
Research Articles

Efficient Design of Compact Unstructured RNA

Libraries Covering All k-mers

YARON ORENSTEIN1 and BONNIE BERGER1,2

ABSTRACT

Current microarray technologies to determine RNA structure or measure protein–RNA in-
teractions rely on single-stranded, unstructured RNA probes on a chip covering together all
k-mers. Since space on the array is limited, the problem is to efficiently design a compact
library of unstructured [-long RNA probes, where each k-mer is covered at least p times. Ray
et al. designed such a library for specific values of k, [, and p using ad-hoc rules. To our
knowledge, there is no general method to date to solve this problem. Here, we address the
problem of finding a minimum-size covering of all k-mers by [-long sequences with the desired
properties for any value of k, [, and p. As we prove that the problem is NP-hard, we give two
solutions: the first is a greedy algorithm with a logarithmic approximation ratio; the second, a
heuristic greedy approach based on random walks in de Bruijn graphs. The heuristic algo-
rithm works well in practice and produces a library of unstructured RNA probes that is only
*1.1-times greater in size compared to the theoretical lower bound. We present results for
typical values of k and probe lengths [ and show that our algorithm generates a library that is
significantly smaller than the library of Ray et al.; moreover, we show that our algorithm
outperforms naive methods. Our approach can be generalized and extended to generate RNA
or DNA oligo libraries with other desired properties. The software is freely available online.
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1. INTRODUCTION

RNAs play vital roles in many processes in the living cell. Through interaction of RNAs with other

RNAs or proteins, they perform specific functions. RNA–RNA interactions play a role in many path-

ways of RNA metabolism, including pre-mRNA splicing, ribosome synthesis, and the regulation of mRNA

stability by microRNAs (Kudla et al., 2011). RNA-binding proteins interact with RNAs to modulate and

affect a wide variety of cellular processes, including RNA replication, repair, and recombination (Rinn and

Ule, 2014). Both types of interactions are mediated through the structure and sequence of the RNA molecule.

1Computer Science and Artificial Intelligence Laboratory and 2Department of Mathematics, Massachusetts Institute
of Technology, Cambridge, MA.

# The Author(s) 2015; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms
of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly credited.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 23, Number 2, 2016

Mary Ann Liebert, Inc.

Pp. 67–79

DOI: 10.1089/cmb.2015.0179

67



Typically, interactions occur with RNA accessible regions through either base-pairing to nucleotides of

another RNA or hydrogen bonding to a protein’s residues (Wan et al., 2011; Kertesz et al., 2007).

A given RNA may fold into different conformations, which vary in accessible regions (Steffen et al., 2006);

therefore, relying on in silico prediction of its structure may lead to incorrect predictions for the accessible

region of interest. Researchers would thus like to experimentally measure accessible regions in RNAs.

Numerous experimental methods have been developed to study the secondary structure of RNAs in a high-

throughput (HTP) manner (Kertesz et al., 2010; Mandir et al., 2009; Kierzek et al., 2006). Microarray technologies

measure RNA secondary structure through the hybridization of accessible regions to a set of oligos on a chip. An

array covering all RNA k-mers (a contiguous RNA word of length k) can robustly and accurately measure the

structure of many RNAs. Examples for such arrays covering all 6-mers and 7-mers include a couple of studies

(Mandir et al., 2009; Kierzek et al., 2006), respectively. In both experimental setups, each oligo contains a unique

k-mer. Despite the fact that microarrays are limited in throughput compared to deep-sequencing-based methods,

they are still often being used to overcome limitations in sequencing methods (Kierzek et al., 2015).

RNA-binding proteins (RBPs) regulate gene translation post-transcriptionally via their binding to RNA mole-

cules. More than 1,500 genes in the human genome are thought to code for RBPs, making this family one of the

largest families in the human proteome (Gerstberger et al., 2014). Many of these proteins have sequence-specific

RNA-binding properties and thus regulate genes by binding only to site-specific elements. Better characterization of

RBP’s sequence-specific binding preferences can improve our understanding of post-transcriptional gene regulation.

New experimental high-throughput (HTP) techniques have been developed to uncover protein–RNA

interactions on a genome-wide scale at single-nucleotide resolution. For example, HITS-CLIP, CLIP-seq,

and RIP-seq (König et al., 2012) measure protein–RNA interactions in vivo in an HTP manner. However,

much like protein DNA-binding, protein RNA-binding is influenced by a variety of factors, such as other

RBPs (that either compete for the same binding site or cobind as a complex) and RNA secondary structure,

which determines if a binding site is accessible or not (Fu and Ares Jr. 2014). While the end goal is to

understand and predict in vivo binding, in vitro experiments currently have higher resolution and lower noise

and thus provide valuable complementary information to protein RNA-binding preferences.

