
Citation: Ndlovu, S.S.; Ghazi, T.;

Chuturgoon, A.A. The Potential of

Moringa oleifera to Ameliorate

HAART-Induced Pathophysiological

Complications. Cells 2022, 11, 2981.

https://doi.org/10.3390/cells11192981

Academic Editor: Philippe Gallay

Received: 12 September 2022

Accepted: 20 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

The Potential of Moringa oleifera to Ameliorate HAART-Induced
Pathophysiological Complications
Siqiniseko S. Ndlovu , Terisha Ghazi * and Anil A. Chuturgoon *

Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences,
University of KwaZulu-Natal, Durban 4041, South Africa
* Correspondence: ghazit@ukzn.ac.za (T.G.); chutur@ukzn.ac.za (A.A.C.)

Abstract: Highly active antiretroviral therapy (HAART) comprises a combination of two or three an-
tiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different
steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or ad-
ditive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot
be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an
increasing number of patients experience a broadening array of complications, and this significantly
affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce
toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative
stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without
compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution.
The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel
nutritionally and pharmacologically active compounds that have been shown to prevent and treat
various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have
confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free
radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory,
hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of
affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the
potential of MO leaves to protect against HAART-induced toxicity in HIV patients.

Keywords: HIV; HAART; pathophysiology; metabolic syndrome; Moringa oliefera

1. Introduction

The World Health Organization (WHO) reported that there are 38 million people
currently living with human immunodeficiency virus (HIV) globally, and the majority of
these individuals are in South Africa (SA) [1]. SA has an HIV infection prevalence of 19%
and carries the largest disease burden worldwide [2,3]. HIV is suppressed through the
effective use of antiretroviral (ARV) drugs [4]. Over the past years, ARV formulations have
been improved, and when combined with two or three ARVs from different ARV drug
classes, make a highly active antiretroviral therapy (HAART), also known as antiretroviral
therapy (ART).

The implementation of HAART prolongs the life expectancy in HIV-infected indi-
viduals, and HAART has led to a significant decline in morbidity and mortality among
HIV-infected patients [5,6]. Despite its high effectiveness to suppress HIV viral replication,
HAART cannot completely eliminate the virus because of the presence of multiple T-cell
reservoirs [7] and, for this reason, HIV-infected patients need to be on HAART throughout
their lifetime in order to keep their viral load under 50 copies/mL [8,9]. As a result of
HAART being a life-long treatment, adverse outcomes associated with this long-term
therapy have been emerging.
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HAART has evolved with the intention to make it less toxic, while optimizing its
function; however, it is not void of toxicity. The ART regimen of tenofovir disoproxil
fumarate (TDF), lamivudine (3TC), emtricitabine (FTC), dolutegravir (DTG), and efavirenz
(EFV), in the long-term, has been associated with the development of pathophysiological
complications, referred to as metabolic syndrome (MetS) [10–12]. MetS is a combination of
metabolic disorders that include hypertension, hyperglycemia, changes in fat distribution,
increased cholesterol low-density lipoprotein (LDL) and triglycerides, and reduced levels
of cholesterol high-density lipoprotein (HDL), which may lead to cardiovascular diseases
(CVDs) such as heart disease, stroke, and diabetes [13–19]. It is therefore of paramount
importance that constant approaches for the improvement of ART treatment are made a
clinical and pharmaceutical priority. Alternatively, the use of supplementary medicine such
as medicinal/herbal plants may provide a possible solution.

Medicinal plants and phytomedicines are believed to have benefits over conventional
drugs and are regaining interest in current research. Moringa oleifera (MO) is a medicinal plant
that has been identified for its nutritious and therapeutic benefits. All parts of this plant have
a notable range of functional and nutraceutical properties [20]. Several studies have demon-
strated beneficial effects in humans [21–24]. MO is a rich source of several phytochemicals,
such as phenols, flavonoids, vitamins, minerals, quercetin, and kaempferol. In addition, it
also contains carotenoids, phenolic acids, alkaloids, glucosinolates and isothiocyanates [25].

MO leaves provide powerful antioxidants [26,27], free radical scavenging [28],
anti-inflammation, anti-eNOS expression [29,30], anti-mutagenic, anti-proliferative, anti-
cancer [31,32], hepatoprotective [33], carbohydrate metabolism promoter [34], and repairs
DNA [31]; moreover, MO leaves are a rich source of essential amino acids [35,36], thus
validating the therapeutic claims.

