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Abstract: The anticipated biological and clinical utility of biomarkers has attracted significant interest recently. Aging and early cancer 
detection represent areas active in the search for predictive and prognostic biomarkers. While applications differ, overlapping biological 
features, analytical technologies and specific biomarker analytes bear comparison. Mitochondrial DNA (mtDNA) as a biomarker in both 
biological models has been evaluated. However, it remains unclear whether mtDNA changes in aging and cancer represent biological 
relationships that are causal, incidental, or a combination of both. This article focuses on evaluation of mtDNA-based biomarkers, 
emerging strategies for quantitating mtDNA admixtures, and how current understanding of mtDNA in aging and cancer evolves with 
introduction of new technologies. Whether for cancer or aging, lessons from mtDNA based biomarker evaluations are several. Biological 
systems are inherently dynamic and heterogeneous. Detection limits for mtDNA sequencing technologies differ among methods for 
low-level DNA sequence admixtures in healthy and diseased states. Performance metrics of analytical mtDNA technology should be 
validated prior to application in heterogeneous biologically-based systems. Critical in evaluating biomarker performance is the ability 
to distinguish measurement system variance from inherent biological variance, because it is within the latter that background healthy 
variability as well as high-value, disease-specific information reside.
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Introduction
Biomarker discussions have dominated applied clinical 
research programs in recent years with the promise 
of significant clinical utility. Early cancer detection1–3 
and cancer drug development4 represent expand-
ing research communities where clinically reliable 
biomarkers will expedite progress toward improved 
patient outcomes. Early effective treatment strate-
gies, improved clinical care and reduced healthcare 
costs represent a few of the diagnostic, screening and 
prognostic opportunities that may be realized from 
the availability of rigorously validated biomarkers.

In the drug discovery domain, biomarker validation 
and qualification discussions have led to the “Fitness-
For-Purpose” validation model.5 In this, evidence is 
calibrated against specific applications that would 
validate and qualify the measurement system and 
marker for a defined purpose.6,7 Although applica-
tions may differ among aging, cancer, and drug 
development, the technologies and validation issues 
overlap. Formal biomarker study design guidelines 
will continue to evolve rapidly.8,9

As with prior clinical trial paradigms, the phases of 
discovery and validation in early cancer detection for 
screening biomarkers have been recognized.10 How-
ever, few early detection biomarkers have survived 
rigorous validation. Similarly in drug development,11 
the rate of new drug approvals has declined precipi-
tously over the past decade. To address this, the Food 
and Drug Administration (FDA) is actively seeking 
ways to expedite and accelerate the path to market for 
drugs and medical devices.12

Despite efforts in many laboratories, disappoint-
ingly few candidate biomarkers have been brought to 
clinical application for early detection of solid tumors. 
Discovery work narrows the universe of candidate 
biomarker analytes to those for which data support 
a link with outcomes in independent specimens. 
Subsequent application studies are focused on the 
performance metrics of candidate biomarkers and 
their measurement technologies for definitive evalua-
tion and classification accuracy in a specified clinical 
application for a defined clinical purpose. In the final 
stage of biomarker evaluation, net benefit to patients 
is determined after utilizing biomarker assay results 
for clinical intervention.

At biomarker discovery phase, challenges include 
discovering and quantitating valuable analytes within 

dynamic and biologically complex matrices such as 
blood, urine, and sputum. Further challenges include 
the paucity of biomarker measurement data in healthy 
populations (normal ranges and sources of variability), 
and the related issue of appropriate specimen controls. 
Preanalytical challenges include instability of bio-
analytes, RNA and serum proteins for example, and 
measurements in common archival specimen formats 
such as formalin-fixed, paraffin embedded (FFPE) 
tissue blocks. In practice, validation and qualifica-
tion efforts suffer if the dimensions of the bioanalyte 
space, normal population variation and bioanalyte 
stabilities are not addressed fully within the protocols 
at both the discovery and application phase.

Study design and bias have also been problem-
atic for cancer biomarker validation and qualifica-
tion. This is illustrated in recent prostate cancer 
early detection proteomics with surface enhanced 
laser desorption-ionization based mass spectrom-
etry (SELDI-MS), where biased specimen collection 
and storage has hampered progress.13,14 Furthermore, 
despite significant activity in the private sector on 
cancer drug development, biomarker discovery efforts 
have fallen short of anticipated benefits and cost 
savings.6,15 With these experiences in mind, the proto-
cols for biomarker validation in specimens from tissue 
banks and biorepositories are under scrutiny with an 
eye toward improving technologies, utility and repro-
ducibility among measurements based on specimens 
from multiple institutions.16,17 Despite these techni-
cal and strategic challenges, early detection of can-
cer remains in the vanguard of initiatives funded to 
improve biological measurements and validation of 
individual biomarkers or biomarker panels.

Biomarkers of aging
Over the past two decades, the research community 
targeting aging has also sought predictive and diag-
nostic biomarkers for physiological aging and age-
linked diseases.18–22 Despite better understanding 
of the differences between chronological age (mea-
sured in years) and physiological age [measured in 
functional capacity],22 progress in finding predictive 
biomarkers of individual mortality, and in general of 
physiological aging, has been dismal. Some argue 
that better definitions of the degenerative processes 
underlying mortality, not predictors of individual 
mortality, are the more appropriate goal.23
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Although there are a few functional human 
age-related phenotypes on which metrics might be 
based (for example, loss of muscle function with 
age, or changes in skin elasticity), there are still 
many unknowns in human aging phenotypes and 
how these compare with animal models.23–25 Unprec-
edented opportunities set the stage for biomarkers 
as predictive and diagnostic markers for age-linked 
conditions, including degenerative processes, with 
high-throughput technologies and rapid advances in 
aging.23,26,27 Establishing validated biomarkers would 
also help in developing targeted interventions for age-
linked conditions. Despite significant advances in 
technology, specific biomarker panels for quantitat-
ing physiological age or rate of physiological aging, 
remain elusive. It is likely that hard-won lessons 
from biomarker discovery, validation and application 
studies in early cancer detection, will inform the search 
for biomarkers of aging as well.