Toward this aim, high-throughput in vitro methods have been developed to study the binding preferences

of RBPs (Ray et al., 2009; Lambert et al., 2014). In RNAcompete (Ray et al., 2009), a specific protein binds

to a set of predesigned oligos, and binding is measured using a florescence tag. The binding of the protein to

a set of more than 200,000 probe sequences is reported. A recent study by the authors presents the binding

of more than 200 human RBPs and provides a compendium of RBPs (Ray et al., 2013). RNA Bind-n-Seq is

a new technology that measures protein RNA-binding based on HTP sequencing (Lambert et al., 2014).

Since the initial library is composed of random oligos, these may be structured and as a result include

k-mers that are likely to be base-paired in RNA secondary structure.

The oligo library used in RNAcompete experiments has unique properties that allow it to effectively

measure protein RNA-binding in a universal and unbiased manner. The complete oligo set is designed such

that each 9-mer is covered at least 16 times. This property guarantees the ability to infer accurate binding

scores for 9-mers and shorter k-mers. Another key property is that the probe sequences are unstructured,

which makes them accessible to the protein for binding (Stefl et al., 2005).

In this article, we address the problem of designing better microarray probe libraries for enhanced explo-

ration of RNA structure through base-pairing of the target RNA to the probes as well as protein RNA-binding

through affinity between a protein and the probes. Note that array designs that consist of a single k-mer for each

probe are disadvantageous: the space on the microarray is limited, while the number of probes grows expo-

nentially with k (the number of possible RNA k-mers is 4k). A small value of k is also undesirable, since the

likelihood of having a k-mer appear more than once in a target RNA sequence, and thus preventing unique

identification of accessible sites, increases as k gets smaller. Hence, we aim to increase the size of k, while

maintaining a small number of oligos on the chip. This goal can be achieved by covering a number of k-mers

on each oligo. In this scenario, the k-mers are no longer covered by a unique sequence. Alternatively, if a k-mer

is covered multiple times, an aggregate score for its accessibility or affinity can be inferred.

There are numerous methods to design sequences with complete coverage of all k-mers. De Bruijn sequences are

the most compact sequences to cover all k-mers (Berger et al., 2013). They can be generated in linear time in various

ways, including Euler tours in complete de Bruijn graphs (West et al., 2001), linear-feedback shift registers

(Lempel, 1970), and in a recursive manner (Alhakim and Akinwande, 2011). De Bruijn sequences have been

successfully used in HTP technologies that measure protein DNA-binding, such as protein-binding microarrays

(Berger et al., 2006; Philippakis et al., 2008; Orenstein and Shamir, 2013), and MITOMI (Fordyce et al., 2010).
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However, the coverage of all k-mers is not enough, as RNAs may form structure. In RNAcompete, the

authors used ad-hoc greedy rules to generate an oligo library with the desired properties (Ray et al., 2009);

however, their method cannot be generalized. To our knowledge, there is currently no method to generate

an RNA oligo library such that each k-mer occurs at least p times in ‘-long unstructured probe sequences.

Such a method would be highly useful for current and future technologies that measure protein–RNA

interactions or RNA secondary structure. In addition, the freed space on the device may be used to cover

longer k-mers or sequences with other specific properties.

Here, we solve the problem of designing an RNA oligo library such that each k-mer occurs at least

p-times in ‘-long unstructured probe sequences. We prove that for a given set of ‘-long probes, the

problem of covering all k-mers by a minimum-size subset is NP-hard. Thus, we formulate the problem as

a minimum m-set cover problem and give an approximation algorithm with guaranteed logarithmic ratio.

We also present a heuristic greedy algorithm based on random walks in de Bruijn graphs, which perform

very well in practice; it produces an oligo library that is only *1.1-times greater in size than the

theoretical lower bound. In our results, we analyze the fraction of unstructured RNA oligos as a function

of their length and show that traditional methods to cover all k-mers do not work. We conclude with an

analysis of the computational performance of our heuristic algorithm over different values of k and ‘ and

in comparison to the design of RNAcompete (Ray et al., 2013). The software is freely available online.

2. PRELIMINARIES

2.1. de Bruijn graphs

A de Bruijn graph of order k over alphabet R is a directed graph in which every vertex has an associated

label (a string over R) of length k (k-mer) and every edge has an associated label of length k + 1. There are

exactly jRjk vertices in the graph, each representing a unique k-mer. If an edge (u, v) has an associated label l,

then the label associated with u must be a k-prefix of l, and the label associated with v must be a k-suffix of l.

A complete de Bruijn graph contains all possible edges, which represent together all (k + 1)-mers over R.

Every path in a de Bruijn graph represents a sequence. A path v1,e1,v2,.,vn of length n spells a sequence

s of length n + k - 1 such that the label associated with vi occurs in s at position i for all 1 £ i £ n, and the

label associated with ei occurs in s at position i for all 1 £ i £ n - 1.

