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Abstract 

Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive 

SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 

infections are asymptomatic, patients admitted for unrelated indications with an incidentally 

positive test could be misclassified as a COVID-19 hospitalization. EHR-based studies have 

been unable to distinguish between a hospitalization specifically for COVID-19 versus an 

incidental SARS-CoV-2 hospitalization. From a retrospective EHR-based cohort in four US 

healthcare systems, a random sample of 1,123 SARS-CoV-2 PCR-positive patients hospitalized 

between 3/2020–8/2021 was manually chart-reviewed and classified as admitted-with-COVID-

19 (incidental) vs. specifically admitted for COVID-19 (for-COVID-19). EHR-based phenotyped 

feature sets filtered out incidental admissions, which occurred in 26%. The top site-specific 

feature sets had 79-99% specificity with 62-75% sensitivity, while the best performing across-

site feature set had 71-94% specificity with 69-81% sensitivity. A large proportion of SARS-

CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes 

differentiated admissions, which is important to assure accurate public health reporting and 

research. 

Introduction 

Despite the ongoing COVID-19 pandemic and the dozens of research groups and consortia 

around the world that continue to utilize clinical data available in Electronic Health Records 

(EHR), critical gaps remain in both our understanding of COVID-19 and how to accurately 

predict poor outcomes including hospitalization and mortality.1–4   
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One of the most prominent gaps in the field is how to distinguish hospital admissions 

specifically for COVID-19-related indications (e.g., severe disease with respiratory failure) from 

an incidentally positive SARS-CoV-2 PCR test in admissions for an unrelated reason (e.g., 

broken leg). Approximately 800,000 new SARS-CoV-2 cases are being reported daily, and 

approximately 150,000 patients are hospitalized with a positive SARS-CoV-2 PCR test.5 

Misclassification of incidental COVID-19 during hospitalizations is common5 and raises 

research and public health concerns. For example, deleterious effects on healthcare system 

resource disbursement or utilization as well as on local and regional social and economic 

structure and function can result from inaccurate reporting of incidental cases of SARS-CoV-2. 

Misclassification in research studies occurs because patients are usually considered COVID-19 

patients if they have a recent positive SARS-CoV-2 PCR test or the ICD-10 diagnosis code U07, 

which, according to guidelines, is equivalent to a positive test.6 This approach has been used in 

most COVID-19 studies published to date7,8 and is in line with CDC guidelines, which treat 

positive SARS-CoV-2 PCR tests as confirmed cases (https://ndc.services.cdc.gov/case-

definitions/coronavirus-disease-2019-2021/). Given that at least 35% of SARS-CoV-2 cases are 

asymptomatic, patients seeking unrelated care are erroneously classified as COVID 

hospitalizations.9–13 The magnitude of this misclassification has increased over time as healthcare 

systems began to be less restrictive after the second wave and elective surgeries were again 

performed starting in the second quarter of 2021.  

A potential solution is EHR-based phenotyping, which identifies patient populations of interest 

based on proxies derived from EHR observations. EHR phenotypes are developed by first 

performing manual chart review to classify cases and then applying a machine learning or 

statistical reasoning method to the EHR data to create an explainable predictive model.14,15 For 
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example, a phenotyping study of bipolar disorder found that true bipolar disorder correlated with 

a set of several EHR features.16 Our previous work validated a “severe COVID-19” phenotype in 

the Consortium for Clinical Characterization of COVID-19 by EHR (4CE) network 

(https://covidclinical.net/) using both chart review and comparison across sites.17 The 

Massachusetts Department of Public Health has recently begun using a simple phenotype to 

report COVID-19 hospitalizations (https://www.wbur.org/news/2022/01/21/massachusetts-

primary-incidental-coronavirus-grouping).18 Although it is based on treatment recommendations 

and not a gold standard, it illustrates the interest in EHR-based phenotyping for COVID-19.  

In this study, we utilized EHR data from 60 hospitals across four US healthcare systems in 4CE 

combined with clinical expertise, data analytics, and manual EHR chart review to determine 

whether patients admitted to the hospital and who had a positive SARS-CoV-2 PCR test were 

hospitalized for COVID-19 (for-COVID) or were admitted for a different indication and simply 

had an incidental positive test (incidental).  