In cancer biomarker work, the goal is to define the 
precision and reproducibility with which a measured 
analyte serves a useful clinical function (for example, 
classification and prediction, surrogate endpoint for 
a clinical trial, measure of toxic exposure, or as an 
indicator of best treatment choice).9 In parallel, there 
are experimental clinical interventions that show 
promise in ameliorating the effects of normal aging 
independent of disease, for which validated, measur-
able biomarkers might be useful.

Among the most promising interventions in aging 
has been dietary caloric restriction (CR). Caloric 
restriction has reproducible, favorable effects on 
lifespan and morbidity in a number of metazoan 
systems.28,29 However, the magnitude of impact in wild 
mice is less than inbred laboratory strains.30 The molec-
ular aspects of CR have recently been reviewed.31,32 
Dietary supplementation with polyphenolic com-
pounds such as resveratrol may mimic CR at the level 
of transcriptional profiling in mice.33 Specific mea-
sureable analytes that serve to quantitate CR and its 
effect on aging in a reproducible way have not been 
extensively validated. However, an intriguing recent 
finding in yeast model systems implies that CR may 
increase NAD/NADH ratios, in turn upregulating 
Sir2 and eliciting a CR-like physiological change.34 
CR may thus have its impact on longevity through 
the sirtuins.35 It remains to be seen whether this find-
ing will yield a specific quantitative biomarker for 

aging in higher mammalian and human biology. 
Recent work36 suggests that mammalian SIRT1 (a Sir2 
ortholog) may repress repetitive DNA and genes, and 
re-localizes to DNA breaks in a manner reminiscent 
of the yeast system.

Challenges arising from normal individual bio-
logical variation and the difficulties in understand-
ing the relative contribution of aging to disease 
processes have been debated for years by biologists 
and gerontologists seeking validated biomarkers 
of physiological aging.20 Like cancer biomarkers, 
biomarker study design for aging, and best practices 
for evaluation remain undeveloped. Unfortunately, 
lack of consensus over what constitutes a biomarker 
of aging (a measureable bioanalyte that assigns bio-
logical age) or a predictor of individual mortality, 
persists. Strategies have been explored for iden-
tifying biomarkers of aging in species of long life 
span.19 Despite numerous research publications, the 
search for aging biomarkers runs parallel to early 
cancer detection and drug development in that little 
substantive progress has been reported. While one 
area of progress may be the technical capability to 
make sound biological measurements, study design 
is another area that may substantially improve the 
situation, especially when study designs appropriate 
to high-dimensional, highly multiplex data are 
implemented.8

Clearly, in addition to preanalytical processing,13 
study design issues in pivotal cancer biomarker studies 
such as overlap between training and test specimen 
sets, have been problematic.8,9,37,38 Although a similar 
analysis of biomarker study design in aging is not yet 
available, the high dimensional data resulting from 
new technologies are increasingly common in studies 
of experimental aging.26,33

Since initial searches for aging biomarkers, atten-
tion has now turned to high-throughput and rapid, 
technology-based strategies for revisiting the discovery 
and validation of biomarkers of aging with new 
strategies based on aging phenotypes that characterize 
age-linked functional and degenerative processes. 
In addition, recent progress in cancer biomarker 
validation study design9 and analysis of design features 
that compromise results,8 might be considered in the 
evaluation of biomarkers of aging to good effect.

Since the initial search for biomarkers in aging 
two decades ago,39 high-throughput technologies 
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and bioinformatics platforms have vastly improved, 
as have detailed genomic analyses and databases 
describing normal human populations.40,41 The com-
prehensive quantitation of proteins42 and intermediary 
metabolites43,44 in complex specimens are additional 
rapidly evolving biomarker technology areas. Sig-
nificant standards needs for serum proteomics have 
been identified.45 Like these, comprehensive stud-
ies of genomic variability among healthy individu-
als are few, although several projects aim at normal 
human sequence variability.46 In addition, new high-
throughput, cost-effective DNA sequencing plat-
forms, the so-called next generation sequencers 
(NGS), have emerged recently.47 These technologies 
for deep sequencing promise to revolutionize person-
alized genomics and medicine by decreasing cost and 
increasing throughput.

Thus, it is timely given these strides forward to 
revisit the discovery and validation process that incor-
porates high-throughput tools for discovering and 
validating panels of biomarkers, and how these might 
apply to the development of biomarkers for physi-
ological aging, with special reference to mtDNA.