2.2. Unstructured RNA probes and self-structured k-mers

We followed the definition of structuredness used in the RNAcompete study (Ray et al. 2009). The authors

use RNAshapes (Steffen et al., 2006) to enumerate all secondary structures with free energies within 70% of

the minimum free energy. The exact command line is: RNAshapes -s -c 70.0 -r -M 30 -t 1 -o 2.
The sum of the probabilities of structures with free energies less than -2.5 kcal/mol quantifies structu-

redness. A value below 0.5 is considered unstructured. For any sequence, we prepend the linker used in the

RNAcompete technology (AGG or AGA) (Ray et al., 2009). From the two linkers, we selected the one that

gave the smaller sum of probabilities.

A self-structured k-mer forms structure in itself. It follows that no probe can contain it without being

structured. Thus, to cover all k-mers in a microarray, structured probes must be included. For the structure

definition above, self-structured k-mers exist for k ‡ 9. Smaller values of k do not require structured probes

to cover all k-mers. We refer to k-mers that are not self-structured as unstructured k-mers.

2.3. Problems definition

We first define the notion of k-mer coverage over alphabet R.

Definition 1. A set L of sequences is a k-mer coverage over R if for every w ˛Rk, there exists a

sequence Li˛L s.t. w˛Li.

We generalize the definition of k-mer coverage with a p-multi k-mer coverage.

Definition 2. A set L of sequences is a p-multi k-mer coverage over R if for every w ˛ Rk,P
Li2L o(w‚ Li)qp, where o(w, Li) is the number of times w occurs in sequence Li.
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We can now state our optimization problem:

THE MINIMUM K-MER COVERAGE BY ‘-LONG SEQUENCES PROBLEM

INSTANCE: A set S of ‘-long sequences that is a k-mer coverage over R = {A, C, G, U}.

VALID SOLUTION: A subset S04 S that is a k-mer coverage over R.

GOAL: Minimize jS0j.
And a similar NP-hard problem that we reduce from and use for an approximation algorithm:

THE MINIMUM M-SET COVER PROBLEM
INSTANCE: A set S of subsets of E = {e1,.,en} s.t. for any Si˛S, its size jSij£ m.

VALID SOLUTION: A subset S04 S s.t. for every ei˛E there exists Si˛S0 s.t. ei˛Si.

GOAL: Minimize jS0j.
We generalize the k-mer coverage problem by requiring multiple k-mer occurrences. Note that multisets

may contain an element multiple times. We use distinct(S) to denote the set of unique elements in multiset S.

THE MINIMUM P-MULTI K-MER COVERAGE BY ‘-LONG SEQUENCES PROBLEM

INSTANCE: A set S of ‘-long sequences that is a k-mer coverage over R = {A, C, G, U} and p.

VALID SOLUTION: A multiset S0 s.t. distinct(S0) 4 S and S0 is a p-multi k-mer coverage over R.

GOAL: Minimize jS0j.
Dealing with self-structured k-mers Note that since self-structured k-mers may exist, covering all

k-mers by ‘-long unstructured probes may be impossible. The coverage problem may be redefined as two

subproblems to handle self-structured k-mers:

1. Cover all unstructured k-mers by a minimum size set of ‘-long unstructured RNA probes.

2. Cover all self-structured k-mers by a minimum size set of ‘-long RNA probes.

The union of these sets covers all k-mers, since each k-mer is either unstructured or self-structured by

definition (see section 2.2).

3. METHODS

Since the minimum k-mer coverage by ‘-long sequences problem is NP-hard (as we prove in section 3.3), we

provide an approximation algorithm and heuristic, which performs very well in practice, to address this problem.

3.1. Approximation algorithm through the minimum m-set cover problem

The problem of covering all k-mers in unstructured RNA probes can be formulated as a minimum m-set

cover problem. The problem can be approximately solved by a greedy algorithm. The algorithm starts with an

empty set and adds to the solution the set that has the most uncovered elements in it. The algorithm achieves

an approximation ratio of H(m) - 196
360

, where m is the maximum cardinality of a set in S, and H is the harmonic

number H(n) =
Pn

i = 1 1=ipln(n) + 1 (Berman et al., 2004; Levin, 2008). The algorithm can be highly accurate

in some instances (Grossman and Wool, 1997). This leads us to the next corollary:

Corollary 1. Algorithm 1 is an (H‘- k + 1 - 196
390

)-approximation to the minimum k-mer coverage by ‘-long

sequences problem.

If self-structured k-mers exist, Algorithm 1 can be modified to first handle the coverage of unstructured

k-mers by unstructured RNA probes, and then rerun to cover uncovered self-structure k-mers by structured

RNA probes. Thus, since the approximation ratio is valid for each subproblem, Corollary 1 is valid for

covering all k-mers (see section 2.3 for definition of subproblems).

Algorithm 1 Solve k-coverage by ‘-long unstructured RNA probes problem as a set cover problem

1: For each ‘-long RNA sequence:

2: Test if the sequence is unstructured. If so, add it to the list of unstructured sequences.

3: Apply the greedy set cover algorithm:

4: The elements are the k-mers.