Results 

Chart Review 

The final chart review criteria are shown in Table 1. (See Methods for details.) Across the four 

sites, 68% of patients were admitted for COVID-19, 26% of patients were admitted with 

incidental SARS-CoV-2, and 6% were uncertain (Table 2). The four sites included Beth Israel 

Deaconess Medical Center (BIDMC), Mass General Brigham (MGB), University of Pittsburgh / 

University of Pittsburgh Medical Center (UPITT), and Northwestern University (NWU). A site-

by-site breakdown both overall and by individual criteria is also shown in Table 2. Plots of the 
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proportion of hospitalizations specifically for COVID-19 among all chart reviews by month over 

the course of the pandemic are shown in Figure 1. Finally, Table 3 shows the top-10 ICD-10 

diagnoses that were assigned to patients with a date in the first 48 hours after admission in for-

COVID vs. incidental COVID patients (Table 3). 

 

Phenotypes Using Hospital System Dynamics 

Each site ran our Hospital System Dynamics (HSD) program to choose phenotypes of patients 

admitted for-COVID vs. patients admitted incidentally with COVID. The input of the program 

includes the chart-reviewed classifications and patient-level EHR data on the presence of 

laboratory tests, medications, and diagnosis codes that are dated within 48 hours of admission. 

Table 4 shows the top feature sets generated by the program at each site both for phenotypes that 

use data that could be available immediately (“real time”) and phenotypes using all data 

available after discharge (“retrospective”). We also report prevalence at each site among all 

SARS-CoV-2 PCR positive hospitalizations (not just among chart-reviewed patients), which is 

the proportion of patients meeting the criteria of the feature sets.  

We examined the top individual EHR data elements over time at all sites. In the first half of 

2020, a diagnosis of “other viral pneumonia” (J12.89) was the only strong predictor of an 

admission specifically for COVID-19 across all four sites. In the second half of 2020, the 

phenotyping algorithm began selecting laboratory tests, including CRP, troponin, ferritin, and 

LDH. Also, the diagnosis “other COVID disease" (B97.29) began to be used at NWU. By 2021, 

remdesivir and the diagnosis “pneumonia due to COVID-19” (J12.82) additionally came into 

widespread use and became predictive of admissions specifically for COVID at MGB.  
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Temporal Visualization of Phenotypes 

The three multisite phenotypes (derived from common elements in Table 4) and their 

performance are shown in Table 5, with the top rule at each site in bold type. In Figure 2, we 

plotted the performance of the top phenotype at each site (the boldfaced rows in Table 5) using 

the temporal phenotype visualization described in the Methods. (The top phenotype involved all 

data types at every site except UPITT, where diagnoses alone performed better.)   

Discussion 

The COVID-19 pandemic has lasted for over two years, with multiple waves across the world. 

Although hospital systems have been cyclically overwhelmed by patients seeking care for 

COVID-19, as healthcare systems began to open up before the second wave, elective surgeries 

were again performed starting in the later part of 2020, and especially in the second quarter of 

2021 many have approached the healthcare system for health issues (e.g., accidents, strokes, etc.) 

while incidentally infected with SARS-CoV-2.19 This, along with the high false positive rate of 

SARS-CoV-2 PCR tests in some situations,20–23  has led to increasing numbers of misclassified 

patients in analyses of COVID-19 characteristics and severity. This could be creating significant 

detection and reporting bias, leading to erroneous conclusions.9–12 This study presents a multi-

institutional characterization of 1,123 hospitalized patients either incidentally infected with 

SARS-CoV-2 or specifically hospitalized for COVID-19 in four healthcare systems across 

multiple waves using consensus-based chart review criteria.  

We applied an itemset-mining approach and established Hospital System Dynamics (HSD) 

principles to phenotype SARS-CoV-2 PCR-positive patients who were admitted specifically for 

COVID-19, using data on charting patterns (e.g., presence of laboratory tests within 48 hours of 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.10.22270728doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.10.22270728
http://creativecommons.org/licenses/by-nc/4.0/


 7 

admission) rather than results (e.g., laboratory results).15,24 HSD examines healthcare process 

data about a hospitalization, such as ordering/charting patterns, rather than the full dataset. For 

example, to study severely ill patients, HSD might select patients with a high total number of 

labs for a patient on the day of admission. This could be an indirect measure of clinical suspicion 

of disease complexity or severity. Previous work shows that proxies such as total number of 

laboratory tests on the day of admission or the time of day of laboratory tests can be highly 

predictive of disease course.24,25 Our methods sorted out who was treated for COVID-19 

automatically, over time, with specificities above 0.70 even for some phenotypes discovered at a 

single site and applied to all four. We focused on specificity because the goal was to remove 

false positives (i.e., incidental SARS-CoV-2) from the cohort.  