Pathways and the systems 
biology of aging
Comprehensive biological analysis that borrows from 
the principles of systems engineering has been termed 
“systems biology”. In this approach to understanding 
biology, high-dimensional biological measurements 
are integrated with computational computer models 
to predict how perturbations in any part of the sys-
tem will impact the whole. Applications in medi-
cine, drug discovery and engineering have been 
reviewed.48

Aging can be viewed as a system of metabolic 
or genetic pathways with branch points of impor-
tance at many levels of biological organization. The 
biological basis of cellular senescence and its rela-
tionship to organismal aging has been explored.24 
In physiological aging, a complex network of path-
ways operate concurrently and independently across 
the spectrum of biological organization (cell, tissue, 
and organism), and readily adapt to changing envi-
ronmental challenges. Despite this complexity, new 
understanding is beginning to emerge that might 
reveal network and pathway malfunctions that distin-
guish normal from age-related pathologies.49

For example, the roles of specific pathways in 
aging have been reported, including the CDKN2a 
pathway,50 the growth hormone/IGF-1 or IIS axis51 
and the DNA repair-telomere function pathways.52 
In addition, age as a contributing factor to cellular pro-
liferation and cancer risk is extensively documented 
in the literature.

For decades, mitochondrial dysfunction and anoma-
lies of oxidative phosphorylation (mutagenetic effects of 
reactive oxygen species (ROS) production, for example) 
in aging and cancer have been the focus of numer-
ous studies. Although a mitochondrial theory of aging 
has emerged recently,53–55 it remains controversial.56–58 
Mitochondrial DNA point mutations in tumors have 
been reported.59,60 Although intriguing, it has been chal-
lenging to resolve the role of mtDNA mutations in the 
biologically complex and intertwined processes of aging 
and cancer, or the relative clinical value of mtDNA 
sequence change as a clinical biomarker. In fact, the 

Table 1. Challenges to evaluation of mtDNA-based disease 
biomarkers.

Biological Heterogeneity/mtDnA sequence
  Normal mtDNA sequence polymorphisms between 

human populations (haplogroups)
  mtDNA sequence change vs. developmental age, 

within populations
  mtDNA sequence change vs. tissue type, within 

individuals
 mtDNA sequence change in disease vs. normal cells
   Bona fide mtDNA sequences vs. nuclear mtDNAs 

pseudogenes (NuMTs)
 Deleted mtDNA sequences, normal vs. disease

Biological Heterogeneity/mtDnA content
  mtDNA number content among cells, tissues, 

individuals and populations
  mtDNA number content, normal vs. disease vs. 

therapies

Measurement Issues for evaluation of mtDnA 
as a Biomarker
 Comprehensive sequence vs. subgenomic sequence
  The true limit of detection (LOD) for sequencing 

technologies
 The technology LOD for mtDNA sequence admixtures
  extent of mtDNA reference databases corresponding 

to normal mtDNA values
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clinical utility of mtDNA mutation analysis in ovarian 
cancer has been challenged, based on D-loop sequence 
and expression levels of six mitochondrial transcripts.61 
The nature of these possible biological associations 
remains elusive, however several lines of work have 
explored mitochondrial changes that might find clinical 
utility as biomarkers.

The role of epigenetic events such as DNA meth-
ylation studies in various nuclear genes in cancer62 
and aging63 has not yielded a consistent story. 
In part, DNA methylation methods have lacked 
reproducibility, and steps to address this have been 
suggested.64

Studies of other epigenetic changes such as histone 
acetylation status, have revealed that the mouse 
SIRT1 gene (a mammalian ortholog of  yeast Sir2 gene) 
may be involved in chromatin organization while 
inhibiting the initiation of DNA replication, and may 
have a significant role in the biology of longevity and 
aging.36 Further work along these lines may yet yield 
a molecular biomarker for aging.

Aging biomarkers related to oxidative stress, 
protein glycation, inflammation, cellular senescence 
and hormonal dysregulation have been recently 
reviewed.22 To complement this, we therefore focus 
on mtDNA analysis in human and model systems to 
illustrate the interactions between technology devel-
opment and medical application in validation of 
cellular biomarkers. Two lessons emerge from this 
review. First, biological heterogeneity as manifested 
in healthy development and physiology should be 
considered prior to analysis of disease states. And 
second, prior to analysis of biological heterogeneity 
in either healthy or disease states, the performance 
metrics and limitations of the analytical technology 
should be kept in mind.

mtDNA analytical technologies
Much has been made of emerging technologies that put 
within easy reach the detailed human genomic DNA 
sequence as cells shift from normal to abnormal devel-
opmental programs. The key challenge has shifted to 
data interpretation, from DNA sequence data collec-
tion. For mtDNAs, the features most often studied are 
mtDNA sequence changes (point mutations, deletions, 
insertions) that differ from the reference mtDNA 
sequence,65,66 the degree of sequence heterogeneity in 
specimens (heteroplasmy), and the total amount of 

mtDNA present (depletion or amplification), usually 
on a per-cell basis.

Acute needs for mtDNA analysis include high-
throughput, deep sequencing, resolution of mtDNA 
sequence and variants, amounts and heterogeneity 
at the single-cell level of resolution. A better under-
standing of normal mtDNA variability as a function 
of age, tissue type and nuclear genotype should be 
developed. To differing degrees, there has been recent 
technical and scientific progress in each area, although 
a comprehensive picture of the biology of normal 
mtDNA and its relationships to disease processes is 
still emerging.

DNA copy control in nucleus  
and mitochondrion
Why are mtDNA copy number determinations 
important, and how does the biology of copy number 
control differ when nuclear genes and mitochondrial 
genes are compared? To evaluate copy number and 
sequence changes in disease processes, variability 
in normal human mtDNA is important to establish, 
especially as reflected in the design of experimental 
controls.