5: The sets are the unstructured sequences and their elements are the k-mers they cover.
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The running time of the algorithm is exponential in the oligo length ‘. The first step iterates over all possible

‘-long sequences, and for each one runs an RNA secondary structure prediction algorithm. Denote f (‘) to be

the running time of the prediction algorithm on an ‘-long sequence; then Step 1 takes H(4‘ $ f (‘)). The second

step can be implemented using a priority queue, whose keys are the number of uncovered elements of each

unstructured sequence not in the solution. Since the keys are integers bounded by ‘-k + 1, queue operations can

be implemented in O(1) time. A dictionary is used to hold uncovered k-mers and pointers to the sequences that

contain them. The dictionary can be implemented using an array of size 4k, as our k-mers can be represented as

integers from 0 to 4k - 1. Each cell contains a list of pointers to sequences containing the k-mer. The length of

the list is bounded by (‘- k + 1) $ 4‘-k, the number of possible ‘-long sequences containing the k-mer.

Therefore, we get that the running time for the second step is H(4‘+ 4k $ (‘- k + 1) $ 4‘-k). The first term

consists of delete-minimum operations on the queue, and the second, the update operations. In total, Algorithm

1 takes time H(4‘ $ f (‘)). [Since input size is ‘, then f (‘) = U(‘). Predicting minimum free-energy structure can

be done in O(‘2) (Lorenz et al., 2011). Predicting all possible structures takes O(4‘ $ ‘) as there is an expo-

nential number of structures, and heuristics are used to estimate representative structures up to a given energy

threshold (Steffen et al., 2006)]. Unfortunately, the running time is infeasible for most instances, for example,

‘= 35 in RNAcompete’s implementation (Ray et al., 2009). Thus, we turn to a heuristic greedy algorithm.

3.2. A heuristic greedy algorithm based on random walks in de Bruijn graphs

Our greedy algorithm, summarized as Algorithm 2, is based on the following two key ideas:

1. Using random walks in a de Bruijn graph to find unstructured oligos.

2. Backtracking strategy in cases where the random walk reaches a structured oligo.

The algorithm tries to find a set of disjoint ‘-long paths in a de Bruijn graph, each representing an

unstructured probe, and together covering all the edges. To cover each k-mer p times, p - 1 copies are added

to each edge. During the search for the desired paths, structured paths may be found. To address this

problem, the algorithm backtracks and searches for a different path. An illustration of this process is

depicted in Figure 1. Through its random walk, the algorithm doubles the length of the explored path by

possible extensions and selects the first unstructured path it encounters. The rationale behind this search

process follows from two ideas related to RNA secondary structure prediction:

1. If a subsequence is structured, it is most likely that a sequence containing it is structured (for

experimental support see section 4.1).

2. A structure may form between one half of a sequence to the other half.

FIG. 1. An illustration of the search process for unstructured paths. In the example, the current path started from

vertex AGCGGG. It was extended to the unstructured path AGCGGGACGUGG. Then, it attempted to extend the path

and succeeded in the third attempt to find an unstructured path. The de Bruijn graph is of order 6 to cover all 7-mers.
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Thus, the algorithm does not waste time by trying to extend structured subpaths. Indeed, it considers

all possible path-extensions of length double the current path to test if it is unstructured. This fact is

also beneficial in terms of running time: the number of extensions in a doubling scheme is O(log(‘)) instead

of O(‘).

Algorithm 2 Generate a set of ‘-long unstructured RNA sequences covering all k-mers p times. Input: k (coverage),

‘ (oligo length), p (multiplicity), c (a limit on the number of attempts)

1: Generate a complete de Bruijn graph of order k - 1. For each edge add p - 1 copies.

2: Initialize a list L of unfinished vertices with all vertices.

3: Set current_vertex to the first element in the list.

4: while there are edges in the graph do

5: probe = label of current_vertex.

6: extension_length = ‘.
7: while jprobej < extension_length do

8: Try to extend probe to length minimum{2 $ jprobej, extension_length}.

9: if unstructured extension was not found in c attempts then

10: extension_length = extension_length - 1.

11: end if

12: end while

13: if jprobej = k - 1 then

14: Extend probe by a random extension of size 1.

15: end if

16: Output probe and delete the edges of its k-mers from the graph.

17: if current_vertex has no outgoing edges AND jLj > 1 then

18: remove it from L.

19: Set current_vertex to a random vertex from L.

20: end if

21: end while

We bound the running time of the algorithm. The number of possible extensions at each vertex is at

most 4i, where i is the length of the current probe. Since the maximum number of extensions at any vertex

is 4º‘=2ß, the sum of possible extensions examined for each probe is H(4‘/2). Denote by f (‘) the running

time of the prediction algorithm and the number of probes by X, then the total time is O(X4‘/2f (‘)).
This may be prohibitive in some instances, depending on the value of ‘. Thus, for practical reasons, we

replace the search of all possible extensions by a search of a limited number of random extensions.