Our chart review protocol illustrates that patients who were admitted and have a positive 

SARS-CoV-2 PCR test were more likely to be admitted specifically for COVID-19 when disease 

prevalence was high (at least prior to Omicron). However, during periods in which healthcare 

systems were less restrictive (i.e., resumed routine surgeries), a secondary measure/phenotype is 

critical for accurately classifying admissions specifically for SARS-CoV-2 infection. 

As expected, we observed a lower proportion of hospitalizations specifically for COVID-19 in 

the summer months when disease prevalence was lower (Figure 1). One would expect this, 

because there were fewer overall admissions as hospitals were recovering from the previous 

wave.  

As expected, the top chart review criteria (Table 2) were respiratory insufficiency in admissions 

specifically for COVID-19 and other for incidental and uncertain admissions with SARS-CoV-2. 

Surprisingly, 10-20% of patients admitted with incidental SARS-CoV-2 were diagnosed with 

pneumonia, respiratory failure, or acute kidney injury (Table 3). This could reflect data 
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collection issues, where some systems might repeat past problems automatically at hospital 

admission. In the case of codes for acute kidney injury, further investigation is needed to 

determine whether SARS-CoV-2-associated acute kidney injury (including COVID-19-

associated nephropathy) occurs in patients we otherwise classified as having incidental 

admissions.26 

Healthcare systems are beginning to explore phenotyping feature sets to report admissions 

specifically for COVID-19. Starting January 2022 in Massachusetts, hospitals began reporting 

the number of for-COVID hospitalizations as the count of admitted patients with both a SARS-

CoV-2 positive test and a medication order for dexamethasone 

(https://www.wbur.org/news/2022/01/21/massachusetts-primary-incidental-coronavirus-

grouping).18 This simple phenotype was designed by the Massachusetts Department of Public 

Health as a first attempt, and it was based only on treatment recommendations for moderate-to-

severe COVID-19 with hypoxia. It was not validated against a gold standard. Nonetheless, it 

illustrates the interest in EHR-based phenotyping for COVID-19. 

Phenotypes with diagnosis codes tended to be the best performing predictors of admissions 

specifically for COVID-19. This could be because diagnosis codes represent either a clinically 

informed conclusion or a justification for ordering a test (implying the clinician suspected 

COVID-19). However, diagnoses are less prevalent in the population than laboratory tests and 

might not cover the entire population of admissions for COVID-19. Further, diagnoses early in 

hospitalization also do not always reflect the patient’s eventual diagnosis or hospital-related 

complications that are more accurately reflected in discharge diagnoses. There was also some 

heterogeneity in the diagnoses used at different sites (e.g., B97.29 “other COVID disease” was a 

top predictor only at NWU). In addition, presence of laboratory tests are useful for real-time 
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detection systems because diagnosis codes usually are assigned after discharge. Clusters of tests 

for inflammatory markers (e.g., LDH, CRP, and ferritin) appeared across most sites as predictive 

of hospitalizations specifically for COVID-19, which fits intuitively because one of the 

underlying systemic pathophysiological mechanisms of SARS-CoV-2 is thought to be an 

inflammatory process,27,28 and guidelines therefore have encouraged health care providers to 

check inflammatory markers on COVID-19 admissions.29,30 Many of these inflammatory labs are 

not routinely ordered on all hospitalized patients and would therefore be expected to help 

distinguish COVID-19 from other patients. However, laboratory protocol differences across sites 

may have reduced generalizability for this metric.    

Our methods generated pairs of items using OR and groups of up to 4 using AND logical 

operators. Our feature sets were somewhat vulnerable to the problem that specificity decreases 

when multiple elements are combined with OR although, in general, OR feature sets performed 

better across sites because they could be designed to choose the top performing elements at each 

site. 

In addition to site differences, we also found changing disease management patterns over time. 

At the start of the pandemic, the only predictive phenotype was a pneumonia diagnosis. As 

standard COVID-19 order recommendations began to appear, laboratory orders became more 

consistent and predictive. Next, remdesivir began to be administered regularly. Finally, COVID-

specific ICD-10 codes began to appear.  