Most metazoan organisms including human, are 
represented by haploid and diploid genomic phases 
that, in terms of genomic copy number, have been 
considered roughly comparable between genders for 
autosomal loci. In contrast, mtDNA copy numbers 
become highly asymmetrical when male and female 
gametogenesis and early zygote development are 
compared, with significantly higher and possibly 
exclusive reliance on maternally derived mtDNA 
species after fertilization.67 In somatic cells, the rule 
is two copies of nuclear alleles for autosomal loci. 
However by contrast, mtDNAs are present in hundreds 
to thousands of mtDNA copies per cell.68

Detailed human genomic resequencing has recently 
uncovered a surprisingly high incidence of nuclear 
genomic copy number variation (CNV) among phe-
notypically healthy individuals41,69 as well as possible 
links of some forms and degrees of nuclear CNV to 
diseases of previously unknown etiology.70 Similarly, 
the questions surrounding mtDNA sequence, copy 
number variation, cellular content control and hetero-
plasmy in normal and disease processes may prove 
a productive area of new investigation in medical 
genetics.

http://www.la-press.com


Barker and Murthy

170 Biomarker Insights 2009:4

When considering mtDNA metrics as biomarkers 
for aging, it is appropriate to bear in mind which 
areas of mtDNA biology remain under active inves-
tigation and what facts have been established thus 
far. With more obscure genetic distribution mecha-
nisms to daughter cells than nuclear chromosomal 
genes, mitochondria and their genomes are a superb 
illustration of systems biology interrelatedness at the 
level of the cell, and represent a highly integrated 
cellular organelle system with inherent as well as 
interactive functions. Mitochondria should be viewed 
both as discrete organelles each containing a genomic 
complement comprised of many mtDNAs, as well as 
a subsystem integral to broader cell functioning in 
critical cellular processes such as bioenergetics71 and 
apoptosis.72

Nuclear and mitochondrially-encoded genes both 
contribute protein components to mitochondrial func-
tion, with the vast majority of mitochondrial proteins 
arising from nuclear genes. Analysis combining mass 
spectrometry, GFP-tagging, and machine learning, 
has defined a compendium of 1098 genes and their 
expression across more than a dozen C57BL/6J strain 
mouse tissues to define the murine mitochondrial 
proteome (“mitochondriome”) at an unprecedented 
level of resolution.73 Clearly, with the number of 
coordinately measured peptides in such approaches, 
parallel developments in bioinformatics will consti-
tute an important enabling technology for discovery. 
Such complexity may best be managed by a systems 
biology framework that incorporates and integrates 
many types of data bearing on aging.49

Compared with nuclear genomic loci that follow 
Mendelian inheritance, normal mitochondrial gene 
copy variation represents a less tractable system for 
whole-animal or somatic cell genetic analysis. In the 
research laboratory, the availability of mutant ρO 
human somatic celll lines74,75 selected for depletion 
of mtDNA have made nuclear-mitochondrial sub-
stitution experiments possible. Methods for experi-
mentally manipulating metazoan mtDNA have also 
appeared.76 Unlike autosomal nuclear genes that are 
contributed equally and precisely through parental 
gametes in mammals, mitochondrial genomes arise 
primarily from the maternal side at fertilization.77–79 
Beyond the mass excess of maternal mtDNA in 
oocytes at fertilization, a specific post-fertilization 
modification of paternal mitochondria (ubiquitination) 

targets paternal mitochondria for destruction after 
fertilization in the zygote.80 Curiously, paternal mito-
chondrial targeting may be more active in same-
species matings, than in outcrosses between different, 
but closely related species.81

Although much has been made of the high mutation 
rates and lack of DNA repair mechanisms within 
mitochondria in mature mammalian cells and tissues, 
the early stages of oogenesis appear to have mecha-
nisms for restricting mtDNA genotype.82,83 Such an 
oocyte “bottleneck” may function in concert with 
modification of paternal mitochondria in sperm that are 
destroyed in the zygote, increasing the likelihood of 
mtDNA homoplasmy of maternal origin in the newly 
fertilized ovum. Thus, although conventional nuclear 
DNA repair systems are not found for mtDNA,31 these 
fertilization-specific processes (sperm mitochondria 
ubiquitinization and the stochastic oocyte mtDNA 
“bottleneck”) may accomplish the scanning of mtDNA 
sequence integrity by alternative means and biological 
mechanisms that are absent from somatic cells. 
In animal models, much attention has been devoted 
to DNA damage and repair in mitochondria,84 includ-
ing generation of transgenic mice with defective 
excision repair functions associated with the mito-
chondrial γ-DNA polymerase (POLG),53,57 a protein 
that acts in the mitochondrion but which is encoded 
by a nuclear gene.