In this review, we outline the toxic effects of HAART/ART and propose MO as a
potential supplementary medicine to ameliorate these toxicities.

2. HAART-Induced Mitochondrial Toxicity and Oxidative Stress

The long-term use of ARV drugs contributes to long-term complications in HIV-
infected persons. Mitochondrial dysfunction and oxidative stress are highlighted as
metabolic pathways through which ARV drugs induce MetS [37–40]. Nucleoside re-
verse transcriptase inhibitors (NRTIs), which are a cornerstone of HAART regimens, non-
nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors, and integrase
strand transfer inhibitors (PIs/INSTIs) have been noticeably associated with many adverse
effects related to mitochondrial toxicity and oxidative stress [41–44].

The effects of HAART were observed in the mitochondria (Figure 1). NRTIs found in
HAART inhibit the activity of DNA polymerase-γ, an enzyme responsible for the replication
and maintenance of mitochondrial DNA (mtDNA), thus compromising mitochondrial
integrity and function [40,45]. The triphosphate (active) forms of NRTI are potential
substrates for the polymerase-γ and can provoke the termination of the DNA chain during
mtDNA replication [46]. The mtDNA depletion also leads to an impaired synthesis of
mtDNA encoded respiratory chain polypeptides, which can partially block the flow of
electrons in the respiratory chain. As a result, they accumulate in complex I and III, where
they react with oxygen to form the superoxide anion radical [47]. These effects have been
described with selected NRTIs [48–50].

The NRTIs impairs oxidative phosphorylation (OXPHOS) proteins and increases
oxidative stress in the mitochondria. This leads to damage of mitochondrial proteins
and lipids further impairing mitochondrial function [51,52] Mitochondrial dysfunction by
NRTIs is also manifested by depolarization of the mitochondrial membrane and increased
reactive oxygen species (ROS) generation [49]. NRTI further interferes with the synthesis of
essential proteins of the mitochondrial electron transport chain (ETC), causing alterations in
nucleotide phosphorylation, directly interfering with mitochondrial respiration and reduce
ATP production [53,54]. NRTIs also impair respiration and ATP synthesis, by preventing
ATP/ADP translocation [54].
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Figure 1. An overview of long-term HAART mitochondrial toxicity and oxidative stress in HIV-
positive individuals. HAART interferes with the synthesis of polymerase-ˠ, reducing the mtDNA. 
This therapy impairs ETC, increasing ROS production, depolarizing the mitochondrial membrane, 
and compromising the ATP synthesis. HAART also depletes GSH and other cellular antioxidants, 
propagating oxidative stress in the cell. Created with BioRender.com (access date: 2 June 2022). 
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Not all NRTIs exert the same degree of polymerase-γ inhibition; however, they have 
the capacity to induce mitochondrial toxicity. In vitro studies have demonstrated that 3TC 
inhibits polymerase-γ, although its affinity for polymerase-γ is not as strong as the previ-
ously discontinued ARVs [55,56]. Samuels, Bayerri [57] reported that mtDNA deletion 
mutation was detectable significantly more commonly in the urine of TDF exposed study 
participants as compared to unexposed individuals. 
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drial membrane depolarisation [50]. FTC has also been shown to cause mitochondrial dys-
function when used together with TDF, the mechanisms of mitochondrial toxicity include 
a decrease in mitochondrial membrane potential, inhibition of OXPHOS complex I and 

Figure 1. An overview of long-term HAART mitochondrial toxicity and oxidative stress in HIV-
positive individuals. HAART interferes with the synthesis of polymerase-γ, reducing the mtDNA.
This therapy impairs ETC, increasing ROS production, depolarizing the mitochondrial membrane,
and compromising the ATP synthesis. HAART also depletes GSH and other cellular antioxidants,
propagating oxidative stress in the cell. Created with BioRender.com (accessed on 2 June 2022).

Not all NRTIs exert the same degree of polymerase-γ inhibition; however, they have
the capacity to induce mitochondrial toxicity. In vitro studies have demonstrated that
3TC inhibits polymerase-γ, although its affinity for polymerase-γ is not as strong as the
previously discontinued ARVs [55,56]. Samuels, Bayerri [57] reported that mtDNA deletion
mutation was detectable significantly more commonly in the urine of TDF exposed study
participants as compared to unexposed individuals.