Overall, we found that an informatics-informed phenotyping approach successfully improved 

classification of for-COVID vs. incidental SARS-CoV-2 positive admissions, though 

generalizability was a challenge. Although some transfer learning is apparent (i.e., a few 

phenotypes performed well across sites), local practice and charting patterns reduced 
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generalizability. Specifically, phenotypes involving only laboratory tests did not perform well at 

UPITT, because the prevalence of these labs was low in the overall EHR data. This could be due 

to a data extraction or mapping issue in the underlying data warehouse. BIDMC had lower 

performance than other sites on the cross-site rules but not on the site-specific rules, perhaps 

highlighting less typical clinician treatment patterns.  

Limitations 

Although the current data start at the beginning of the pandemic, they do not include the current 

Omicron wave nor very much of the Delta wave. We believe that the techniques introduced here 

(if not the phenotypes themselves) will be applicable to these variants, and we are planning 

future studies to validate this. 

Our phenotypes demonstrated some transfer learning but not enough to create a single 

phenotype applicable to all sites. Technically, our system used machine learning at individual 

sites, but results were manually aggregated across sites. Emerging techniques for federated 

learning31 might reduce the manual work required and increase the complexity of possible cross-

site phenotype testing. 

Finally, an inherent weakness of EHR-based research is that EHR data do not directly represent 

the state of the patient, because some observations are not recorded in structured data, and some 

entries in the EHR are made for non-clinical reasons (e.g., to justify the cost of a test or to ensure 

adequate reimbursement for services). This is common to all EHR research efforts, and we 

mitigated this limitation by developing chart-verified phenotypes.  
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Conclusion 

At four healthcare systems around the US over an 18-month period starting in March 2020, we 

developed and applied standardized chart review criteria to characterize the correct classification 

of a hospitalization specifically for COVID-19 as compared to incidental hospitalization of a 

patient with a positive SARS-CoV-2 test or ICD code.  Then we applied HSD and frequent 

itemset mining to electronic phenotyping to generate phenotypes specific to hospitalizations for 

COVID-19, and we showed how patterns changed over the course of the pandemic. Application 

of this approach could improve public health reporting, healthcare system resource disbursement, 

and research conclusions. 

Methods 

We selected a sample of our 4CE sites across the US to participate in the development of our 

“for-COVID-19” hospitalization phenotype. These sites included Beth Israel Deaconess Medical 

Center (BIDMC), Mass General Brigham (MGB), Northwestern University (NWU), and 

University of Pittsburgh / University of Pittsburgh Medical Center (UPITT). Each site involved 

at least one clinical expert (for chart review and manual annotation) and one data analytics 

expert (to apply various analytic filtering approaches). Eligible patients for this study were those 

included in the 4CE COVID-19 cohort: all hospitalized patients (pediatric and adult) with their 

first positive SARS-CoV-2 PCR test seven days before to 14 days after hospitalization.2 

Chart Review 

Each development site randomly sampled an equal number of admissions in each quarter 

(BIDMC, MGB) or month (NWU, UPITT) from their cohort of SARS-CoV-2 PCR positive 
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patients over the period March 2020 until at least March 2021. Clinical experts reviewed the 

charts in the EHR and recorded whether these patients were admitted for COVID-19 related 

reasons as defined below. Participating sites and number of chart reviews are listed in Table 6. 

To develop chart review criteria, a 4CE sub-group met during March-July 2021. The group 

consists of about 20 researchers in 4CE, with a mixture of physicians, medical informaticians, 

and data scientists. In the process, dozens of real patient charts were considered, and edge cases 

were discussed until consensus was reached on the minimal chart review necessary to determine 

the reason a patient was hospitalized.  

Based on the developed criteria (Table 1), chart reviewers (one per site, except at BIDMC 

where there were two) classified the patients based on review of primarily the admission note, 

discharge summary (or death note), and laboratory values for the hospitalization. Each site had 

IRB approval to view the charts locally and only de-identified aggregate summaries were 

presented to the sub-group.  Each site summarized the chart reviews in a spreadsheet that was 

then linked to the site’s 4CE EHR data, wherein medical record numbers were replaced with 

4CE’s patient pseudo-identifiers, and criteria classifications were coded as an integer. The chart 

review process is presented visually in Figure 3.  