At the level of single cells, recent experiments 
emphasize that intracellular mtDNA populations are 
not randomly distributed within cells.85 The mitochon-
drial populations resident within a single cell have a 
coordinate organization based upon the nucleoid, 
an intra-mitochondrial particle consisting of a few 
defined proteins encoded by nuclear genes (TFAM, 
mitochondrial single stranded binding protein or 
mtssBP, DNA polymerase γ [POLG] and twinkle 
DNA helicase) as well as those associated with 
2–10 mtDNA molecules that share spatial and tem-
poral functions.86,87 Recent experiments demonstrate 
that nucleoids exhibit genetic autonomy from each 
other within a cell.87 Such experiments suggest that 
mammalian mtDNA nucleoids, with several mtDNAs 
each, are a type of subcellular, intra-mitochondrial 
chromosome containing multiple DNA molecules. 
However, whether the nucleoid is the unit of mtDNA 
inheritance from parent to daughter cells remains 
unclear.82,83
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Several independently developing areas of biological 
research support the idea of biological cross-talk 
between nuclear and mitochondrial genes. That nucle-
oid function is genetically and biologically regulated 
by nuclear genes, is implied by analysis of mtDNA 
heteroplasmy in centenarians88 and the heritability 
(65%) of mtDNA content in twin studies.89 This 
interaction between mitochondrial and nuclear genes 
may have implications for understanding how 
mitochondrial DNA heteroplasmy arises, how it is 
regulated by the genomic nuclear genes and what its 
consequences may be for the processes of aging and 
cancer. A higher rate than in the general population of 
heteroplasmy has been reported among centenarians 
and their offspring, and in twin studies.88 Thus, vari-
able rates for the development of heteroplasmy 
among individuals may be an evolutionarily adaptive 
feature under the control of nuclear genes. Regard-
ing mtDNA sequence variants and longevity, studies 
in Finnish populations90 suggest an association 
between specific mtDNA sequence variants and 
longevity, and that the effects may be specific to 
certain human populations.91 More remains to be 
learned about the variability of mtDNA sequence 
and content in cells, the biological controlling fac-
tors that mediate variability in cells and human 
populations, and how such variability may relate to 
health and longevity.

In mice, the presence of specific genetic controls 
and biases against intraspecific paternal mtDNA is 
also suggested by paternal mtDNA leakage at the F1 
generation (related but different species as parents), 
but not in subsequent backcross generations in intra-
specific crosses.81 In mice, mitochondrial mutation 
rates appeared dependent on nuclear genotype in 
hematopoeitic cells.92 These studies also suggest that 
there remains much more to learn in model organisms 
about the phenotypes associated with mtDNA 
sequence heterogeneity, copy number and hetero-
plasmy in mammalian populations.

In support of the biological idea that longevity may 
involve mitochondrial-nuclear genome cross-talk, 
recent experimental work in Drosophila in which 
mitochondrial genotype is varied while controlling 
for nuclear genotype, implies that mitochondrial 
genotype has significant effects on longevity of flies, 
and that the effects may be modulated by the nuclear 
genetic background.27

Thus, before concluding that mtDNA heteroplasmy 
and mutations in solid tumors are aging-related, 
disease-specific or normal variability, more work is 
needed on the normal course of heteroplasmy develop-
ment and control among aging human individuals and 
in model animal systems, and its sequence spectrum 
among healthy tissues. Compared with nuclear genes, 
control over copy number variants among mtDNAs is 
not well established in metazoan species. At the very 
least, the rules of mtDNA copy number constraint 
are as yet not well understood for mammalian cells. 
These biological variabilities and uncertainties could 
compromise claims of mtDNA changes as biomarkers 
of aging or cancer.

In order to evaluate abnormal mtDNA changes in 
aging or early cancer, a thorough understanding of 
normal variability range prior to comparison is critical. 
The degree to which biological as well as technical vari-
ables (measurement and protocol uncertainties) may be 
confounded, is illustrated by an ongoing debate among 
experts. These issues are highly relevant to two oppos-
ing views of biomarker discovery and validation.

Among some clinicians doing translational work, 
the molecular identification and details of biomarkers 
associated with disease and physiological status, may 
be considered a lower priority than the biomarker’s 
utility for clinical associations. This point of view 
held sway in early serum proteomics studies in which 
a surface-enhanced laser desorption-ionization mass 
spectrometry (SELDI-MS) pattern was the measured 
biomarker. In early studies, patterns were validated as 
disease biomarkers prior to identifying the physical 
analyte or protein species represented.93 In addition, 
detection algorithms in early studies were subjected to 
intellectual property (IP) restrictions and nondisclosure. 
As a result, the explicit experimental methods were 
published in inadequate detail for independent 
validation. Since then, the trend has been toward 
identifying the analytes (identified, proteotypic pep-
tides diagnostic of defined proteins) that can establish 
disease association with, for example, MALDI-TOF as 
an improvement over anonymous mass spectra.94 There 
has been discussion of the contentious early analytical 
issues surrounding cancer biomarker discovery,8,37,38,95 
and these lessons should inform experimental bio-
marker qualification/validation strategies in the future 
in other areas of application, beyond the area of early 
cancer detection alone.
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An opposing point of view held by molecular 
biologists is that the physical identity of the candi-
date biomarker analyte (for example, identifying the 
biomarker protein being measured, not just its anony-
mous diagnostic mass spectrum trace) is essential to 
establish improved and sensitive assays, should the 
initial discovery need a better analytical platform for 
widespread use. The results of SELDI screening of 
clinical sera would seem to argue in favor of estab-
lishing scientific and biological details on candidate 
analytes, and most laboratories have adopted peptide 
identification methods orthogonal to mass spectrom-
etry to address this issue. This further emphasizes 
the importance of appropriate normal controls and a 
working knowledge of the dynamic range and con-
centration limits of normal bioanalyte values. Such 
lessons should also increase caution in the evaluation 
of candidate biomarkers based on analytes other than 
serum proteins.