Denote this number c (given as input) and remember that the extensions are performed in a doubling

scheme. Hence, the total running time is O(Xf (‘)clog(‘)). Results show that X = H(4k/(‘ - k + 1)) (see

Table 1).

In some cases, no extension forms an unstructured oligo with the current subpath. In these cases, we look

for an extension shorter by one nucleotide, and continue shortening until an unstructured path is found or

the searched extension is of size 1. This process incurs an additional factor of O(f (‘)c‘) per probe in the

running time, since in the worst case ‘/2 shortening may occur. Thus, the total running time is O(Xf (‘)c‘).
The final result of this process is a set of unstructured probe sequences of length at most ‘. In this set each

k-mer is represented exactly p times. The probes may be of length shorter than ‘ in two cases:

1. The path closed a cycle (i.e., reached a vertex with no outgoing edges.)

2. The path had to be shortened to become unstructured, since no unstructured extension was found in

c attempts.

If the technology requires that all probes have the same length, then an additional process, Algorithm 3,

is run to extend these probes into ‘-long unstructured probes. Other methods may be used for this step, such

as RNAinverse (Lorenz et al., 2011). The total set in the end is the complete set.

If self-structured k-mers exist, the algorithm can be used to solve the two subproblems (see section 2.3).

The algorithm as is solves the problem of covering all k-mers at the expense of having a few structured

RNA probes. If structured probes are forbidden, the edges corresponding to self-structured k-mers can be

removed, and the algorithm can be run on the remaining graph.
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Algorithm 3 Extend set S of RNA sequences covering all k-mers, each p times, to length ‘. Input: k (coverage), ‘ (oligo

length), S (incomplete set), c (a limit on the number of attempts)

1: for Each Si˛S do

2: if jSij = ‘ then

3: Output Si

4: else

5: attempts = 0

6: do

7: attempts = attempts + 1

8: Create ‘-long sequence S0i:
9: Pick a random index 1 £ j £ ‘ -jSij + 1 for Si.

10: Assign random nucleotides in the positions outside Si.

11: while (S0i is structured AND (attempts < c OR (attempts < 100 $ c AND jSij = k)))

12: if S0i is structured AND jSij > k then

13: Continue recursively on the (jSij/2 + k/2)-prefix and (jSij/2 + k/2)-suffix of Si.

14: Output a union of the returned sets.

15: else

16: Output S0i.
17: end if

18: end if

19: end for

3.3. NP-hardness of the minimum k-mer coverage by ‘-long sequences problem

We prove that the following problem is NP-hard: covering all k-mers by a minimum-size subset of a

restricted set of ‘-long sequences. For the sake of simplicity, we study the problem on the RNA alphabet,

but it can be easily generalized to any finite alphabet R.

The problem is easy in two extreme instances. Clearly, when set S contains all possible ‘-long sequences,

the problem can be solved in linear time. A de Bruijn sequence can be generated in linear time. Cutting it

into ‘-long subsequences with (k - 1)-overlaps covers all k-mers in the most compact manner. On another

extreme, when ‘ = k the problem is trivial.

We reduce a known NP-hard problem, the minimum m-set cover (Levin, 2008), to our problem. While

the problems look similar, one is not a private instance of the other and the reduction is not immediate. Here

we describe the reduction.

Theorem 1. The minimum k-mer coverage by ‘-long sequences problem is NP-hard.

Proof. Given an input to the minimum m-set cover problem, and a set S of subsets of E = {e1.en}, we

generate an input to the minimum k-mer coverage by ‘-long sequences problem in polynomial time. We

choose k = Ø log2 (n)ø and ‘ = 3km. We map each element ei ˛ E to a k-long binary representation of i, where

instead of bits we use A and U. We call this representation the element’s {A, U}-representation and denote

it by fAU(ei).

We generate three sequence sets whose union is the input to the k-mer coverage problem.

1. L1: For each set Si ˛ S we generate a sequence that contains all of its elements’ {A, U}-representation,

each buffered by Gk before and Ck after. Formally, for a set Si = {ei1
,.,eim

} we create the sequence:Qm
j = 1 Gk � fAU(eij ) � Ck, we append the sequence by C’s so that its total length is ‘.

2. L2: We add sequences that cover all the k-mers over {A, U} that are not covered by L1. For each k-mer

w over {A, U} that is not in L1 we create a sequence Gk $ fAU(w) $ C‘-2k.

3. L3: We cover all non-{A, U} k-mers. Formally, for each k-mer w 2 Skn fGifA‚ Ugk - i [ fA‚ Ugj

Ck - jj0pi‚ jpkg create the sequence Gk $ w $ C‘-2k.

The input to the minimum k-mer coverage problem is the set L = L1 W L2 W L3.

Denote by LOPT the optimal solution to the k-mer coverage problem and by LOPT
1 = LOPT \ L1. The

solution to the m-set cover problem are the sets corresponding to the sequences in LOPT
1 . The running time
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of the reduction is bounded by O((4k + jSj) $ ‘) to generate the input sequences, which is O((n2 + jSj) $ m

log(n)).