We developed an R script at MGB to perform basic data summarization. It did the following: 

calculated chart review summary statistics; aggregated data on ICD-10 diagnosis codes used 

during the hospitalization to compare to the chart review classification; generated a bubble plot 

that visualizes the change in proportion of hospitalizations specifically for COVID-19 among all 

chart reviews over the course of the pandemic, by month. A trendline was fitted with loess 

regression using ggplot2 and was weighted by the number of chart reviews performed that 

month. Each participating healthcare site ran the R script on their chart reviewed patient cohort. 
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Hospital System Dynamics Phenotyping 

We developed an algorithm as an R script to choose phenotypes of admissions specifically for 

COVID-19, using established hospital dynamics measures of ordering/charting patterns in the 

EHR (e.g., presence of laboratory tests rather than laboratory results).15,25 The algorithm uses a 

variation of an Apriori itemset-mining algorithm.32,33 Apriori, which has been employed in other 

EHR studies, employs a hill-climbing approach to find iteratively larger item sets that meet some 

summary statistic constraint.34,35 The original algorithm chose rules that maximized positive 

predictive value (PPV) and had at least a minimum prevalence in the dataset. More recent 

variants use other summary statistics,36 because PPV, which measures the likelihood a positive is 

a true positive, is highly affected by population prevalence (which shifts dramatically over time 

with COVID-19).  Therefore, our algorithm used sensitivity and specificity. A visual 

representation of our algorithm is shown in Figure 4. Itemsets of size 1 are chosen that meet 

certain minimum prediction thresholds, then these are combined into itemsets of size 2 and again 

filtered by the thresholds, and so forth up to a maximum itemset size.  

We applied our algorithm to find patterns in 4CE EHR data at each site using presence of 

medications, laboratory tests, and diagnoses to select the best phenotypes. We further compared 

the output at each site to see if there were similarities, e.g., transfer-learning was applicable. We 

considered two cases: data that would be available in near-real time during a hospitalization 

(laboratory tests) and data that would be available for a retrospective analysis (including 

laboratory and medication facts and diagnosis codes - which are usually not coded until after 

discharge). 

Sites exported phenotypes with sensitivity of at least 0.60, ordered by specificity in descending 

order. (NWU applied a slightly lower sensitivity threshold because no phenotypes with 
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sensitivity of at least 0.60 were available.) Specificity was chosen as the sorting variable because 

it measures the phenotype’s ability to detect and remove incidental SARS-CoV-2 admissions—a 

good measure of overall performance. Sensitivity, on the other hand, measures the ability to 

select for-COVID admissions, which can be easily maximized by simply selecting all patients. 

Groups of phenotypes were manually summarized into conjunctive normal form by combining 

AND and OR phenotypes at each site when possible and reporting a sensitivity and specificity 

range for the final combined phenotype. We excluded feature sets that were more complex but 

with the same performance as a simpler feature set.  

We also ran our phenotyping program to find the most predictive single items at each site 

during every 6-month period of the pandemic, beginning January 2020. This analysis allowed us 

to examine the trend of Hospital System Dynamics (HSD) as the pandemic progressed. 

The final piece of analysis involved selecting multi-site phenotypes and plotting their 

performance over time. First, we isolated the components of phenotypes that appeared at 

multiple sites, resulting in three multisite feature sets. We manually added/removed OR 

components based on performance at MGB (because adding too many OR components degrades 

the specificity). We ran these constructed phenotypes at each site to ascertain their performance 

characteristics and we also developed a visualization used at each site. The visualization shows 

three lines: a solid line shows the total number of patients in the site’s 4CE cohort (i.e., admitted 

with a positive SARS-CoV-2 PCR test); a dashed line shows the total number of those patients 

after filtering to select patients admitted specifically for COVID-19 (i.e., removing all patients 

that do not meet the phenotyping feature set criteria); a dotted line shows the difference of the 

solid line and the dashed line (i.e., patients removed from the cohort in the dashed line). Dots on 

the graph visualize the performance on the chart reviewed cohort. Green dots on each line show 
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patients that were correctly classified by the phenotype, according to the chart review. Likewise, 

orange dots on each line show incorrect classifications. Dot size is proportional to the number of 

chart reviews. 

Importantly, all review and analysis were performed by local experts at each site, and only the 

final aggregated results were submitted to a central location for finalization. This approach is one 

of the hallmarks of 4CE - keeping data close to local experts and only sharing aggregated results. 

It reduces regulatory complexity around data sharing and keeps those who know the data best 

involved in the analysis.  

All our software tools were implemented as R programs. They were developed at MGB and 

tested by all four sites. The code is available as open source at: https://github.com/jklann/jgk-

i2b2tools/tree/master/4CE_utils. 