The confusion and controversy over the physical 
and chemical identity of biomarkers, have underscored 
the importance of establishing a molecular basis for 
biomarkers of all types, but should also bring atten-
tion to the previously under appreciated importance 
of rigorous standard operating procedures (SOPs) 
for specimen collection, preparation, storage and 
analysis of biomarker specimens. It is likely that 
optimization of specimen collection and biobank-
ing will be necessary before the preanalytical vari-
ables are better understood, especially as the newest 
high-resolution, high-dimensional, high-throughput 
technologies come into clinical research use. Such 
experiences should inform the path forward as new 
candidate biomarkers are discovered and evaluated in 
different areas of application, whether it is early can-
cer detection, drug development or aging.

mtDNA variation in health and disease: 
measurement technology background
The biology of mtDNA sequence, content, distribution 
and heteroplasmy in mammalian cells (and tissues) 
is complex, and the factors that control cell content 
and spectrum of mtDNA are not well understood. 
In addition, the adequacy of appropriate controls 
for cancer and aging studies remains under discus-
sion because the background values for mtDNA 
copy number and sequence heterogeneity are for the 
most part incomplete, or unknown, in healthy human 

populations worldwide, and in different tissues within 
the same individuals.

Given the biological complexity, it is of interest 
to review technology and platform performance 
metrics, and the proportion of measurement variance 
that might be attributed to the analytical tools and 
platforms used to develop the current picture of 
mtDNA mutation and heteroplasmy in normal aging 
and disease. The biology of existing mtDNA sequence 
and heteroplasmy data in mouse and man is diffi-
cult to parse from the point of view of technology, 
given performance differences in analytical DNA 
sequencing and quantitation technologies.

mtDNA sequencing, quantitation 
technologies and impact
Several levels of mtDNA analysis have contributed 
to the current understanding of mtDNA variability 
in human and mammalian model systems. A clear 
understanding of the biology of mtDNA is important 
because mtDNA analysis may constitute the basis of 
critical decisions with significant social impact such 
as paternity, legal culpability, and identification of 
human remains.96–98 The stability of mtDNA over 
evolutionary time is also the basis for analyses of 
molecular evolution, and geodistribution of antecedent 
and contemporary human populations.99

The biological variability of  human mtDNA is 
measured against the revised Cambridge reference 
sequence (rCRS).66 Unfortunately, most mtDNA sequence 
studies in populations focus on sub-regions of the 
mtDNA genome such as the hypervariable region 
(incomplete or selective mtDNA sequence analysis), 
although the trend is toward comprehensive sequenc-
ing of the complete mitochondrial genome. Sequence 
data may also be based on specimens from a variety 
of different tissue specimens that, in retrospect, may 
not be biologically equivalent in terms of mtDNA 
content and variability. Given the fact that there are 
reports of tissue specificity of mtDNA sequence and 
heteroplasmy in different anatomical regions of the 
brain,100 tissue of origin of mtDNAs samples, if not 
properly controlled, may be a confounding factor 
in attempts to understand the variation of mtDNAs 
in healthy human populations, and in disease. With 
regard to lung cancer controls, cigarette smoking in 
otherwise healthy individuals has been associated 
with an increase in somatic mtDNA changes in buccal 
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mucosal cells.101 Finally, laboratory error confounds 
published mtDNA data and databases, and is an addi-
tional consideration.102,103 To assay laboratory errors, 
technical approaches for detecting artifactual mtDNA 
sequence data have been proposed.104

To add to the complexity of mtDNA sequence anal-
ysis and its interpretation, the genome also contains 
several hundred incomplete DNA copies of mtDNA 
sequence integrated into genomic nuclear DNA in 
humans and many other species. Such sequences have 
differing degrees of sequence homology with bona fide 
mtDNA.105,106 These nuclear pseudogenes are termed 
NuMts (nuclear mitochondrial sequences).107 In addi-
tion to biological uncertainties related to normal tissue 
and age-specific sequence and content changes, the 
nuclear mtDNA pseudogenes are a complication with 
which evaluation of candidate mtDNA biomarker 
variants must contend.

In model systems such as inbred mice,108–111 and in 
human populations,112,113 significant normal variability 
in mtDNA sequence is the rule among individuals, 
strains and populations. Inbred strains of mice that 
show identity of mtDNA single nucleotide polymor-
phisms (SNPs) have been catalogued (677 SNPs 
spanning nucleotides 55 to 16,291) (http://phenome.
jax.org).114 Recent analysis of inbred mouse strain 
MRL shows heteroplasmy in tRNA methionine and 
arginine genes despite a high level of inbreeding.115 
In human populations, haplogroups consisting of intra-
populational mtDNA sequence features have provided 
a molecular tool for describing human populations. 
A series of widely geographically distributed normal 
individuals has been sequenced recently by chip 
technology.113

In addition to inter-individual mtDNA sequence 
at a single time point or age, many studies document 
mtDNA sequence changes with increasing age in 
healthy inbred mice,108,116 and in healthy humans.117,118

Since mtDNA sequence varies normally among 
healthy individuals in human and murine popula-
tions, and within individuals from tissues to tissue, 
differences detected in association with disease states 
warrant attention to appropriate controls. For exam-
ple, whether peripheral blood is the most biologically 
appropriate control for tissues like lung or bladder 
tumors might be further investigated.