We now prove the correctness of the reduction. We start with proving a couple of properties of the

solution.

Lemma 1. Any k-mer coverage must include all L2 sequences.

Proof. Each sequence in L2 contains a unique k-mer over {A, U}k that does not appear in L1. In addition,

by the design of L3, there are no k-mers over {A, U}k in L3. Thus, to cover all k-mers, all of L2 sequences

must be included. -

Lemma 2. The selection of sets in L3 is independent of L1 and L2.

Proof. The set of k-mers covered by the selected sequences in L1 and L2 is {Gi{A, U}k-i W {A, U}jCk-j W
CgGk-gj0 £ i,j,g £ k}. The selected sequences in L3 are constructed to cover all other k-mers. It follows that

their selection is independent of the input to the problem. -

1. k-mer coverage 0 m-set cover: All k-mers are covered by sequences in LOPT. The selected se-

quences from L2 and L3 in LOPT are independent of the input by Lemmas 1 and 2. Each sequence in

LOPT
1 corresponds to a unique set in S. The set of corresponding sets is the optimal solution to the

m-set cover problem. Assume the contrary, that is, that there exists a smaller solution to the m-set

cover problem. Then, the set of sequences corresponding to the sets in the solution together with

LOPT X{L2 W L3} form a smaller solution to the k-mer coverage problem, in contradiction to the fact

that LOPT is a minimum k-mer coverage.

2. m-set cover 0 k-mer coverage: Denote SOPT to be an optimal solution to the m-set cover problem.

Denote L01 as the set of sequences corresponding to the sets in SOPT. Then, an optimal solution to the

k-mer coverage problem is the set L03 [ L2 [ L01, where L03 is the minimum-size set to cover

SknfGifA‚ Ugk - i [ fA‚ Ugj
Ck - j [ CgGk - gj0pi‚ j‚ gpkg. All the elements in E were covered by

SOPT, and so their {A, U}-representations are covered by L01. By Lemmas 1 and 2, L2 sequences are in

any optimal solution, and the selection of L3 sequences is independent of the input. Assume to the

contrary that there exists a smaller solution to the k-mer coverage problem. L2 [ L03 are in any

solution, so L01 must be smaller. L01 covers all the k-mers corresponding to the elements in E, so there

is a smaller solution to the m-set cover problem, in contradiction to the fact that SOPT is an optimal

solution. -

Clearly, if we could solve the p-multi k-mer coverage problem in polynomial time, then we could solve

the k-mer coverage problem. Thus, we get:

Corollary 2. The minimum p-multi k-mer coverage by ‘-long sequences is NP-hard.

4. RESULTS

4.1. Traditional methods won’t solve our problem

We sought to test whether traditional methods to cover all k-mers, such as random oligos or overlapping

subsequences of a de Bruijn graph, could solve the minimum k-mer coverage problem. Toward this aim, we

analyzed the properties of unstructured probe sequences. Here we followed the definition used in the

RNAcompete study (Ray et al. 2009). Predicting a single minimum folding energy structure may be mis-

leading, as many RNAs may fold into different structures. Thus, for each RNA sequence an ensemble of

structures is predicted. The oligo is considered structured if its probability of forming a low energy structure is

more than half. Figure 2A depicts the structuredness test. Unfortunately, this property cannot be elegantly

formulated in combinatorial terms. For a formal definition and technical details, see section 2.2.

To better understand the problem at hand, we calculated the percentage of unstructured RNA

probes. Ideally, we would iterate over all possible RNA ‘-long sequences and test if each is struc-

tured. While for small values of ‘ this strategy is feasible, for greater values it is not, as it requires 4‘
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iterations. To overcome this problem, we generated 10,000 random ‘-long sequences for each value of ‘,
where each nucleotide is uniformly picked at each position in the sequence. The fraction of structured

probes quickly converged (data not shown), and hence we are confident that these estimates are accurate.

The results are shown in Figure 2B. As expected, the fraction of structured probes is higher for longer

probes. More surprisingly, the decrease in the fraction of unstructured RNA probes as a function of

length is fast, and for length 45, less than 10% of the probes are unstructured. Thus, using random oligos

is suboptimal and requires many more probe sequences to cover all k-mers. De Bruijn sequences, which

are the most compact sequences to cover all k-mers, are uniformly distributed over all k-mers (Mac-

Williams and Sloane, 1976) and are therefore prone to having many structured subsequences. Indeed, in

the report of the RNAcompete study (Ray et al., 2009), in a de Bruijn sequence of order 11 over {A, C, G,

U}, only 36,837 probes out of 167,773 were unstructured. Note also that for k ‡ 9 the fraction is smaller

than 1 due to self-structured k-mers (see section 2.2). To conclude, neither random oligos nor probes

generated by overlapping subsequences of a de Bruijn sequence are likely to provide an optimal or near-

optimal solution to our problem.