Institutional Review Board Approval was obtained at Beth Israel Deaconess Medical Center, 

Mass General Brigham, Northwestern University, and University of Pittsburgh. Participant 

informed consent was waived by each IRB because the study involved only retrospective data 

and no individually identifiable data was share outside of each site’s local study team. At MGB 

and BIDMC, any counts of patients were blurred with a random number +/- 3 before being 

shared centrally. Our previous work shows that, for large counts, pooling blurred counts has 

minimal impact on the overall accuracy of the statistics.37 At all sites, any counts with fewer than 

three were censored. All other statistics (e.g., percentages, differences, confidence intervals, p-

values) were preserved. 
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Data Availability 

The electronic health record datasets analyzed during the current study cannot be made publicly 

available due to regulations for protecting patient privacy and confidentiality. These regulations 

also prevent the data from being made available upon request from the authors. Any questions 

about the dataset can be directed to the corresponding author.  

Code Availability 

All data analysis code developed for this study is available at https://github.com/jklann/jgk-

i2b2tools/tree/master/4CE_utils under the Mozilla Public License v2 with healthcare disclaimer.  
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Tables 

Chart Reviewed 
Classification 

 

Criteria  

Admitted 
Specifically for 

COVID-19 

 

 

 

Symptoms on admission were attributable to COVID-19 and 
clinicians admitted patients for COVID-19-related care. This 
includes: 

- Respiratory insufficiency  

- Blood clot to vital organs 

- Hemodynamic changes 

- Other common viral symptoms such as cough, fever, 
etc. 

- Admitted for non-COVID-19 issue, but developed one 
of the above criteria while hospitalized 

Admitted 
Incidentally with  

COVID-19 

 

Admission history was unlikely to be related to COVID-19 
and clinicians did not specifically admit the patient for COVID-
19-related care. This admission could be due to: 

- Trauma 

- Procedure or operation requiring hospitalization 

- Term labor 

- Alternative causes, including drug overdose, cancer 
progression, non-respiratory severe infection, etc. 

Uncertain 

Symptoms on admission may have been related to COVID-
19 and clinicians considered COVID-19 exacerbation during 
hospitalization. This includes: 

- Preterm labor 

- Liver dysfunction 

- Graft failure 

- Immune system dysfunction 

- Alternative causes including sickle cell crisis, failure to 
thrive, altered mental status  

Table 1. Summary of the chart-review criteria developed by the 4CE subgroup of physicians, 
medical informaticians, and data scientists. 
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COVID 
Classification 

Category MGB NWU UPITT BIDMC Overall 

Admitted 
Specifically for 

COVID-19 

 

ALL 71% 84% 73% 60% 

68% 

Respiratory insufficiency 50% 51% 52% - 

Blood clot 1% 3% 0% - 

Hemodynamic <1% 0% 0% - 

Other symptomatic COVID-19 18% 27% 20% - 

Not admitted for COVID-19 but developed 
one of the above criteria 

2% 3% 2% - 

Admitted 
Incidentally 

with COVID-19 

ALL 21% 13% 22% 36% 

26% 

Trauma 0% 0% 0% - 

Procedure 2% 0% 4% - 

Full-term labor 4% 4% 0% - 

Other not COVID-19 13% 9% 18% - 

Uncertain 

 

ALL 8% 3% 4% 4% 

6% 

Other possible COVID-19 8% 3% 4% - 

Early labor <1% 0% 0% - 

Liver dysfunction <1% 0% 0% - 

Graft failure 0% 0% 0% - 

Immune dysfunction <1% 0% 0% - 

Table 2. Proportion of chart-reviewed patients admitted specifically for COVID-19 vs. admitted 
with incidental SARS-CoV-2, overall and stratified by site, with a detailed criteria breakdown. A 
detailed breakdown at BIDMC could not be included because their process did not record the 
specific criteria for each classification. 
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ICD-10 Diagnosis MGB NWU UPITT BIDMC 

Admitted specifically for COVID-19 

U07.1 Covid-19 92% 92% 80% 95% 

J12.89 Other Viral Pneumonia 44% 41% 35% 70% 

I10 Essential (Primary) Hypertension 39% 27% 41% 37% 

J96.01 Acute Respiratory Failure With Hypoxia 26% 34% 31% 58% 

E78.5 Hyperlipidemia, Unspecified 28% 7% 38% 46% 

N17.9 Acute Kidney Failure, Unspecified 25% 7% 22% 39% 

K21.9 Gastro-Esophageal Reflux Disease Without 
Esophagitis 

22% 2% 31% 26% 

Z87.891 Personal History of Nicotine Dependence 18% 2% 24% 27% 

R09.02 Hypoxemia 29% 25% 12% 17% 

J12.82 Pneumonia due to COVID-19 25% 20% 22% 15% 

 

