incubated

with mucus [62,76–79], whereas deglycosylation or

neuraminidase (NA) treatment to remove sialic acid

moieties from mucus abrogated this effect and enabled

cells to be infected [76,77,79]. An increase in mucolytic

bacteria has also been shown to aid rotavirus in its

effect to subvert mucus interference, again highlighting

an important multimicrobe interaction [80]. Reovirus

can also combat mucus via its r1 protein, which exhi-

bits glycosidase activity and, therefore, could be

important for mucus penetration [81]. In short, MUC

appears to serve as a ‘double-edged’ sword that viruses

may combat or co-opt during infection (Fig. 2).

Beyond these cellular functions related to mucus

barrier maintenance, goblet cells also play a critical

role in the development of oral tolerance, with mucus

driving tolerogenic effects via crosstalk with immune

cells [82,83]. Therefore, it is intriguing to consider

whether virus association with mucus could serve as

an immune evasion strategy or whether viral infection

of goblet cells could trigger the formation of goblet

cell-associated antigen passages [84], which enable

luminal contents to be sampled by the underlying anti-

gen-presenting cells in the lamina propria. Is it possible

that enteric viruses, in a similar manner to Salmonella

enteric serovar Typhimurium [85], use goblet cell-asso-

ciated antigen passages to mediate extra-gastrointesti-

nal spread? In addition, S. Typhimurium is known to

colonize the mouse cecum due to exposure of the

epithelium in areas without a thick mucus barrier [86],

which could also benefit viruses that are greatly

impeded by mucus. Similarly, the overlaying mucus on

the epithelial layer of Peyer’s patches is known to be

much thinner than the surrounding epithelium [27],

indicating that viruses that gain entry or infect these

sites, such as murine norovirus via microfold cells [87],

may also play a role. The extent to which this and

other functions of goblet cells in the gut contribute to

protection against or the pathogenesis of viral infec-

tions is an exciting new avenue of research waiting to

be explored.

Airway goblet cells

Distinct from the intestinal epithelium, the lung air-

ways are lined by a pseudostratified epithelial layer

that consists of basal and club progenitor cells that

differentiate into ciliated and secretory cell types,

including goblet cells [15,88]. The mucus barrier in the

airways comprises the periciliary fluid and airway liq-

uid surface layers (Fig. 3). In mice, the airway liquid

surface layer is 10–30 µm thick whereas in humans,

the periciliary fluid is ~ 4–7 µm and the top mucus

layer is highly variable, ranging from 10 to 70 µm in

depending on the section of the airway [89–93].
Together with ciliated cells that display motile cilia on

their apical surface, mucus secretion from goblet cells

and submucosal gland cells is critical for mediating

mucociliary clearance, which sweeps inhaled debris

and potential pathogens out of the airways [94].

Although the airways harbor 14 distinct MUC that

support the mucus layers, the primary secreted MUC

that are analogous to MUC2 in the intestinal tract are

MUC5B and MUC5AC [15].

Respiratory viruses in goblet cells

In contrast to intestinal goblet cells, much has been

uncovered about airway goblet cell interactions with

viruses, particularly with respect to mucus binding

(Fig. 3). Goblet cells are the direct targets of many

human respiratory viruses, such as hantavirus [95], rhi-

novirus [96], and multiple influenza viruses, including

influenza A viruses H1N1, H5N1, H7N9, H5N6, and

H3N2, as well as influenza B virus [97–99]. Influenza
virus is probably the most studied respiratory virus

with direct MUC interactions: its hemagglutinin (HA)

surface protein binds to epithelial sialic acid to mediate

cell entry. Thus, mucus binding by influenza viruses is

in part a side effect of their receptor usage, but mucus

has been shown to both aid and hinder infection, with

evidence of host-variable distinctions [100]. Previous

studies demonstrated that MUC5AC overexpression in

transgenic mice reduced H1N1 virus titers in the lung,

which coincided with reduced immune cell infiltration

[101]. Cell surface MUC can also serve as decoy
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receptors for influenza [102,103], and Muc1-deficient