To support our assumption that structured subsequences are likely to be extended to structured sequences

(see section 3.2), we calculated the fraction of structured probes given that their first half is structured. For

each probe length 28 £ ‘ £ 52, we generated 100 random º‘=2ß-long structured sequences and extended

them by 100 random extensions to a probe of length ‘. The fraction of structured probes out of the 10,000

probes is the reported value. We compared this value to the fraction of structured probes among random

‘-long sequences. Results show that, given that the first half is structured, there is a chance of more than

95% that a probe starting with it is structured (see Fig. 2C). The fraction of structured oligos among random

oligos is much smaller, supporting our assumption that structured subsequences are more likely to be

extended to structured sequences.

4.2. A theoretical lower bound for the number of oligos

We give a simple lower bound for the number of oligos needed to cover all k-mers based on k-mer

counts. Since we do not know the optimal solution to the theoretical problem, we will use this lower bound

as a baseline to compare to.

Table 1. Computational Results for Different Oligos Libraries

‘ k

Lower

bound

Incomplete

set

Incomplete

ratio

Complete

set

Complete

ratio Structured

Naive

set

Runtime

(hh:mm:ss)

30 5 40 50 1.25 51 1.27 0 149 00:02:11

Y 6 164 182 1.11 182 1.11 0 766 00:07:43

7 684 737 1.08 739 1.08 0 3,308 00:41:40

8 2,850 3,081 1.08 3,106 1.09 0 13,801 02:58:52

9 11,916 12,940 1.09 13,069 1.10 59 57,154 14:42:27

10 49,934 55,882 1.12 56,526 1.13 670 236,477 82:18:01

35 5 34 41 1.21 41 1.21 0 131 00:03:13

Y 6 138 158 1.14 162 1.17 0 670 00:21:20

7 566 635 1.12 648 1.15 0 2,884 01:17:43

8 2,342 2,670 1.14 2,744 1.17 0 11,961 06:03:05

9 9,710 11,022 1.14 11,439 1.18 60 49,289 26:47:31

10 40,330 47,139 1.17 49,225 1.22 609 202,763 137:33:27

40 5 30 37 1.23 38 1.27 0 117 00:02:44

Y 6 118 140 1.19 148 1.25 0 598 00:36:31

7 482 561 1.16 611 1.27 0 2,561 02:33:16

8 1,986 2,362 1.19 2,627 1.32 0 10,597 11:24:15

9 8,192 9,745 1.19 10,966 1.34 60 43,492 48:02:15

10 33,826 41,798 1.24 47,457 1.40 557 178,187 246:05:17

For a pair of oligo length ‘ and k to cover, we ran Algorithms 2 and 3 to generate an unstructured RNA library covering all k-mers in

‘-long sequences. We report the number of oligos in the output of each run and the ratio compared to a theoretical lower bound. Algorithm

2 outputs the incomplete set (oligo length £ ‘), and Algorithm 3 outputs the complete set (oligo length = ‘). Reported run times are elapsed

times of running Algorithms 2 and 3 consecutively. The naive set is based on generating random sequences until all k-mers are covered.
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FIG. 2. Properties of unstructured oligos. (A) An output of RNAshapes. For each probe sequence, an ensemble of

structures is predicted. If the sum of probabilities of structures with energy smaller than -2.5 is greater than 0.5, the

oligo is considered structured. On the left is a highly structured oligo, while on the right an unstructured oligo.

(B) Fraction of unstructured RNA probes as a function of their length. For each probe length, the fraction of un-

structured RNA probes was empirically estimated using 10,000 randomly generated sequences of this length. (C)

Fraction of structured RNA probes as a function of their length given their first half. For each probe length, the fraction

of structured RNA probes was empirically estimated using 100 structured (blue)/random (red) first halves. For each first

half, 100 random extensions were appended to generate a complete probe.
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Denote the minimum number of oligos to be n(k, ‘), where k is the desired k-mer coverage and ‘ the

length of the probe. Then,

n(k‚ ‘)qØ
4k

‘ - k + 1
ø (1)

It follows immediately from the fact that the number of k-mers to be covered is 4k and each probe of length

‘ covers ‘ - k + 1 k-mers.

For the p-multi k-mer coverage, the bound is:

n(k‚ ‘‚ p)qØ
4k � p
‘ - k + 1

ø (2)

4.3. Computational results

We implemented and ran our heuristic algorithm on 5 £ k £ 10 and ‘ = 30,35,40, typical values used for

library design (Ray et al., 2009; Kierzek et al., 2015). Multiplicity was set to 1, number of random attempts

to 100, and randomization seed to 0. The results are summarized in Table 1. On average, our method

generates a library that is only 1.1–1.3 times greater in size than the theoretical lower bound. Moreover, as

expected, the ratio compared to the lower bound increases with oligo length. It is more difficult to find

unstructured probes since the fraction of unstructured probes decreases with oligo length (see section 4.1).