Admitted Incidentally with COVID-19 

U07.1 Covid-19 74% 56% 73% 85% 

N17.9 Acute Kidney Failure, Unspecified 14% 11% 22% 17% 

E11.22 Type 2 Diabetes Mellitus with Diabetic Chronic 
Kidney Disease 

6% 11% 13% 15% 

E11.9 Type 2 Diabetes Mellitus Without Complications 11% 11% 7% 11% 

D64.9 Anemia, Unspecified 19% 11% 9% 6% 

E87.2 Acidosis 6% 11% 5% 10% 

J12.89 Other Viral Pneumonia 2% 22% 7% 12% 

J96.01 Acute Respiratory Failure With Hypoxia 8% 11% 7% 8% 

D69.6 Thrombocytopenia, Unspecified 7% 11% 11% 7% 

N18.6 End Stage Renal Disease 7% 11% 9% 5% 

Table 3. Top ten ICD-10 diagnoses among patients chart reviewed as admitted specifically for 
COVID-19 and those admitted with incidental COVID-19, with the proportion of patients at each 
site.  Each patient might have multiple diagnoses, and therefore the sum might be greater than 
100%. 
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Phenotyping Feature Set Site Sensitivity Specificity Prevalence 

“Real-time” phenotypes (labs only) 

CRP AND  

  (total bilirubin OR ferritin OR LDH) AND 

  (lymphocyte count OR neutrophil count) AND 
cardiac troponin 

BIDMC 0.65-0.72 0.85 67-71% 

Ferritin AND LDH AND cardiac troponin AND (INR 
OR PTT OR lymphocyte count OR neutrophil 
count) 

BIDMC 0.62-0.69 0.85 67-71% 

CRP AND (LDH AND/OR Ferritin)  AND cardiac 
troponin 

MGB 0.67-0.70 0.89-0.90 72-77% 

Procalcitonin OR d-dimer OR CRP OR 

   cardiac troponin OR ferritin 
MGB 0.63-0.87 0.73-0.85 65-85% 

Any two of: procalcitonin, LDH, CRP NWU 0.56-0.58 0.67 63-67% 

D-dimer OR ferritin OR CRP  
UPITT 

0.26-0.37 

 
0.86-0.93 54-58% 

“Retrospective” phenotypes (labs, meds, and diagnosis codes) 

Total bilirubin AND  

(ferritin OR LDH OR lymphocyte count OR 
neutrophil count) AND diagnosis of Other Viral 
Pneumonia (J12.89) 

BIDMC 0.62-0.64 0.92 46-48% 

Diagnosis of: Other Viral Pneumonia (J12.89) OR 
Acute Respiratory Failure with Hypoxia (J96.01) 
OR Anemia (D64.9) 

BIDMC 0.70-0.74 0.82-0.88 50-63% 

Diagnosis of: Other Viral Pneumonia (J12.89) OR 
Supplemental Oxygen (severe) 

BIDMC 0.75 0.82 61% 

CRP AND (LDH OR ferritin)  

AND cardiac troponin 
MGB 0.70 0.89 74-77% 

Remdesivir OR procalcitonin OR Other Viral 
Pneumonia (J12.89) OR Nonspecific Abnormal 
Lung Finding (R91.8) OR Shortness of Breath 
(R06.02) OR Other COVID Disease (J12.82) 

MGB 0.68-0.72 0.85-0.95 58-74% 

Hypoxemia (R09.02) OR other Coronavirus as 
Cause of Disease (B97.29) OR Shortness of 
Breath (R06.02) OR Pneumonia (unspecified 
organism) (J18.9) OR acute respiratory failure 
with hypoxia (J96.01) OR Nonspecific Abnormal 
Lung Finding (R91.8) 

NWU 0.63-0.68 0.89-0.99 54-67% 

D-dimer OR ferritin OR CRP OR Other Viral 
Pneumonia (J12.89) OR acute respiratory failure 
with hypoxia (J96.01) 

UPITT 0.71-0.75 0.79-0.86 52-58% 

Table 4. Top phenotyping feature sets by specificity, with a sensitivity of at least 0.60 for 
detecting admissions specifically for COVID-19. The table is grouped into feature sets involving 
potentially real-time data (laboratory tests) and all available data (presence of laboratory tests, 
medications, and diagnosis codes). Ranges are shown in the summary statistics because 
multiple rules with similar performance were summarized using conjunctive normal form. 
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Phenotyping Feature Set Description Sensitivity, Specificity 