FTC effects on the mitochondria include reduction of ATP synthesis and mitochondrial
membrane depolarisation [50]. FTC has also been shown to cause mitochondrial dysfunc-
tion when used together with TDF, the mechanisms of mitochondrial toxicity include
a decrease in mitochondrial membrane potential, inhibition of OXPHOS complex I and
complex iv enzymes, decrease in oxygen consumption, and increased production of mito-
chondrial ROS [58]. A previous study showed that TDF caused a significant decrease of ATP
in mice kidney and a decrease in succinate dehydrogenase activity, which is also an indica-
tion of the loss of inner mitochondrial membrane integrity. Moreover, TDF accumulation
within proximal renal tubules led to mitochondrial injury and depletion [59,60]. Another
study showed that long-term treatment with HAART causes mitochondrial dysfunction in
HIV patients [61].
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EFV, the most popular NNRTI, has been associated with metabolic disorders, hepatic
toxicity and neurotoxicity [62,63]. EFV effects on the mitochondria include a decrease in
mitochondrial membrane potential, inhibition of OXPHOS complex I enzymes, decrease in
oxygen consumption, decrease in ATP production and increased production of mitochon-
drial ROS [64–66]. Dolutegravir (DTG) an important INSTI class drug alters mitochondrial
function by decreasing ATP synthesis, depolarising the mitochondrial membrane, and has
the potential to alter immunometabolism [50]. Another HAART toxicity mechanism is
through an induction of oxidative stress [49].

Oxidative stress, a state of imbalance between oxidants production and antioxidants,
and mitochondrial impairment result from xenobiotic metabolism and accompany one
another [67]. Disruptions to mitochondrial function increase the production of ROS, mostly
superoxide, through impaired OXPHOS [68]. Increased free radical production, over a
period of time, depletes the antioxidant defense response, eventually resulting in oxidative
damage to macromolecules including DNA, protein and lipid membranes [69]. NRTI,
NNRTI and INTSI of HAART are linked with increased levels of oxidative stres and
depletion of antioxidants in HIV-infected individuals (Figure 1).

HAART (TDF,FTC,DTG) treatment to primary rat microglia increased ROS levels [70].
TDF also significantly increased ROS production, depleted antioxidant GSH and the mito-
chondrial superoxide dismutase (MnSOD) [71]. HAART (3TC and DTG in combination with
Abacavir) have been reported to induce liver toxicity through upregulation of ROS [72,73].
3TC and FTC induced hepatotoxicity by triggering oxidative stress and depletion of the
antioxidants GSH and SOD1 while also increasing the expression of ALT [74]. EFV-treated
SweAPP N2a neurons displayed enhanced release of ROS [75]. Hamed, Aremu [76] and
Ikekpeazu, Orji [61] showed that GSH and GPx levels were significantly reduced in rats
subjected to HAART (TDF, 3TC and EFV) Ikekpeazu, Orji [61] further showed that HAART
increased levels of MDA, which is the biomarker for oxidative stress and a by-product of
lipid peroxidation. HAART-induced oxidative stress has been demonstrated to interfere
with the mitochondrial function leading to reduction in GSH content [77,78]. Prolonged
oxidative stress is reported to trigger inflammation, which is exacerbated by HAART usage.

3. HAART-Induced Chronic Inflammation and Insulin Resistance

HAART reduces systemic inflammation and immune activation, but not to levels
synchronous with HIV-uninfected populations. Furthermore, over a prolonged period,
HAART induces inflammation. With effective viral replication suppression by HAART,
there is still a heightened pro-inflammatory condition in treated people compared to non-
HAART consuming individuals. This develops to chronic and systemic inflammation,
which, over time, promote pathophysiological metabolic complications [79–81].

A chronic inflammatory state is based on evidence of increased levels of various pro-
inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) [82–84], interleukin
1 beta (IL-1β), interleukin 6 (IL-6) [80,83], and biomarkers of inflammation such as nuclear
factor kappa B (NF-κB) and C-reactive protein (CRP) [85]. The stimulation and release of
pro-inflammatory mediators from one site promotes inflammation and usually ends up
interfering and affecting other tissues, thereby amplifying the chronic inflammatory state,
impairment of the cellular pathologies, and eventually tissue dysfunction/damage [86].

A recent study reported that HAART (TDF, FTC, and DTG) increased the mRNA
levels of IL-1β, IL-6, and TNF-α in rats [70], as TDF modulated mitochondrial biogenesis
and triggered inflammatory pathways. A recent study showed that TDF induced pro-
inflammatory cytokines TNF-α and IL-1β in mice [87]. Ramamoorthy, Abraham [88]
showed that the activation of NF-kB and its downstream pro-inflammatory target genes,
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α, may play a
critical role in the pathophysiology of TDF-induced renal damage in rats.