Despite data that mice108,116 and humans88,100,118–122 
show an increase in mtDNA point mutations with 

age, recent experimental work suggests that the 
presence of point mutations in murine mtDNA does 
not significantly lessen life span.57 If these data are 
considered, it would appear that significant gaps 
still exist in the basic knowledge of normal mtDNA 
sequence variation, the mutation biology of mtDNA 
in mammalian species, and the relevance of normal or 
somatically acquired sequence variants to aging and 
disease.

mtDNA mutations and phenotype
mtDNA sequence changes found in various normal 
human postmortem100 and diseased59,60 tissues differ 
from the revised Cambridge reference sequence,66 and 
include point mutations, deletions, insertions, hetero-
plasmy and mtDNA depletion. Point mutations have 
been documented as normal variation and form the 
basis of mtDNA haplogroups in apparently healthy 
individuals. However, there are also convincing dis-
ease associations between mtDNA sequence changes 
and abnormal phenotypes in native populations and in 
experimental transgenic mouse systems. In transgenic 
mice, twinkle locus (a nuclear gene encoding mtDNA 
helicase protein located in the mitochondrion) muta-
tions result in mtDNA deletions and late-onset 
mitochondrial disease.123 mtDNA deletions may be 
detected in specific human disease states124 and in 
nonmalignant adjacent tissues, as shown in prostate 
cancer.125 Deletions in noncancerous tissues indicate 
that the utility of such biomarkers for disease diag-
nostics warrants further investigation.

mtDNA and human solid tumors
Early work identified point mutations in colorectal, 
bladder, head/neck59 and primary lung tumors.60 In 
both, the initial work employed Sanger sequencing 
with radioisotope labels and sequencing gels. The 
technical accuracy of the mtDNA sequencing results 
was confirmed and validated independently with 
dye termination chemistry/capillary sequencing.126 
It is now clear from these studies that the extent 
of heteroplasmy and admixture detected by vari-
ous methods (Sanger sequencing vs. dye-terminator 
sequencing vs. resequencing chip methods) may have 
technology-specific performance features, including 
limits of detection for admixtures. When sequencing 
technologies differ in limits of detection of hetero-
plasmy up to an order of magnitude, extreme caution 

http://www.la-press.com
http://phenome.jax.org
http://phenome.jax.org


Barker and Murthy

174 Biomarker Insights 2009:4

with biological and clinical interpretations of differing 
levels of DNA admixture is warranted.

Recent analysis of larger patient and healthy popu-
lations with MitoChips demonstrates that the extent of 
normal heteroplasmy and polymorphism in mtDNA 
has not been fully appreciated.113 Among the mutations 
detected in protein encoding genes, relatively few 
had obvious biological relevance in that the majority 
substituted a synonymous codon, leaving the amino 
acid sequence of the respective gene unchanged. 
Although scenarios might be envisioned in which 
mutationally altered tRNAs that functionally insert 
the identical amino acids during protein synthesis 
still exert some biological effect, this is another area 
for future investigation. For example, if an altered 
mutant mitochondrial tRNA resulted in insertion of 
the same amino acid, but at a limiting concentration 
or abnormal rate of incorporation due to the mutation, 
the mutation might alter the rate of protein synthesis 
for those proteins rich in that particular amino acid. 
It is of interest that inbred MRL mice show hetero-
plasmy of tRNA genes for methionine and arginine as 
a normal feature, although the biology of this finding 
is not known.114

Standards and technology for improved 
mtDNA biomarker utility
The technology of DNA sequencing and mutation 
detection is rapidly evolving. Methods such as dena-
turing gradient gel electrophoresis (DGGE)127,128 are 
suited to screening experiments and signal the pres-
ence of mtDNA heteroplasmy by altered mobility on 
a gel, but do not detail mtDNA sequence. Appropriate 
for initial screening, such methods are associated 
with a stoichiometric limit of quantitation (LOQ) for 
mtDNA admixtures as low as the 1% level of minor 
species for some sequence variants, and virtually all 
heteroplasmy where the minor component is 5%.129 
Such analyses following bands on a denaturing gel 
alone do not identify the nucleotide bases that are 
changed. The problem of admixture detection was 
recognized early in forensic typing of mixed and 
often degraded DNA samples. For dye terminator 
sequencing, heteroplasmy can be detected only if the 
minor species is present at 30%.130 It has been sug-
gested that methods such as denaturing high perfor-
mance liquid chromatography (dHPLC) with reported 
detection levels for admixture at 1%–5%,113,130–132 

should be utilized for validation of new heteroplasmy 
detection methods.

The physical reference mtDNA sequence and its 
revision66 have been established. In addition, physical 
standards are available for mtDNA analysis such as 
NIST standard reference materials (SRMs). SRM 
2392 and 2392-I are standard reference materials 
for amplification and sequencing of mtDNAs.96,133 
SRM 2394 is a standard reference material offered 
with defined levels of mtDNA admixture for human 
identification and forensics applications.130

Intermediate in resolution are the resequencing 
methods such as MitoChip Versions 1 and 2113,134–136 
which report mtDNA sequence changes that match 
the tiling array features on the chips. These increase 
throughput and reduce costs for detection of point 
mutations. Their disadvantage is that they solely detect 
features that are tiled such as deletions, duplications 
and insertions, and may not be useful in determining 
whether mtDNA depletion is present.113 In addition, 
MitoChip resequencing is inefficient in detecting and 
quantitating mtDNA heteroplasmy.113

Thus, DNA sequencing methods characterized by 
high resolving power for low levels of admixture, as 
well as high accuracy nucleotide-level sequencing, 
are of great interest. The most promising are the 
so-call next generation (NGS) sequencing methods 
exemplified by the 454 (Roche), Gene Analyzer II 
(Solexa/Illumina), ABI and Helicos Systems. The 
power of the 454 system has been demonstrated 
in recent success with complete sequencing of the 
degraded mtDNA sequence of 38,000 year old human 
Neandertal tissues.99 The Gene Analyzer II system has 
shown much technical potential for deep sequenc-
ing of nucleosome positions on a genomic scale.137 
Resolution of mtDNA heteroplasmy at a high level 
of detail would appear within reach of NGS methods. 
At present, NGS analysis is approximately five-fold 
more expensive than chip resequencing.