Note that for k ‡ 9, there are a few structured probes in the set. These cannot be avoided due to self-

structured k-mers (see section 4.1). Running times were benchmarked on a single CPU of a 20-CPU Intel

Xeon E5-2650 (2.3GHz) machine with 384GB 2133MHz RAM.

In addition, we implemented a naive algorithm to compare the performance with our algorithm. We

generated random sequences of length ‘ and added them if they included uncovered k-mers until all k-mers

were covered. We report the average set size over 100 runs. As can also be seen in Table 1, the naive

algorithm produces much larger sets than our heuristic.

4.4. Comparison to the library design of Ray et al.

To compare our solution to the library design of RNAcompete (Ray et al., 2013), we ran the algorithm with

k = 9, ‘= 35, and p = 16, as their library is required to cover each 9-mer at least 16 times. Notably, our solution

is significantly more compact. Our library contains a total of 166,649 oligos of length 35. Compared to the

theoretical lower bound of 155,346 oligos, our library is only 1.07 times greater in size. In comparison, the

library of Ray et al. contains 214,948 probes, which is 1.38 times greater in size than the theoretical lower

bound. Moreover, in our complete library, all oligos have the same length, as opposed to the library of Ray

et al., where oligo lengths vary. A more flexible length requirement may enable us to construct an even smaller

library. More importantly, their library includes 2,858 structured probes due to self-structured 9-mers, while in

our library there are only 841, a very small fraction of the total number of probes.

5. CONCLUSION

In this work, we have presented, for the first time, a general algorithm to generate a compact set of

unstructured RNA probes that together cover all RNA k-mers. The algorithm’s good performance can be

attributed to the key ideas of generating probe sequences using de Bruijn graphs, but taking a random walk

on those and backtracking when we encounter a structured sequence.

De Bruijn graphs and linear-feedback shift registers (LFSR) are commonly used to generate de Bruijn

sequences. Euler tours over de Bruijn graphs have the advantage that all possible (4!)4k-1

/4k de Bruijn

sequences can be generated (Bruijn, 1946). On the other hand, linear-shift feedback registers for generating

de Bruijn sequences are limited by the number of primitive polynomials over GF(4) with degree k (Lempel,

1970). There are only /(4k-1)/k primitive polynomials, where / is the totient function. For example, for

k = 11 there are only 240,064 de Bruijn sequences that can be generated by an LFSR. In addition, LFSR-

generated sequences have uniform properties (Hurd, 1974), which are counter-productive to the problem at

hand, since it requires local properties of unstructuredness. Thus, de Bruijn graphs provide a much more

flexible mechanism than LFSRs to generate sets of sequences with specific properties covering all k-mers.

Our implementation deals cleverly with prohibitive running times. Our backtracking approach is

particularly suited to the monotone property of RNA secondary structure. That is, having a structured
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subsequence highly influences the probability of the whole sequence being structured. In addition, the

random walk works in a way that tries to double the length of the path in each attempt, and in so doing

reduces the running time of the extension process by a factor of ‘. We applied several practical heuristics,

such as a limited number of attempts and shortening extensions, to avoid dead-end paths.

The potential downside of our approach is its heuristic nature, which intrinsically does not guarantee any

ratio over the optimal solution. Unfortunately, the structuredness property of RNA sequences is not easily

translated into combinatorial properties that can be targeted by short paths in a de Bruijn graph. Properties

that proximate these features, such as not having a k-mer and its reverse complement in the same probe

sequence, are not good enough to ensure that the probe is unstructured by the prediction algorithm.

While in this work we focused on one application, we see the substantial potential benefit of our algorithm in

other applications. Our general scheme can be used to design sequence libraries with other desired properties or

other definitions of structuredness. For example, RNA secondary structure can be defined by minimum free-

energy instead of an ensemble of structures (Churkin et al., 2015). On the DNA front, DNA oligos with

specific DNA shape features are desirable as shape plays a significant role in protein DNA-binding (Burgess,

2015). Moreover, our algorithm can be modified to cover only a subset of the k-mers, or have different

multiplicities for each k-mer, by keeping the edges in the de Bruijn graph that represent those k-mers and add

different numbers of edge copies for each k-mer. For example, in the RNAcompete technology two 7-mers are

excluded as they are restriction sites of an enzyme used in the protocol (Ray et al., 2009).

To conclude, we have demonstrated the ability of our algorithm to meet the highly desired goal of

generating compact sets of unstructured RNA probes that cover all k-mers. High-throughput technologies

that measure RNA accessibility as part of the secondary structure or protein RNA-binding in vitro will

greatly benefit from this design. The generated library set is only slightly larger than the theoretical lower

bound, and thus achieves near-optimal results. The algorithms can be easily applied to other sequence

design problems. Any design that requires complete coverage of all k-mers, with specific sequence

properties, can utilize our general scheme of random path search in de Bruijn graphs.
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