Hamed et al. (2021) reported that HAART (TDF, 3TC, and EFV) increased nitrite
oxide (NO), a signaling molecule that plays a key role in the pathogenesis of inflammation.
They also revealed that hepatic and renal membrane permeability, as well as caspase 3-
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dependent apoptosis, may be due to the stimulation of NF-kB and the enhancement of
iNOS, essential factors of NO production. Moreover, it was reported that the oxidative
stress induced by HAART may have triggered the inflammation (Figure 2). Oxidative stress
can activate a variety of transcription factors, which lead to the differential expression of
some of the genes involved in the inflammatory pathways [89,90]. Inflammation triggered
by oxidative stress is the cause of many chronic diseases [91]. Chronic inflammation may
cause pathophysiological complications such as insulin resistance [92–94].
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Figure 2. An overview of long-term HAART-induced inflammation and insulin resistance in HIV-
infected individuals. HAART induced pro-inflammatory and anti-inflammatory cytokines through
mitochondrial impairment, oxidative stress, and activation of NF-κB. HAART triggers insulin
resistance via IRS phosphorylation and the inhibition of the glucose transporter. Created with
BioRender.com (accessed on 2 June 2022).

Increased TNF-α levels affect the insulin receptor substrate (IRS) proteins, leading
to insulin resistance [95]. TNF-α induces activation of serine kinases such as cJun N-
terminal kinase (JNK) and the two-kinase complex (IKKalpha and IKKbeta) (IKK), which
phosphorylates IRS-1. The increased concentration of phosphorylated IRS-1 inhibits the
insulin receptor, thus causing insulin resistance [96]. Lastly, there is compelling evidence
that HAART inhibits insulin-stimulated glucose disposal via the blockade of glucose uptake
by glucose transporter isoform 4 (GLUT 4) and glucose transporter isoform 2 (GLUT 2).
This leads to insulin resistance and impaired β-cell function via down-regulation of the
insulin receptors [97,98]. EFV has been shown to increase blood glucose levels to a greater
degree, while DTG triggers the development of insulin resistance in human adipocytes [99].
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The primary goal of HAART is to suppress HIV replication, thus allowing for im-
mune reconstitution and subsequent longevity in HIV-infected individuals. The safety of
these drugs is of paramount importance and should continuously be evaluated to achieve
optimum adherence and the benefit of the therapy, while maintaining its efficacy. As a
supplement, the application of adjuvants can benefit the HIV-infected population. Alterna-
tively, the use of medicinal plants that may synchronously function with HAART and hence
may minimize the toxic effects of HAART. Medicinal plants are one of the most important
sources of novel nutritionally and pharmacologically active compounds, and have a well-
documented history in the prevention and treatment of various diseases [100]. They contain
many bioactive compounds that act to minimize oxidative stress and inflammation [101].
One such plant is Moringa oleifera (MO).

4. Moringa oleifera (MO) as a Supplementary Medicine

MO is a medicinal plant of the Moringaceae family that was originally found in India
and is now globally cultivated, including in SA [102]. Several studies have demonstrated
the beneficial effects of MO in humans [20,102,103]. Different parts of the plant, such
as the bark, leaves, seeds, flowers, roots, and immature pods, contain many important
phytoconstituents [104]. The extracts of different parts of MO offer a high level of safety
without any adverse effects to humans.

The leaves of MO are rich in minerals such as calcium, potassium, zinc, magne-
sium, iron, and copper, as well as vitamins (A, B, C, D, and E) [105,106]. MO leaves
also contain phytochemicals such as tannins, sterols, flavonoids, saponins, alkaloids,
terpenoids, anthraquinones, and reducing sugars, as well as anti-oxidative and anti-
inflammatory agents such as glucosinolate, isothiocyanates, glycosides and glycerol-1-9
octadecanoate [22,105,107,108]. MO has been identified as an alternative protein source
that can meet the regular demands of malnourished people [109] as it contains various
types of amino acids. Essential amino acids such as methionine, cystine, tryptophan, lysine,
caline, threonine, and isoleucine were found to be present in MO leaf extracts [20,23,36].