Other Viral Pneumonia OR Acute 
Respiratory Failure with Hypoxia 
OR Shortness of Breath OR 

Abnormal Lung Finding 

Diagnoses mentioned in top 
feature sets at >1 site 

MGB: 0.79,0.72 

BIDMC: 0.64,0.58 

NWU: 0.88, 0.85 

UPITT: 0.69,0.90 

CRP AND Ferritin Labs mentioned in top feature 
sets at all four sites 

MGB: 0.76,0.85 

BIDMC: 0.66, 0.55 

NWU: 0.88, 0.85 

UPITT: 0.42, 0.98 

Remdesivir OR Oxygen (severe) 
OR Dx of Other Viral Pneumonia 

All items mentioned at multiple 
sites in OR feature sets 

MGB: 0.74,0.91 

BIDMC: 0.61,0.71 

NWU: 0.81, 0.94 

UPITT: 0.60,0.92 

Table 5. The best multisite phenotyping feature sets and their overall performance 
characteristics. The top-performing phenotype at each site is boldfaced. The multisite 
phenotypes were derived from Table 4, by selecting components of phenotypes that appeared 
at multiple sites. 

 

Participating Site Hospitals 
Inpatient 

Discharges 
Per Year 

Number of 
Chart 

Reviews 
Performed 

Chart 
Review 

Time Period 

Start Date 

End Date 

Beth Israel Deaconess 
Medical Center (BIDMC) 

1 40,752 400 
3/2020 

3/2021 

Mass General Brigham 
(MGB) 

10 163,521 406 
3/2020 

7/2021 

Northwestern University 
(NWU) 

10 103,279 70 
3/2020 

2/2021 

University of Pittsburgh / 
UPMC 

(UPITT) 

39 369,300 247 
4/2020 

8/2021 

Table 6. Participating healthcare systems’ overall characteristics and number and time period 
of chart reviews performed for this study. 
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Figures  

Figure 1. Chart-reviewed proportion of admissions specifically for COVID-19. The 
proportion of hospitalizations specifically for COVID-19 among all chart reviews by month at a) 
BIDMC, b) MGB, c) NWU, d) UPITT. Bubble size shows the relative number of patient chart 
reviews performed that month. The trendline was weighted by bubble size and was performed 
using loess regression. Note that the y-axis and confidence interval limits extend above 100%. 
 
Figure 2. Phenotype performance over time at each site. Performance of the top 
phenotyping feature set (Table 5) at a) MGB, b) BIDMC, c) NWU, and d) UPITT. Y-axis is 
number of admissions per week, X-axis is week, and overall sensitivity and specificity shown on 
each figure panel. Solid lines show the total number of weekly admissions for patients with a 
positive SARS-CoV-2 PCR test. Dashed lines show the number of weekly admissions after 
filtering to select patients admitted specifically for COVID-19 (i.e., removing all patients that do 
not meet the phenotyping feature set criteria). Dotted line shows the difference of the solid line 
and the dashed line (i.e., patients removed from the cohort in the dashed line). Green dots 
indicate correct classification by the phenotype according to chart review. Orange dots indicate 
incorrect classification. Dot size is proportional to the number of chart reviews.  
 
Figure 3. The chart-review process. At each site, an equal number of patients admitted with a 
positive SARS-CoV-2 PCR test were sampled by quarter or by month. A chart reviewer at the 
site examined primarily the admission note, discharge summary (or death note), and laboratory 
values for the hospitalization to classify as admitted for COVID-19, incidental SARS-CoV2, or 
uncertain. These classifications were then merged with 4CE EHR data for use with shared 
analytic scripts in R. 
 
Figure 4. Design of the phenotyping algorithm. Predictive feature sets of iteratively larger 
size are selected based on their sensitivity and specificity in correctly identifying COVID-19-
specific admissions using 4CE EHR data and chart reviews. We chose the following parameters 
after testing various thresholds at all four sites: AND feature sets, x=0.40, y=0.20, p=0.30; OR 
feature sets x=0.10, y=0.50, p=0.20; single features: x=y=p=0  
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Figure 3. The chart-review process. 
 
 
 
 

 

Figure 4. Design of the phenotyping algorithm. 
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