mice exhibit more severe H1N1 virus infection [102],

highlighting the important role that MUC can play in

antiviral defense. However, because influenza virus

also displays a NA protein on its virion surface, it can

mitigate these mucus effects. Indeed, NA is important

for virus release when HA molecules tether nascent

virus particles to the cell surface [104,105] and also for

viral entry, in which it combats mucus hindrance [106–
109]. Studies have shown that influenza virus can even

co-opt mucus binding as a means of traversing the

mucus barrier to find its cellular receptor [110–112].
Therefore, a careful balance between HA and NA

expression on the virus surface is key to optimal infec-

tion [113], and virus interactions with mucus have been

shown to have a significant impact on transmission

[114,115] and on cross-species restriction [116].

Much like in the gut, basal mucus production in the

lung is intended to flush out pathogens and other irri-

tants in the airways. However, this important host

response can become exaggerated to the point where it

contributes to acute respiratory distress syndrome

(Fig. 3). Most recently, severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) was shown to

infect goblet cells in human bronchial explants and

was also identified by postmortem analysis [117,118],

but such infection was not observed in 2-D airway

organoid cultures [119], perhaps reflecting differences

in the detection methodology. Interestingly, SARS-

CoV-1 infection was not shown to target goblet cells

in vitro or in vivo [119–121], whereas canine respiratory

coronavirus, a related betacoronavirus, has been

shown to infect goblet cells in canine tracheal cultures

[122]. Even if goblet cells are not frequently infected

by SARS-CoV-2, investigation of their role in mediat-

ing airway disease is warranted, as clinical reports

have commonly identified mucus accumulation in fatal

cases of COVID [123–125] and because several other

viral infections drive goblet cell hyperplasia and mucus

metaplasia, leading to compromised lung function.

Respiratory syncytial virus (RSV) is a textbook exam-

ple of this and is by far the most prevalent cause of

lower respiratory disease in infants and young children

[126]. Without directly infecting goblet cells, RSV

induces goblet cell hyperplasia and hypersecretion via

the induction of Th2 cytokines [127], but IL-4 receptor

antagonism can block these cytokine signals and has

been effective in vivo [128]. It was also shown that IL-

12p40, which generally functions as a brake on Th2

hyper-responsiveness, is critical for controlling disease

caused by RSV as well as that caused by human

metapneumovirus, a related pneumovirus [129,130].

Rhinoviruses, which are responsible for the common

cold, similarly drive an increase in MUC production

in vitro and in vivo [131–133], and although this has

been shown to be protective against infection [134], it

can cause complications in the event that the mucus

response becomes excessive. Drug treatments, includ-

ing those with anticholinergic agents, corticosteroids,

and anti-inflammatory drugs, have proved effective at

mitigating overexuberant goblet cell responses caused

by rhinovirus and RSV in vitro and in vivo [135,136].

However, it is important to note that these interven-

tions can come at a cost to antiviral immune responses

and may result in reduced viral clearance [137]. There-

fore, additional study of goblet cell functions could aid

Fig 3. Goblet cells that line the airways are critical to maintaining homeostatic conditions that serve as protection against viral infection

(shown at left). A) Mucus can bind the virus and sequester it from the epithelial layer. B) Mucus secretion aids mucociliary clearance of

virus particles. C) Mucus-associated antibody can also help to block viral infection. D) Goblet cell-driven airway disease can be caused by

overexuberant mucus responses (shown at right), leading to impaired mucociliary clearance. E) Some viruses can benefit from MUC

interactions to help enhance their stability, infection, and transmission.
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the design of appropriate interventions to mitigate

aberrant host responses and promote antiviral

responses that will improve respiratory virus disease

outcomes.

Concluding remarks

Armed with MUC and other antimicrobial proteins

that offer structural and functional interactions with

microbes and host immune cells, goblet cells provide a

critical link in the innate immune responses in the air-

ways and intestines. We are only beginning to scratch

the surface of the heterogeneity within goblet cell pop-

ulations but improving our understanding of how gob-

let cell responses are shaped by host, microbe, and

viral factors will be critical to developing strategies

that modulate their activity. Ultimately, understanding

their basic biology will help to improve host suscepti-

bility and disease outcomes to enteric and respiratory

viral infections.
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