MO leaves also have a low calorific value and can be used in the diet of obese in-
dividuals. Many studies, both in vitro and in vivo, have confirmed the pharmacological
properties of MO leaves (Leone et al., 2015)

4.1. Anti-Oxidant Properties of MO

The anti-oxidant properties of MO have been well documented [26,110,111]. MO is
known as a free radical scavenger and extracts from the leaves exhibit a strong antioxidant
activity against free radicals and prevent oxidative damage due to the enrichment of
polyphenols [112,113]. MO leaves contain chlorogenic acid, rutin, quercetin glucoside, and
kaempferol rhamnoglucoside [114,115].

MO was shown to restore glutathione (GSH), and increase the expression and activity
of the glutathione-S transferase (GST), glutathione peroxidase (GPx), and glutathione
reductase (GR) [111,116]. Increased GST activity leads to a larger detoxification of molecules
through their conjugation with GSH. The synthesis of GSH depends mainly on the activity
of gamma-glutamyl cysteine ligase (γ-GCL), which catalyzes the binding of glutamate to
cysteine, the limiting step in the synthesis of GSH. MO induces the synthesis of the enzymes
responsible for regenerating GSH levels, such as GR and γ-GCL [111,117]. This protective
effect may be related to a variety of phytochemicals such as ascorbic acid and phenols
(catechin, epicatechin, ferulic acid, ellagic acid, and myricetin) through scavenging free
radicals [118,119]. Briefly, GSH, a potent endogenous antioxidant, scavenges electrophilic
and oxidant species either in a direct way or through enzymatic catalysis: (i) it directly
quenches reactive hydroxyl radicals, other oxygen-centered radicals, and radical centers
on biomolecules. (ii) GSH is the co-substrate of GPx, permitting a reduction in peroxides
(hydrogen and lipid peroxides) and producing GSSG. In turn, GSSG is reduced to 2 GSH via
reduced nicotinamide adenine dinucleotide phosphate (NADPH) reducing the equivalents
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and glutathione disulphide reductase catalysis. Xenobiotic metabolites are conjugated with
GSH through activation by GSTs [120–122].

The secondary antioxidant response includes many of the downstream genes re-
sponsible for regulating oxidative stress, and is regulated by the nuclear factor erythroid
2–related factor 2 (NRF2) [123]. NRF2 is normally maintained in the cytoplasm through
interaction with the cytosolic repressor protein Keap1, an adaptor component of the Cullin
3-based ubiquitin E3 (Cul-E3) ligase complex, which promotes the ubiquitination and
proteasomal degradation of NRF2. Exposure to both endogenous and exogenous molecules
such as ROS lead to the dissociation of NRF2 from Keap1; NRF2 then translocates to
the nucleus. In the nucleus, NRF2 heterodimerizes with small Maf proteins, making it
bind to the cis-regulatory, antioxidant response element (ARE) located in the promoter
region of NRF2 target genes, thereby activating their transcription. Target genes include
hemeoxygenase-1(HO-1), superoxide dismutase (SOD), catalase (CAT), and NAD(P)H
quinone dehydrogenase 1 (NQO1) [123,124].

MO upregulate NRF2 and attenuate oxidative stress; specifically, isothiocyanate from
MO leaves have been shown to directly upregulate the NRF2 pathway [117,125]. Previ-
ous studies have shown that MO leaf extracts protect titanium dioxide nanoparticles and
methotrexate-induced toxicity via upregulation of NRF2/HO-1 signaling and the ameliora-
tion of oxidative stress [126,127]. In other studies, MO drastically reduced lipid peroxides
and increased GSH concentrations, along with a decrease in the activities of SOD and
CAT [128].

4.2. Antiinflammatory Properties of MO

Chronic inflammation is involved in a number of disorders and is characterized by the
continuous expression of pro-inflammatory factors and long-lasting tissue damage. MO
possess properties that act against chronic inflammation and its associated disorders.

NF-κB is a transcription factor that is essential for inflammatory response. The NF-
κB signaling pathway plays a role in the pathogenesis of liver injury caused by various
agents [129–131]. IκB molecules sequester NF-κB in the cytosol of resting cells. Upon
inflammation, IKK phosphorylation of IκB molecules promotes their degradation and
releases NF-κB, which translocates to the nucleus to promote the transcription of target
genes. NF-κB target genes include iNOS, TNFα, IL-6, IL-1β, and COX-2, which further
mediate and propagate inflammation [132–134].

MO has been reported to decrease the production of TNF-α, IL-6, and IL-8 and the
expression of RelA, a gene in (NF-κB) p65 signaling, during inflammation [135,136]. Pre-
vious studies have documented that MO can selectively inhibit the production of iNOS
and COX-2, and significantly inhibit the secretion of NO and other inflammatory markers—
including TNF-α, IL-6, and IL-1β in RAW264.7 cells and in human macrophages [30,136,137].