As DNA sequencing methods move toward lower 
cost coupled with high throughput, increased reso-
lution and improved limits of quantitation, what 
is accepted as the normal biological situation for 
the presence and degree of mtDNA heteroplasmy, 
may change and evolve with improvements in data. 
Before disease-related changes in mtDNA sequence 
can be established, the normal biological background 
of mtDNA sequence variability must be established.
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Quantitation of mtDNA content: depletion 
and distribution among cells and single 
molecule detection
Although not addressing the issue of mtDNA sequence 
change, measurement of the absolute number of 
mtDNA molecules in cells is also relevant to biomarker 
evaluation studies. Ensemble methods based on real-
time PCR have been recently reported.138,139 These, 
of course, represent averages normalized to nuclear 
gene targets and may not capture the extent of cell 
population variability of mtDNA content or mtDNA 
depletion, although some reports have focused on 
analysis of singe-cell mtDNA quantitation.82,83,118

Direct visualization of mtDNA nucleoids in cells 
by microscopy has been possible by detection with 
DNA dyes, and by in situ hybridization. mtDNA 
methods utilizing DNA intercalating dyes are 
available, such as DAPI in fixed cells140 and PicoGreen 
in living cells.141 DNA hybridization is the basis 
for another family of mtDNA detection methods. 
These include in situ PCR142 and fluorescence in situ 
hybridization.143–145 Resolution of mtDNA to the 
level of single nucleotide changes may be achieved 
through anchored mtDNA mutation detection of 
single molecules.146 Recently, dual-color FISH has 
made it possible to quantitate different, deleted 
mtDNAs that functionally trans-complement each 
other in human cells.87 Although not applied to the 
developmental biology of mtDNA in various tissues 
with aging as yet, such powerful methods offering 
single-cell resolution may be another technology-
based approach that would add to the understanding 
of mtDNA variability in healthy aging and disease.

mtDNA biomarkers and aging:  
summary and discussion
Better data are needed on the breadth and depth of 
normal variation in mtDNA sequence and copy num-
ber as a function of normal aging and tissue types in 
mammalian systems. Until normal variation is deter-
mined, associations of mtDNA change in somatic cells 
with diseases will be difficult to evaluate with confi-
dence. Running parallel, the limits of detection (LOD) 
and limits of quantitation (LOQ) for the technologies 
should be characterized on healthy specimens prior 
to disease biomarker studies. Without valid data on 
the analytical systems established a priori, it will be 

rather difficult to establish and interpret fundamental 
healthy biological variability. In the long run, it would 
make more sense and be more cost-effective to work 
out details through pilot studies prior to planning 
extensive analytical validations in clinical specimens, 
or clinical trials.

Leveraging parallel efforts in biomarker 
validation process
Areas that would profit from such technology vali-
dation and normal biological studies include early 
cancer detection. In addition, mtDNA quantity is an 
important metric in the clinical management of AIDs 
patients144 because some of the drugs used to manage 
AIDS clinically, inhibit cellular mitochondrial POLG 
as collateral damage. Thus, better biological studies 
in normal (healthy) subjects, utilization of new, 
appropriately validated technologies, and analytical 
validation of mtDNA content appear to be critical 
and necessary for pursuing this line of work in areas 
including healthy aging, early cancer detection and 
drug development research.

Importance of technology evaluations  
for biomarker measurement: the role  
of pilot studies
The importance of good analytical validation and 
physical standards,147 and of appropriate study design38 
prior to embarking on large clinical studies becomes 
obvious in light of the general lack of success at 
validating and qualifying biomarkers in aging, drug 
development and cancer. Another conclusion is that 
clinical validation of biomarkers must involve multi-
ple study sites to control for local differences in SOPs 
for specimen collection and storage from cases and 
controls.

Each of these considerations comes into play in 
designing better biomarker pilot studies to verify 
adequate preanalytical processing and technology 
performance metrics early when studies are of limited 
scope and cost.

In aging research, useful composite biomarkers or 
panels might be valuable if one could apply them as 
predictive or diagnostic markers. Another intended 
use for such a panel would be to assign biological age, 
and finally, a further goal might be to predict rate of 
aging and overall longevity. Obviously, longevity and 
disease risk are not wholly independent endpoints.
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Once the purpose or application of the biomarker 
measurement is defined, the analytical validation 
of panels consisting of multiple biomarkers of the 
same type (multiplex biomarker panel), or panels 
of biomarkers of various types (DNA mutations or 
SNP with gene expression data with proteomics, as a 
composite biomarker panel), is the next step. It is clear 
there will be few if any single-analyte biomarkers for 
early cancer detection of solid tumors with the possible 
exception of specific, rare Mendelian mutations. In 
drug development work, increasing attention has been 
paid to the value of biomarkers that are theranostics 
(therapeutic + diagnostic), or targets in which the 
druggable target and diagnostic are the same. With 
the fairly recent realization that single biomarkers 
may not prove effective, the metrology of how 
multiple biomarkers can best be applied, is emerging. 
How such panels will be analytically validated and 
evaluated to obtain the optimal “fitness-for-use” with 
a minimum of independent biomarkers or assays, 
is a novel area of biomarker metrology with which 
there is limited experience at present. In parallel with 
novel candidate biomarkers emerging in many areas 
such as microRNA diagnostics,148 the best systematic 
approach to analytical validation and qualification 
of biomarkers and biomarker panels in clinical trials 
is currently undergoing rapid development. In any 
case, it will be useful to capture the prior experience 
of the biomarker validation community in academic, 
government and private sector applications as this 
field moves forward in many diverse applications.
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