The isothiocyanate glycosides from MO leaves were shown to inhibit the expression
of COX-2 and iNOS at both the protein and mRNA levels through inhibiting the major
upstream signaling pathways via mitogen-activated protein kinases (MAPKs) and NF-
κB [138,139]. Furthermore, Jaja-Chimedza, Graf [140] showed that MO leaves down-
regulated the NF-κB pathway by decreasing the expression of IκBα, p-IκBα, and p65
proteins. MO also ameliorates inflammation by upregulating NRF2 [125,141]. Minaiyan,
Asghari [142] showed potent inflammation attenuating actions of hydroalcoholic extracts
of MO against inflammatory bowel ailments through diminishing the activities of IL6 and
IL4, as well as TNFα, in rats.

Attenuating insulin resistance, MO increases the physiological activities of GLUT-2
and GLUT-4 in the plasma membrane, promoting the translocation of extracellular glucose
into cells to increase the glucose consumption in cells [143,144]. Specifically, quercetin
of MO leaf extracts has also been shown to activate AMPK, to increase glucose uptake
through the stimulation of GLUT4 in the skeletal muscle, and to decrease the production
of glucose through the downregulation of phosphoenolpyruvate carboxykinase (PEPCK)
and glucose-6-phosphatase (G6Pase) (key enzymes involved in gluconeogenesis) in the
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liver [145]. Vargas-Sánchez, Garay-Jaramillo [146] stated that the flavonoid kaempferol has
been shown to improve glycolysis, glucose uptake, glycogen synthesis, AMPK activity, and
GLUT-4 expression.

5. HAART-MO

In vitro and in vivo studies have shown the toxicity of HAART [50,70,78,79,89,109].
Some clinical studies have shown the toxicity of HAART on the kidney, where TDF was as-
sociated with renal tubular dysfunction in HIV patients on HAART [57]. Patil, Ona [147] re-
ported an acute liver toxicity of HAART in a male patient. The prevalence of metabolic com-
plications in HIV individuals consuming HAART have been reported [148–150]. In vitro
and in vivo studies have outlined the therapeutic effects of MO bioactive compounds at
a molecular and cellular level, and a few clinical studies on the MO therapeutic effects
have been conducted [151–153]. The anti-asthmatic activities of MO in patients have been
reported [154], and Taweerutchana, Lumlerdkij [151] reported that MO leaf reduced blood
pressure in diabetic patients.

Intriguingly, MO therapeutic effects have been shown for the immune status of HIV-
infected people on ART as well. A study on adult patients revealed that MO leaf powder
supplementation improved the body mass index and immune response in HIV patients on
ART [155]. MO leaf supplementation was shown to be associated with increased CD4 cell
counts of PLHIV on ART [156]. Ogunlade, Jeje [157] showed that MO leaf extract restored
semen quality, hormonal profile, and testicular morphology against HAART-induced
toxicity in adult male Wistar rats.

Although the clinical application of MO is not comprehensive enough yet, we can at
least conclude from the previous demonstrated studies that MO could be used as a therapy
and a supplement, or as an adjuvant in the treatment of metabolic disease complications.
Therefore, considering the molecular and cellular toxicities induced by HAART, and the
therapeutic benefits of MO, the pathophysiological complications experienced by HIV-
infected people consuming HAART may be attenuated.

Taken together, metabolic disorders in HAART consuming individuals develop and
progress primarily as a result of impairments in the metabolic pathways. The approach for
improving and advancing HAART may be exploring and targeting cellular pathways, such
oxidative stress and inflammation. Medicinal plants are either used as crude or purified
extracts. The medicinal plant MO is therapeutic and safer as it is rich in phytochemicals
and displays potent antioxidant and anti-inflammatory activities.

6. Conclusions

Long-term HAART consumption leads to toxicity, mainly through oxidative stress
and inflammation, which become clinically visible as MetS. MO leaves possess bioactive
compounds that have antioxidants and anti-inflammatory properties. Therefore, MO
leaves could be a great supplementary medicine to ameliorate HAART-induced toxicity. In
addition, specific MO bioactive compounds such as quercetin could be extracted and used
as an optimized adjuvant for improving HAART. MO agents could be a source of easily
accessible and affordable therapies against HAART toxicities in the future.
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